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In this article, we describe a hybrid optimizer based on a highly accurate response
surface method, which uses several radial basis functions and polynomials as
interpolants. The response surface is capable to interpolate linear as well as highly
non-linear functions in multi-dimensional spaces having up to 500 dimensions.
The accuracy, robustness, efficiency, transparency and conceptual simplicity are
discussed. Based on the extensive testing performed on 296 test functions, the
radial basis functions (RBFs) approach seems computationally easy to implement
and results are superior, requiring small computing time. The performance of the
RBF approximation is compared with wavelets neural networks for several
selected test cases and the optimizer is compared with other hybrid optimizers, as
well as with the IOSO commercial code.

Keywords: hybrid optimization; multidimensional interpolations; response
surface; radial basis function polynomials

1. Introduction

The use of RBFs followed by collocation, a technique first proposed by Kansa [1],

after the work of Hardy [2] on multivariate approximation, is now becoming an

established approach. Various applications to problems in mechanics have been made in

recent years – see, for example, Leitão [3,4].
Kansa’s method (or asymmetric collocation) starts by building an approximation to

the field of interest (normally displacement components) from the superposition of RBFs

(globally or compactly supported) conveniently placed at points in the domain and/or at

the boundary.
The unknowns (which are the coefficients of each RBF) are obtained from the

approximate enforcement of the boundary conditions as well as the governing equations

by means of collocation. Usually, this approximation only considers regular RBFs, such as

the globally supported multiquadrics or the compactly supported Wendland functions [5].
RBF may be classified into two main groups:

(1) The globally supported ones, namely the multiquadrics (MQ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xjÞ

2
þ c2j

q
, where cj

is a shape parameter), the inverse multiquadrics, thin plate splines, Gaussians, etc;
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(2) The compactly supported ones such as the Wendland [5] family (for example,

ð1� rÞnþ þ pðrÞ where p(r) is a polynomial and ð1� rÞnþ is 0 for r greater than the

support).

There are several other methods for automatically constructing multi-dimensional

response surfaces. Notably, a classical book by Lancaster and Salkauskas [6] offers a

variety of methods for fitting hypersurfaces of a relatively small dimensionality. Kauffman

et al. [7] obtained reasonably accurate fits of data by using second-order polynomials.

Ivakhnenko and his team in Ukraine [8] have published an exceptionally robust method

for fitting non-smooth data points in multi-dimensional spaces. Their method is based on

a self-assembly approach where the analytical description of a hypersurface is a multi-level

graph of the type ‘polynomial-of-a-polynomial-of-a-polynomial-of-a- . . .’ and the basis

functions are very simple polynomials. This approach has been used in indirect

optimization based upon self-organization (IOSO) [9] commercial optimization software

that has been known for its extraordinary speed and robustness.

2. The RBF model

Let us suppose that we have a function of L variables xi, i¼ 1, . . . ,L. The RBF model used

in this work has the following form

sðxÞ ¼ fðxÞ ¼
XN
j¼1

�j� x� xj
�� ��� �

þ
XM
k¼1

XL
i¼1

�i, kpk xið Þ þ �0 ð1Þ

where x¼ {x1, . . . ,xi, . . . , xL) and f(x) is known for a series of points x. Here, pk(xi) is one

of the M terms of a given basis of polynomials [10]. This approximation is solved for the �j
and �i,k unknowns from the system of N linear equations, subject to

PN
j¼1

�jpk xið Þ ¼ 0

..

.

PN
j¼1

�jpk xLð Þ ¼ 0

ð2Þ

XN
j¼1

�j ¼ 0 ð3Þ

In this work, the polynomial part of Equation (1) was taken as

pk xið Þ ¼ xki ð4Þ

and the radial basis functions are selected among the following

Multiquadrics : � xi � xj
�� ��� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2

þ c2j

q
ð5Þ

Gaussian : � xi � xj
�� ��� �

¼ exp �c2j xi � xj
� �2h i

ð6Þ

718 M.J. Colaço et al.
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Squared multiquadrics : � xi � xj
�� ��� �

¼ xi � xj
� �2

þ c2j ð7Þ

Cubical multiquadrics : � xi � xj
�� ��� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2

þ c2j

q� �3
ð8Þ

with the shape parameter cj kept constant as 1/N. The shape parameter is used to control

the smoothness of the RBF.
From Equation (1), one can notice that a polynomial of order M is added to the radial

basis function. M was limited to an upper value of 6. After inspecting Equations (1)–(4),

one can easily check that the final linear system has [(NþM *L)þ 1] equations. Some tests

were made using the cross-product polynomials (xi xj xk . . .), but the improvements on the

results were irrelevant. Also, other types of RBFs were used, but no improvement on the

interpolation was observed.
The choice of which polynomial order and which RBF are the best for fitting a specific

function, was made based on a cross-validation procedure. Let us supose that we have PTR

training points, which are the locations on the multidimensional space where the values of

the function are known. Such a set of training points is equally subdivided into two subsets

of points, named PTR1 and PTR2. Equations (1)–(3) are solved for a polynomial of

order zero and for the RBF expression given by Equations (5)–(8) using the subset PTR1.

Then, the value of the interpolated function is checked against the known value of the

function for the subset PTR2 and the error is recorded as

RMSPTR1,M¼0,RBF1 ¼
XPTR2

i¼1

s xið Þ � f xið Þ½ �
2

ð9Þ

Then, the same procedure is made, using the subset PTR2 to solve Equations (1)–(3) and

the subset PTR1 to calculate the error as

RMSPTR2,M¼0,RBF1 ¼
XPTR1

i¼1

s xið Þ � f xið Þ½ �
2

ð10Þ

Finally, the total error for the polynomial of order zero and the RBF expression given

by Equations (5)–(8) is obtained as

RMSM¼0,RBF1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSPTR1,m¼0,RBF1 þRMSPTR2,m¼0,RBF1

p
ð11Þ

This procedure is repeated for all polynomial orders, up to M¼ 6 and for each one of

the RBF expressions given by Equations (5)–(8). The best combination is the one that

returns the lowest value of the RMS error. Although this cross-validation procedure is

quite simple, it worked very well for all test cases analysed in this article.

3. Performance measurements

In accordance with having multiple metamodelling criteria, the performance of each

metamodelling technique is measured based on the following aspects [11].

. Accuracy – the capability of predicting the system response over the design space

of interest.

Inverse Problems in Science and Engineering 719
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. Robustness – the capability of achieving good accuracy for different problem

types and sample sizes.
. Efficiency – the computational effort required for constructing the metamodel

and for predicting the response for a set of new points by metamodels.
. Transparency – the capability of illustrating explicit relationships between input

variables and responses.
. Conceptual simplicity – ease of implementation. Simple methods should require

minimum user input and be easily adapted to each problem.

For accuracy, the goodness of fit obtained from ‘training’ data is not sufficient to

assess the accuracy of newly predicted points. For this reason, additional confirmation

samples are used to verify the accuracy of the metamodels. To provide a more complete

picture of metamodel accuracy, three different metrics are used: R Square (R2), relative

average absolute error (RAAE), and relative maximum absolute error (RMAE) [11].

(a) R Square

R2 ¼ 1�

Pn
i¼1 yi � ŷið Þ

2

Pn
i¼1 yi � �yð Þ

2
¼ 1�

MSE

variance
ð12Þ

where ŷi is the corresponding predicted value for the observed value yi; �y is the mean of

the observed values. While MSE (mean square error) represents the departure of the

metamodel from the real simulation model, the variance captures how irregular the

problem is. The larger the value of R2, the more accurate the metamodel.

(b) Relative average absolute error

RAAE ¼

Pn
i¼1 yi � ŷi

�� ��
n � STD

ð13Þ

where STD stands for standard deviation. The smaller the value of RAAE, the more

accurate the metamodel.

(c) Relative maximum absolute error

RMAE ¼
max y1 � ŷ1

�� ��, y2 � ŷ2
�� ��, . . . , yn � ŷn

�� ��� �
STD

ð14Þ

Large RMAE indicates large error in one region of the design space even though the

overall accuracy indicated by R2 and RAAE can be very good. Therefore, a small RMAE

is preferred. However, since this metric cannot show the overall performance in the design

space, it is not as important as R2 and RAAE.
Although the R2, RAAE and RMAE are useful to ascertain the accuracy of the

interpolation, they can fail in some cases. For the R2 metric, for example, if one of

the testing points has a huge deviation of the exact value, such discrepancy might affect the

entire sum appearing in Equation (12) even if all the other testing points are accurately

interpolated. Similary, the R2 result can be very bad. For this reason, we also calculate the

percentage deviation of the exact value of each testing point. Such deviations are collected

according to six ranges of errors: 0–10%; 10–20%; 20–50%; 50–100%; 100–200%;

4200%. Thus, an interpolation that has all testing points within the interval of 0–10% of

relative error might be considered good in comparison to another one where the points are

all spread along the intervals from 10% to 200%.

720 M.J. Colaço et al.
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4. Test functions

In order to test the accuracy of the RBF model proposed, 296 test cases were used,
representing linear and non-linear problems with up to 100 variables. Such problems were
selected from a collection of 395 problems (actually 296 test cases), proposed by Hock and

Schittkowski [12] and Schittkowski [13]. Figure 1 shows the number of variables of each
one of the problems. Note that there are 395 problems, but some of them were not used.

Three methodologies were used to solve the linear algebraic system resulting from
Equations (1)–(3): LU decomposition, SVD and the generalized minimum residual
(GMRES) iterative solver. When the number of equations was small (540), the LU solver
was used. However, when the number of variables increased over 40, the resulting matrix
becomes too ill-conditioned and the SVD solver had to be used. For more than 80
variables the SVD solver became too slow. Thus, the GMRES iterative method with the
Jacobi pre-conditioner was used for all test cases.

In order to verify the accuracy of the interpolation over a different number of training
points, three sets were defined. Also, the number of testing points varied, according to the
number of training points. Table 1 presents these three sets, based on the number of

dimensions (variables) L of the problem.
Figure 2 shows the R2 metric for all test cases, using the scarce set of training points.

It can be noticed that the results are all spread from 0 (completely inadequate
interpolation) to 1 (very accurate interpolation). However, even for this very small
number of training points, most cases have an excellent interpolation, with R2

¼ 1.
Figure 3 shows the CPU time required to interpolate each test function, using the

scarce set of training points. For most of the cases the CPU time was less than 1 s, using an
AMD Opteron 1.6GHz processor and 1GB Registered ECC DDR PC-2700 RAM.
In fact, the highest dimensional test cases, which had 100 variables, required only 100 s to
be interpolated.

1

10

100

0 50 100 150 200 250 300 350 400 450 

Test problem

N
um

be
r 

of
 v

ar
ia

bl
es

Figure 1. Number of variables for each problem considered.

Table 1. Number of training and testing points.

Number of training points Number of testing points

Scarce set 3L 300L
Small set 10L 1000L
Medium set 50L 5000L

Inverse Problems in Science and Engineering 721
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Although the R2 might indicate some performance behaviour of the interpolation
function, we decided to use a different measure of the accuracy. Figure 4 shows the
percentage of testing points having errors less than 10%, against the percentage of all 296
test cases, for the scarce set of testing points. Thus, from Figure 4, it can be noticed that
for more than 40% of all test functions, the relative errors were less than 10%. This is a
very good result, considering the extremely small number of training points used in the
scarce set.
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Figure 2. R2 metric for the scarce set of training points.
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Figure 3. CPU time for the scarce set of training points.
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Figure 4. Testing points with less than 10% error, for the scarce set of training points.
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Figure 5 shows the R2 metric for the small set of training points. Comparing with
Figure 2, it can be seen that the points move toward the value of R2

¼ 1.0, showing that the
accuracy of the interpolation gets better when the number of training points increase.

Figure 6 shows the CPU time required for all test cases, when the small number of
training points is used. Although the test case with 100 variables requires almost 1000 s,
in almost all test cases the CPU time is low.

Figure 7 shows the percentage of points having errors lower than 10%. Comparing
with Figure 4, one can see that increasing the number of training points from 3L
(scarce set) to 10L (small set), the number of testing points having less than 10% of
relative error for all 296 test cases increase from �45% to �55%, showing a very good
interpolation, even for a not so large number of training points.

Finally, Figures 8–10 show the results when a medium set of training points are used.
From Figure 8, one can notice that the majority of the test cases have the R2 metric close
to 1.0, indicating a very good interpolation, for a not so large CPU time, as it can be
verified from Figure 9. From Figure 10, the number of testing points having errors less
than 10% for all 296 test cases increases to �75% when a medium (50L) number of
training points is used. This indicates that such interpolation can be used as a meta model
in a optimization task, where the objective function takes too long to be calculated. Thus,
instead of optimizing the original function, an interpolation can be used, reducing
significantly the computational time.
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Figure 5. R2 metric for the small set of training points.
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Figure 6. CPU time for the small set of training points.
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5. Comparison with another method of interpolation

In order to compare the current RBF interpolation procedure, which is proposed here, we

compared its performance against another method. The second method used for fitting

high-dimensional functions was the wavelets-based neural network (WNN) model

presented by Sahoo and Dulikravich [14] with five neural subnets. Training the WNN
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Figure 7. Testing points with less than 10% error, for the small set of training points.
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Figure 8. R2 metric for the medium set of training points.
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Figure 9. CPU time for the medium set of training points.
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for response surface generation was done using a random sequence dataset of Sobol and

Levitan [15]. Typically, the mother wavelet used in the WNN is Mexican Hat wavelet

given by:

 ðxÞ ¼
2ffiffiffi
3

p ��1=4

� �
1� x2
� �

exp
�x2

2

� �
ð15Þ

Gaussian wavelets were also used along with this mother wavelet to construct the

WNN. For each node of the WNN, genetic algorithm was used to search the best Mexican

Hat wavelet and the best Gaussian wavelet. The one having a lower norm of residue after

performing multiple linear regressions was selected and used in the WNN architecture.
In order to test the accuracy of the RBF model proposed, 13 test cases were used,

representing linear and non-linear problems with up to 16 variables. These test cases,

defined as problems 1–13 were selected by Jin et al. [11] in a comparative study among

different kinds of meta-models. Such problems were selected from a collection of 395

problems (actually 296 test cases), proposed by Hock and Schittkowski [12] and

Schittkowski [13]. The first 12 problems do not have random errors added to the original

function, while the problem no. 13 has a noise added with the following form:

" x1,x2ð Þ ¼ � r ð16Þ

where � is the standard deviation and r is a random number with Gaussian distribution

and zero mean.
The RBF model presented here was based on the multiquadrics – Equation (5) – and

only the polynomial order was varied. Such interpolant was compared against the WNN

method for the 13 selected test cases. Table 2 gives the number of training points, testing

points, minimum and maximum value of each test function, as well as the standard

deviation and average value of each test function.
In order to check the accuracy of the metamodel when different samples were

employed, three different sets of training points were used, as suggested by Jin et al. [11].
Initially, the accuracy of the RBF expansion was tested for a large set of training points

as defined in Table 2. Figure 11 shows the results for different orders of the polynomial,

part of the RBF expansion are presented in Equations (1)–(3). From Figure 11 one

can see that by increasing the order of the polynomial the results become much

better except for the problem no. 9, where the R2 metric decreases when M increases.
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Figure 10. Testing points with less than 10% error, for the medium set of training points.
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In fact, for all problems, except no. 10, the RBF expansion achieves the R2 metric over 0.9,
showing a very good global accuracy. Therefore, for a large set of training points a high
polynomial order should be used in order to achieve high accuracy.

Next, the same comparison was made for a small number of training points, as
defined in Table 2. Figure 12 shows the results of the R2 metric for this comparison. It can
be observed that problem no. 1 is almost insensitive to the order of the polynomial,
except for M¼ 9.

Problem no. 11 is also insensitive except for M greater than 8, where the performance
drops rapidly. Problems no. 2 and 4 are insensitive to the value of M, while problem no. 7
shows a small decrease of the R2 value for high-order polynomials. Problem no. 3 shows
an increase in the R2 values whenM increases, just as in the case with a large set of training
points. However, problems no. 5, 6, 9, 10 and 13 show a drop in the R2 value when the
polynomial order is increased so that some metrics were way below zero. From Figure 12,
in order to keep the method robust we conclude that, if the number of training points is
small, the order of the polynomial should be kept small.

Figure 13 shows the comparison of the R2 metrics for several polynomial orders for a
scarce set of training points. Only problems no. 1–5 were tested for a scarce set of training
points, as suggested by Jin et al. [11]. Problems no. 2 and 3 have the same behaviour as for
a small set of training points. However, problem no. 1 rapidly drops its value of R2 for a
high polynomial order. Again, the minimum value of the scale was limited to zero, because

1
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Figure 11. Influence of the polynomial order on the R2 metric for a large set of training points.
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Figure 12. Influence of the polynomial order on the R2 metric for a small set of training points.
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some of the R2 values were way below zero. The performance of problem no. 5 oscillates
whenM is varied. Again, we concluded that for a scarce number of training points, a lower
polynomial order should be used in order to keep the method more robust.

Next, the results obtained with a RBF polynomial of order 10 using a large number of
training points and the results obtained with a polynomial of order 1 for small and
scarce sets of training points were compared with the results obtained by using WNN
method [14]. Again, only problems no. 1–5 were tested for a scarce set of training points, as
suggested by Jin et al. [11].

The results for the R2 metric are presented in Figure 14, where one can see that the
RBF formulation performed better than the WNN for a scarce number of training points
for problems no. 1 and 2. For problem no. 4 the value of R2 is a little small for the RBF
when compared to WNN. For problems no. 3 and 5 the RBF performed quite poorly,
while the WNN was able to obtain some results. For a small set of training points the RBF
was better than the WNN for problems no. 1, 7, 8, 9, 12 and 13, while the WNN
performed better for problems no. 3, 5, and 10. The performance was practically the same
for problems no. 2, 4, 6 and 11. For a large number of training points the WNN performed
better for problems no. 9 and 10, while the RBF had a better performance for problems
no. 1, 3 and 13. For problems no. 2, 4, 5, 6, 7, 8, 11 and 12 the accuracy of both methods
was almost the same. Figure 15 shows the comparisons of RAAE for all 13 test functions,
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Figure 13. Influence of the polynomial order on the R2 metric for a scarce set of training points.
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both for RBF and WNN. Recall that for this metric lower values are better than high
values. For a scarce set of training points the RBF performed better for problem no. 2,
while the WNN was better for problems no. 2, 3 and 4. For problem no. 1 RAAE values
for both of the methods were comparable.

It is interesting to note that the R2 value for problems no. 3 and 4 (Figure 14) were bad
when the RBFs were used. However, the RAAE metrics for these two problems are better
when compared to the WNN. Actually, the RAAE metric for problem no. 3 is �15%
greater for RBF than for WNN, while the R2 metrics for this problem was under zero for
RBF. For small set of training points the RBF performed better for problems no. 1, 2, 6, 7,
8, 9, 12 and 13, while the WNN performed better for problems no. 3, 4, 5 and 10. The
values of RAAE for both methods were almost equal for problem no. 11. For a large set of
training points the RBF performed better than the WNN, except for problems no. 5 and
10. Thus, as it was observed in the R2 metric, for large and small sets of training points, the
RBF was better than the WNN, while for a scarce number of training points, the WNN
performed better.

Finally, Figure 16 shows the results for the RMAE for all 13 test functions. A high
value of the RMAE means a bad local estimate. For a scarce set of training points the
general trend is very close to the previous one, related to the RAAE metric, showing
a better performance for RBF in the problem no. 2, while the WNN performed
better for problems no. 3–5. However, for problem no. 1, the RBF performed

WNN (scarce) RBF (scarce) WNN (small) RBF (small) WNN (large) RBF (large)
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Figure 15. RAAE metric for WNN and RBF.
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Figure 16. RMAE metric for WNN and RBF.
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much better than WNN, indicating that the WNN had some inaccurate local estimates.
For a small set of training points the RBF performed better for problems no. 2, 7, 8 and
12, while the WNN performed better for problems no. 3, 5, 6, 10 and 13. For problems no.
1, 4, 9 and 11 the values of RMAE were close to each other. For a large set of training
points the RBF was better for problems no. 1–4, 7–9, 11 and 13, while the WNN was
better for the problems no. 5 and 10. For problems no. 6 and 12 the performance was
practically the same for both of them.

In order to check the robustness of the two models when noise is added, test problem
no. 13 was used with several values of �. For this test 100 training points and 1000 testing
points were used. Figure 17 shows how the R2 metric decreases when the added noise in the
original function increases. It is worth to note that the RBF performed better than the
WNN. In fact, even for a high level of noise, the RBF still shows a value of 0.8 for the R2

metric when the order of the polynomial is equal to M¼ 2. It is quite interesting that when
no noise is added, the R2 metric decreases when the order of the polynomial increases,
which is exactly the opposite trend to the one presented in Figure 11 for the function
number 13 without noise.

Finally, a test case with progressively large number of variables was proposed. For this
test case test function no. 2 was chosen with 25, 100 and 400 training points and 1000
testing points for various problem dimensions. Figure 18 shows the results for the
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Figure 17. Influence of noise on the R2 metric.
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Figure 18. R2 results for a large number of variables (RBF with M¼ 10).
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R2 metrics when the RBF was used with a polynomial of order M¼ 10. It is surprising
that the RBF is able to maintain a high level of R2, even for a problem with 500 variables.
It is worth noting that when the number of training points decreases, the value of R2 also
decreases, but not significantly.

Figure 19 shows the results for the same test case presented in Figure 18, but now for a
polynomial of order M¼ 1. Since it was observed in Figures 11–13, the problem no. 2 is
insensitive to the order of the polynomial for scarce, small and large set of training points.
It is interesting to note the similar results when a high-order polynomial was used
(Figure 18). In fact, the results are even better for 500 variables.

The reason for this is that the linear system resulting from the RBF approximation has
[(NþM *L)þ 1] equations, where N is the number of training points, L is the number of
variables and M is the order of the polynomial. Thus, when a high-order polynomial is
used, the matrix becomes too large and might become more ill-conditioned.

Finally, Figure 20 shows the computational time required to run this test case. It is
quite surprising that the computational time was lower than 10 s for all test cases, meaning
that the RBF approximation is very fast. The code was written in Fortran 90 and the CPU
was an Intel T2300 1.66GHz (Centrino Duo) with 1Gb RAM.

Figure 21 shows the results for test problem no. 2 for a large number of variables, using
the WNN. One can see that the accuracy, given by the R2 metric, decreases rapidly when
using 100 training points. Also, for 400 training points, the R2 goes to a negative value for
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Figure 19. R2 results for a large number of variables (RBF with M¼ 1).
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Figure 20. CPU time for a large number of variables (RBF with M¼ 1).
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more than 100 variables, while the RBF (see Figures 18 and 19) maintains good accuracy

even when there are 500 variables.
Figure 22 shows the computational time required by the WNN where one can notice

the high computational cost. In fact, for 100 variables, the time required was about 4 h,

while for 300 variables it was more than 11 h. The code for the WNN was written in

Matlab 7.0.4 and the CPU was an Intel T2300 1.66Ghz (Centrino Duo) with 1Gb RAM.

Some improvement in the performance can be obtained by converting this code to

Fortran90 or Cþþ and this should be investigated. However, the computational cost for

the WNN for a problem with 300 variables and 400 training points, even with different

languages (Matlab and Fortran90) was �6000 times greater for the RBF.
Finally, the same problem was run again using WNN with only one sub-net and 400

training points, using the Mexican Hat function. The results are presented in Figure 23.
One can see that the computational time decreases when compared with the ones

presented in Figure 22 by a factor of five, but the R2 metrics also decreases. It is interesting

to note that, again, after 100 variables, the R2 metrics goes to a negative value when the

WNN is used. Thus, it is not recommended to reduce the number of neural sub-nets in

order to speed-up the training process, because the accuracy goes down. In conclusion, at

least for the problem no. 2, the RBF is more robust than the WNN when a very large

number of variables is used.
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Figure 21. R2 results with WNN for a large number of variables (WNN with five subnets).
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6. The new hybrid optimizer

Based on the previous results of the RBF, we proposed a hybrid optimizer which uses a
response surface instead of the real objective function. The RBF used was the one

described in Section 2 of this article. This hybrid optimizer was compared against our

previously developed ones [16–18] and the IOSO commercial code [9] for some well-known
test functions.

The old hybrid optimizers will be called H1 and H2. A hybrid optimization is a

combination of the deterministic and the evolutionary/stochastic methods, in the sense
that it utilizes the advantages of each of these methods. The hybrid optimization method

usually employs an evolutionary/stochastic method to locate a region where the global
extreme point is located and then automatically switches to a deterministic method to get

to the exact point faster. The hybrid optimization method H1 [16,17] is quite simple
conceptually, although its computational implementation is more involved. The global

procedure is illustrated in Figure 24. It uses the concepts of four different methods of
optimization, namely: the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton
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Figure 24. Global procedure for the hybrid optimization method H1.
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method [19], the particle swarm method [20], the differential evolution method [21] and the
simulated annealing method [22].

In order to speed-up the optimization task, in real life problems a multilevel approach
is utilized, where the procedure illustrated in Figure 24 is repeated over several levels of
grid refinement. Thus, the optimization procedure starts with a very coarse grid and it goes
to a finer grid as the iteration continues.

The driven module is the particle swarm method, which performs most of the
optimization task. The particle swarm method is a non-gradient-based optimization
method created in 1995 by an electrical engineer (Russel Eberhart) and a social
psychologist (James Kennedy) [20] as an alternative to the genetic algorithm methods.
This particle swarm method is based on the social behaviour of various species and tries to
equilibrate the individuality and sociability of the individuals in order to locate the
optimum of interest. The original idea of Kennedy and Eberhart came from the
observation of birds looking for a nesting place. When the individuality is increased,
the search for alternative places for nesting is also increased. However, if the individuality
becomes too high the individual might never find the best place. In other words, when the
sociability is increased, the individual learns more from their neighbour’s experience.
However, if the sociability becomes too high, all the individuals might converge to the first

place found (possibly a local minimum).
In the particle swarm method, the iterative procedure is given by

xkþ1
i ¼ xki þ vkþ1

i ð17Þ

vkþ1
i ¼ �vki þ �r1i pi � xki

� �
þ �r2i pg � xki

� �
ð18Þ

where

xi is the i-th individual of the vector of parameters.
vi¼ 0, for k¼ 0.
r1i and r2i are random numbers with uniform distribution between 0 and 1.
pi is the best value found for the vector xi.
pg is the best value found for the entire population.
05�5 1; 15�5 2

In Equation (18), the second term on the right-hand side represents the individuality
and the third term represents the sociability. The first term on the right-hand side
represents the inertia of the particles and, in general, must be decreased as the iterative
process proceeds. In this equation, the vector pi represents the best value ever found for the
i-th component of vector of parameters xi during the iterative process. Thus, the
individuality term involves the comparison between the current value of the i-th individual
xi and its best value in the past. The vector pg is the best value ever found for the entire
population of parameters (not only the i-th individual). Thus, the sociability term
compares xi with the best value of the entire population in the past.

The differential evolution method [21] is an evolutionary method based on Darwin’s
theory of evolution of the species. This non-gradient-based optimization method was also
created in 1995 as an alternative to the genetic algorithm methods. Following Darwin’s
theory, the strongest members of a population will be more capable of surviving under a
certain environmental condition. During the mating process, the chromosomes of two
individuals of the population are combined in a process called crossover. During this
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process mutations can occur, which can be good (individual with a better objective

function) or bad (individual with a worse objective function). The mutations are used

as a way to escape from local minima. However, their excessive usage can lead to a

non-convergence of the method.
The method starts with a randomly generated population matrix P in the domain of

interest. Thus, successive combinations of chromosomes and mutations are performed,

creating new generations until an optimum value is found.
The iterative process is given by

xkþ1
i ¼ �1x

k
i þ �2½�þ Fð�� �Þ� ð19Þ

where

xi is the i-th individual of the vector of parameters.
�, � and � are three members of population matrix P, randomly chosen.
F is a weight function, which defines the mutation (0.55F5 1).
k is a counter for the generations.
�1 and �2 are delta Dirac functions that define the mutation.

In this minimization process, if f(xkþ1)5 f(xk), then xkþ1 replaces xk in the population

matrix P. Otherwise, xk is kept in the population matrix.
The binomial crossover is given as

�1 ¼ 0, if R5CR
1, if R4CR

ð20Þ

where CR is a factor that defines the crossover (0.55CR5 1) and R is a random number

with uniform distribution between 0 and 1.
In the hybrid optimizer H1, when a certain percentage of the particles find a minimum,

the algorithm switches automatically to the differential evolution method and the particles

are forced to breed. If there is an improvement in the objective function, the algorithm

returns to the particle swarm method, meaning that some other region is more prone to

have a global minimum. If there is no improvement on the objective function, this can

indicate that this region already contains the global value expected and the algorithm

automatically switches to the BFGS method in order to find its location more precisely. In

Figure 4, the algorithm returns to the particle swarm method in order to check if there are

no changes in this location and the entire procedure repeats itself. After some maximum

number of iterations is performed (e.g., five) the process stops.
The hybrid optimizer H2 [18] is quite similar to the H1, except by the fact that it uses a

response surface method at some point of the optimization task. The global procedure is

illustrated in Figure 25. It can be seen from Figure 25 that after a certain number of

objective functions were calculated, all this information was used to obtain a response

surface. Such a response surface is then optimized using the same proposed hybrid code

defined in the H1 optimizer so that it fits the calculated values of the objective function as

closely as possible. New values of the objective function are then obtained very cheaply by

interpolating their values from the response surface.
In Figure 25, if the BFGS cannot find any better solution, the algorithm uses a radial

basis function interpolation scheme to obtain a response surface and then optimizes

such response surface using the same hybrid algorithm proposed. When the minimum

value of this response surface is found, the algorithm checks to see if it is also a solution
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of the original problem. Then, if there is no improvement of the objective function, the

entire population is eliminated and a new population is generated around the best value

obtained so far. The algorithm returns to the particle swarm method in order to check if

there are no changes in this location and the entire procedure repeats itself. After a

specified maximum number of iterations is performed (e.g., five) the process stops.
The new algorithm, presented at this article, which will be called H3 is an extension of

the previous ones. The global procedure is enumerated below:

(1) Generate an initial population, using the real function (not the interpolated one)

f(x). Call this population Preal.
(2) Determine the individidual that has the minimum value of the objective function

over the entire population Preal and call this individual xbest.
(3) Determine the individual that is more distante from the xbest, over the entire

population Preal. Call this individual xfar.
(4) Generate a response surface, with the methodology in Section 2, using the entire

population Preal as training points. Call this function g(x).
(5) Optimize the interpolated function g(x) using the hybrid optimizer H1, defined

above, and call the optimum variable of the interpolated function as xint. During

the generation of the internal population to be used in the H1 optimizer, consider

the upper and lower bounds limits as the minimum and maximum values of the

population Preal in order to not extrapolate the response surface.
(6) If the real objective function f(xint) is better than all objective function of the

population Preal, replace xfar by xint. Else, generate a new individual, using

the sobol pseudo-random generator within the upper and lower bounds of the

variables, and replace xfar by this new individual.
(7) If the optimimum is achieved, stop the procedure. Else, return to step 2.

Particle swarm Differential 
evolution

BFGS quasi- 
Newton

New population 
around the best 

member

Interpolation with 
inner optimization

Improvement of the 
objective function

Non-improvement of 
the objective 

function

Figure 25. Global procedure for the hybrid optimization method H2.
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From the above sequence, one can notice that the number of times that the real

objective function f(x) is called is very small. Also, from step 6, one can see that the space

of search is reduced at each iteration. When the response surface g(x) is no longer capable

of finding a minimum, a high fidelity evaluation of the real function f(x) is made to

generate a new point to be included in the interpolation. Since the CPU time to calculate

the interpolated function is very small, the maximum number of iterations of the H1

optimizer can be very large (e.g. 1000 iterations).
The hybrid optimizer H3 was compared against the optimizer H1, H2 and the

commercial code IOSO 2.0 for some standard test functions. The first test function was the

Levy #9 function [23], which has 625 local minima and 4 variables. Such function is

defined as

fðxÞ ¼ sin2 �� z1ð Þ þ
Xn�1

i¼1

zi � 1ð Þ
2 1þ 10 sin2 �ziþ1ð Þ
	 


þ z4 � 1ð Þ
2

ð21Þ

where

zi ¼ 1þ
xi � 1

4
, ði ¼ 1, 4Þ ð22Þ

The function is defined within the interval �10� x� 10 and its minimum is f(x)¼ 0

for x¼ 1. Figure 26 shows the optimization history of the IOSO, H1–H3 optimizers. Since

the H1–H3 optimizers are based on random number generators (because of the particle

swarm module), we present the best and worst estimates for these three optimizers.
From Figure 26, it can be seen that the performance of theH3 optimizer is very close to

the IOSO commercial code. The H1 code is the worst and the H2 optimizer also has a

reasonably good performance. It is interesting to note that theH1 code is the only one that

does not have a response surface model implemented.

(a) (b)

(e) (f) (g)

(c) (d)

Figure 26. Optimization history of the Levy #9 function for the (a) IOSO, (b) H1-best, (c) H2-best,
(d) H3-best, (e) H1-worst, (f) H2-worst and (g) H3-worst optimizers.
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The second function tested was the Griewank function [17], which is defined as

fðxÞ ¼
Xn
i¼1

x2i
4000

�
Yn
i¼1

cos
xiffiffi
i

p

� �
þ 1

xi 2 �600, 600� �, ði ¼ 1, 2Þ ð23Þ

The global minima for this function is located at x¼ 0 and is f(x)¼ 0. The function has

a very large number of local minima, making the optimization task quite difficult.
Figure 27 shows the optimization history of the IOSO, H1–H3 optimizers. Again, the

best and worst results for H1–H3 are presented.
From this Figure 27, it is clear that the H1–H3 optimizers are much better than the

IOSO commercial code. The H1 code was the best, while the H2 sometimes stopped at

some local minima. The worst result of the H3 optimizer was, however, better than the

result obtained by IOSO. It is worth noticing that, with more iterations, the H3 code could

reach the minimum of the objective function, even for the worst result.
The next test function implemented was the Rosenbrook function [24], which is

defined as

f x1, x2ð Þ ¼ 100 x2 � x21
� �2

þ 1� x1ð Þ
2

ð24Þ

The function is defined within the interval �10� x� 10 and its minimum is f(x)¼ 0

for x¼ 1. Figure 28 shows the optimization history of the IOSO, H1–H3 optimizers.
For this function, which is almost flat close to the global minima, the IOSO code was

the one with the best performance, followed by the H3 optimizer. The H2 performed very

bad and the H1 was able to get close to the minimum, but with a huge number of objective

function calculations. When looking at the H3 results, the final value of the objective

function differ by some orders of magnitude. However, the optimum solution obtained

(a) (b)

(e) (f) (g)

(c) (d)

Figure 27. Optimization history of the Griewank function for the (a) IOSO, (b)H1-best, (c)H2-best,
(d) H3-best, (e) H1-worst, (f) H2-worst and (g) H3-worst optimizers.
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with this new optimizer was x1¼ 0.9996 and x2¼ 0.9992, while the IOSO obtained

x1¼ 1.0000 and x2¼ 1.0000. Thus the relative error among the variables was less than

0.01%, indicating that despite of the discrepancy among the final value of the objective
function, the H3 code was able to recover the value of the optimum variables with a

negligible relative error.
The last test function analysed was the Mielle–Cantrel function [25], which is defined as

fðxÞ ¼ expðx1�x2Þ
	 
4

þ 100 x2 � x3ð Þ
6
þ arctan4 x3 � x4ð Þ þ x21 ð25Þ

The function is defined within the interval �10� x� 10 and its minimum is f(x)¼ 0 for

x1¼ 0 and x2¼ x3¼ x4¼ 1. Figure 29 shows the optimization history of the IOSO, H1–H3
optimizers. Again, the best and worst results for H1–H3 are presented.

For this function, the IOSO code was the best, followed by the H3. The H2 code

performed very badly. Again, the H1 was able to get to the global mininum after a
huge numbe of objective function calculations. As occurred with the Rosenbrook function,

in spite of the H3 result for the objective function differing from the IOSO code, the final

values of the variables were x1¼ 4.0981� 10�8, x2¼ 0.9864, x3¼0.9688 and x4¼0.9626
for the H3 optimizer and x1¼�0.1216� 10�5, x2¼ 1.002, x3¼ 0.9957 and x4¼ 0.9962

for the IOSO code.

7. Conclusions

In this work, we presented an interpolation procedure based on radial basis functions. The

procedure was shown to work on highly non-linear functions where a large number of
variables were involved. The RBF technique seems to be quite powerful regarding its

accuracy and reduced CPU time. Even when the number of variables was as large as 500,
the RBF approximation was very fast and robust. This is a promising technique for

(a) (b)

(e) (f) (g)

(c) (d)

Figure 28. Optimization history of the Rosenbrook function for the (a) IOSO, (b) H1-best,
(c) H2-best, (d) H3-best, (e) H1-worst, (f) H2-worst and (g) H3-worst optimizers.
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real-time interpolations such as target tracking or image recognition. Some comparisons

were made with the WNN showing a general superior behaviour of the RBF. A new
hybrid optimizer based on the RBF interpolation was also presented, which is much more
efficient than our previous ones. In fact, its performance is very close to one of the best
commercial optimizers available.

Acknowledgements

This work was partially funded by CNPq and FAPERJ (Brazilian councils for scientific
development). The author is very grateful for the financial support from FIU as well as the
hospitally of the Dulikravich family during his stay in Miami from September to November 2006.

References

[1] E.J. Kansa, Multiquadrics – a scattered data approximation scheme with applications to

computational fluid dynamics – II: solutions to parabolic, hyperbolic and elliptic partial differential

equations, Comput. Math. Appl. 19 (1990), pp. 149–161.
[2] R.L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res.

176 (1971), pp. 1905–1915.
[3] V.M.A. Leitão, A mesheless method for Kirchhoff plate bending problems, Int. J. Num. Methods

Eng. 52 (2001), pp. 1107–1130.
[4] ———, RBF-based meshless methods for 2D elastostatic problems, Eng. Anal. Boundary Elements

28 (2004), pp. 1271–1281.
[5] H. Wendland, Error estimates for interpolation by compactly supported radial basis functions

of minimal degree, J. Approx. Theory 93 (1998), pp. 258–272.
[6] P. Lancaster and K. Salkauskas, Curve and Surface Fitting: An Introduction, Academic Press,

Harcourt Brace Jovanovic, London, San Diego, New York, 1986.

(a) (b)

(e) (f) (g)

(c) (d)

Figure 29. Optimization history of the Mielle-Cantrel [25] function for the (a) IOSO, (b) H1-best, (c)
H2-best, (d) H3-best, (e) H1-worst, (f) H2-worst and (g) H3-worst optimizers.

740 M.J. Colaço et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
u
l
i
k
r
a
v
i
c
h
,
 
G
e
o
r
g
e
 
S
.
]
 
A
t
:
 
0
1
:
5
9
 
1
9
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



[7] M. Kaufman, V. Balabanov, S.L. Burgee, A.A. Giunta, B. Grossman, W.H. Mason,
L.T. Watson and R.T. Haftka, Variable complexity response surface approximations for wing
structural weight in HSCT design, in AIAA Paper 96-0089, Proceedings of the 34th Aerospace
Sciences Meeting and Exhibit, Reno, NV, 1996.

[8] H.R. Madala and A.G. Ivakhnenko, Inductive Learning Algorithms for Complex Systems
Modeling, CRC Press, Boca Raton, Florida, 1994.

[9] IOSO NM Version 1.0, User’s Guide, IOSO Technology Center, Moscow, Russia, 2003.

[10] M.D. Buhmann, Radial basis functions on grids and beyond, International Workshop on
Meshfree Methods, Lisbon, 2003.

[11] R. Jin, W. Chen, and T.W. Simpson, Comparative studies of metamodeling techniques under

multiple modeling criteria, in Proceedings of the 8th AIAA/USAF/NASA/ISSMO
Multidisciplinary Analysis & Optimization Symposium, AIAA 2000-4801, Long Beach, CA,
6–8 September 2000.

[12] W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture Notes
in Economics and Mathematical Systems, Vol. 187, Springer-Verlag, Berlin, Heidelberg,
New York, 1981.

[13] K. Schittkowski, More Test Examples for Nonlinear Programming, Lecture Notes in

Economics and Mathematical Systems, Vol. 282, Springer Verlag, Berlin, 1987.
[14] D. Sahoo and G.S. Dulikravich, Evolutionary wavelet neural network for large scale function

estimation in optimization, inAIAAPaper AIAA-2006-6955, 11th AIAA/ISSMOMultidisciplinary

Analysis and Optimization Conference, Portsmouth, VA, 6–8 September 2006.
[15] I.M. Sobol and Y.L. Levitan, The Production of Points Uniformly Distributed in a

Multidimensional Cube, Preprint IPM Akademia Nauk SSSR, Number 40, Moscow, Russia,

1976.
[16] M.J. Colaço, H.R.B. Orlande, and G.S. Dulikravich, Inverse and optimization problems in heat

transfer, J. Braz. Soc. Mech. Sci. Eng. XXVIII(1) (2004), pp. 1–23.
[17] M.J. Colaço et al., Hybrid optimization with automatic switching among optimization

algorithms, in Handbooks on Theory and Engineering Applications of Computational Methods:
Evolutionary Algorithms and its Applications, W. Annicchiarico, J. Periaux, M. Cerrolaza and
G. Winer eds., CIMNE, Barcelona, Spain: WIT Press, UK, 2005, pp. 92–118.

[18] M.J. Colaço and G.S. Dulikravich, Solidification of double-diffusive flows using thermo-
magneto-hydrodynamics and optimization, Mater. Manufact. Process 22 (2007), pp. 594–606.

[19] C.G. Broyden, Quasi-Newton methods and their applications to function minimization,

Math. Comp. 21 (1987), pp. 368–380.
[20] J. Kennedy and R.C. Eberhart, Particle swarm optimization, in Proceedings of the 1995 IEEE

International Conference on Neural Networks, Vol. 4, 1995, pp. 1942–1948.

[21] R. Storn and K.V. Price, Minimizing the real function of the ICEC’96 contest by
differential evolution, in Proceedings of IEEE Conference on Evolutionary Computation, 1996,
pp. 842–844.

[22] A. Corana, M. Marchesi, C. Martini, and S. Ridella, Minimizing multimodal functions of

continuous variables with the ‘Simulated Annealing Algorithm’, ACM Trans. Math. Software 13
(1987), pp. 262–280.

[23] J.J. More, B.S. Garbow, and K.E. Hillstrom, Fortran subroutines for testing unconstrained

optimization software, ACM Trans. Math. Software 7(1) (March 1981), pp. 17–41.
[24] E. Sandgren, The utility of nonlinear programming algorithms, PhD Thesis, Purdue University,

Indiana, USA, 1977.

[25] A. Miele and J.W. Cantrell, Study on a memory gradient method for the minimization
of functions, J. Optim. Theory Appl. 3(6) (1969), pp. 459–470.

Inverse Problems in Science and Engineering 741

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
u
l
i
k
r
a
v
i
c
h
,
 
G
e
o
r
g
e
 
S
.
]
 
A
t
:
 
0
1
:
5
9
 
1
9
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8


