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Abstract

A thermal lattice Boltzmann method (TLBM) is used for analysis of flow and heat

transfer in two-dimensional channels. Simulation results are presented for thermal

Couette and thermal Poiseuille channel flows. Analytical solution for temperature

field in hydraulically and thermally developed flows are used to verify the current

TLBM results. The method is further applied to study the forced convection in a

channel flow with a square blockage acting as the cooling source. The effects of the

size and temperature of the square block is investigated. We conclude that the LBM

method can be used as an alternative numerical model to study channel flows with

heat transfer.
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1 Introduction

Lattice Boltzmann method has been introduced to the scientific community

as a new alternative numerical method that can solve for flows with complex

physics [1] however there are still areas that need to be studied in order to

obtain a well established LBM. One aspect of this improvement is the solution

of flows with heat transfer [2, 3]. In an effort to obtain a thermal lattice Boltz-

mann method (TLBM), a variety of techniques were proposed in the literature,

namely the multi-speed approach, the passive-scalar approach and the double

populations approach. The model developed by He et al. [4] has gained the

most popularity because it was more stable and it had the capability to solve

for viscous dissipation and compression work. In this model, the thermal lat-

tice Boltzmann equation was derived by discretizing the Boltzmann equation

for the internal energy distribution. As a result, thermal energy and heat flux

were able to be obtained by taking the kinetic moments of the thermal energy

distribution function. The method proposed by He et al. [4] was accepted by

many researchers and it was successfully applied to solve for various kinds of

fluid flow problems with heat transfer. Dixit and Babu [5] used this model to

simulate natural convection of a Boussinesq fluid in a square cavity. It was

demonstrated that for high Rayleigh numbers the TLBM results agreed well

with other benchmark numerical simulations. Tang et al. [6] proposed bound-

ary conditions to improve the same model in order to solve for two-dimensional

Poiseuille and Couette flow and verified the TLBM results with Finite Volume

Method and analytical solutions at various wall boundary conditions. D’Orazio
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and Succi [7] introduced a counter-slip internal energy boundary condition for

the TLBM model and obtained satisfactory results for hydrodynamically and

thermally developed channel flows heated at the inlet. In their simulations the

TLBM was able to capture the effect of viscous dissipation which was tested

for thermal Couette flow at various Brinkmann numbers. There have been a

couple of studies that aimed to implement the TLBM in fluid flow and heat

transfer in complex geometries. Huang et al. [8] solved the natural convection

in a concentric annulus involving circular solid boundaries. The curved non-

slip wall boundary treatment for isothermal LBM [9] was extended to treat the

thermal curved solid boundary in the two-population TLBM computations.

Chen et al. [10] applied the same boundary condition for two-dimensional so-

lutions of backward-facing step flows with inclined plates positioned along the

flow field at various angles. Gokaltun and Dulikravich [11] verified the TLBM

solutions for a constricted channel flow against against FEM solutions for

velocity and thermal fields. The purpose of this study is to present the capa-

bility of TLBM in simulation of incompressible fluid flow and heat transfer in

channels with various flow conditions. First the governing equations and the

numerical solution algorithm are presented. Next the velocity and tempera-

ture boundary conditions used for open and solid boundaries are introduced.

The results are then presented and discussed in Section 3. The present TLBM

method is first validated for two-dimensional straight channels where the re-

sults are compared with analytical solutions. Then the method is applied to

solve for forced convection in a channel with a square blockage. Interactions

of the blockage size and the blockage temperature on the flow characteristics

are also studied. Finally, some conclusions are drawn in Section 4.
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2 Numerical Method

In this paper, He’s thermal lattice Boltzmann model [4] is adopted to solve

for the heat transfer in channel flows. The TLBM solves the following discrete

evolution equations:

f̃a(x + ea∆t, t + ∆t) = f̃a(x, t) − ∆t

τp + 0.5∆t

(

f̃a(x, t) − f eq
a (x, t)

)

, (1)

g̃a(x + ea∆t, t + ∆t) = g̃a(x, t) − ∆t

τg + 0.5∆t
(g̃a(x, t) − geq

a (x, t)) (2)

− τg∆t

τg + 0.5∆t
fa(x, t)ha(x, t).

where

f̃a(x, t) = fa(x, t) − ∆t

2τp

(f eq
a (x, t) − fa(x, t)) , (3)

g̃a(x, t) = ga(x, t) − ∆t

2τg

(geq
a (x, t) − ga(x, t)) +

∆t

2
fa(x, t)ha(x, t). (4)

In Eq. (4), the term ha represents the effect of viscous heating and can be

expressed as

ha(x, t) = (ea − u) · [−∇(
P

ρ
) +

1

ρ
∇ · Π + (ea − u) · ∇u], (5)

which can be reduced to [6]

ha(x, t) = (ea − u) · [∂tu + (e · ∇)u]. (6)

In D’Orazio et al. [3], Eq. (6) is given as:

ha(x, t) = (ea − u(x, t)) · [u(x + ea∆t, t + ∆t) − u(x, t)] /∆t, (7)

which is used in this work to calculate ha. The new distribution variables f̃

and g̃ are related to old variables f and g as given below:
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f̃a = fa +
0.5∆t

τp

(fa − f eq
a ), (8)

g̃a = ga +
0.5∆t

τg

(ga − geq
a ) +

∆t

2
faha. (9)

The equilibrium density distribution functions for f and g are given as follows:

f eq
a = waρ

[

1 + 3
ea · u

c2
+

9

2

(ea · u)2

c4
− 3

2

u2

c2

]

, (10)

geq
1−4 = w1−4ρe(x)

[

3

2
+

3

2

ea · u
c2

+
9

2

(ea · u)2

c4
− 3

2

u2

c2

]

, (11)

geq
5−8 = w5−8ρe(x)

[

3 + 6
ea · u

c2
+

9

2

(ea · u)2

c4
− 3

2

u2

c2

]

, (12)

geq
9 = w9ρe(x)

[

−3

2

u2

c2

]

. (13)

The weighting coefficients in Eq. (10-13) are selected as w1−4 = 1/9, w5−8 =

1/36 and w9 = 4/9. The D2Q9 lattice structure used in this study is shown

in Fig. 1, where particles move along 9 specific directions with speed

ea =























































(cos[(a − 1)π
2
], sin[(a − 1)π

2
])c, a = 1 − 4

(cos[(a − 5)π
2

+ π
4
], sin[(a − 5)π

2
+ π

4
])c, a = 5 − 8

(0, 0), a = 9

(14)

The ninth velocity is zero which stands for the particles at rest. The length

scale (1 lu) is fixed by the distance between nodes. The macroscopic density

ρ, velocity u, internal energy per unit mass e, heat flux q, are obtained by the

following relations:

ρ =
∑

a

f̃a, (15)

ρu=
∑

a

eaf̃a, (16)

ρe =
∑

a

g̃a −
∆t

2

∑

a

faha, (17)
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q=

(

∑

a

eag̃a − ρeu − ∆t

2

∑

a

eafaha

)

. (18)

Kinematic viscosity is given by ν = τpRT0, and thermal diffusivity is given by

χ = 2τgRT0 and internal energy is related to temperature by ρe = ρRT in 2D.

2.0.1 Thermal LBM Procedure

The solution of the TLB equations given by Eq. (2) and Eq. (3) is carried

in two steps: (a) collision and (b) streaming. The collision step calculates

the right hand side of Eq. (2) and Eq. (3) and assigns the value to buffer

parameters, f̃ ∗

a and g̃∗

a by

f̃ ∗

a (x, t) = (1 − ωf )f̃a(x, t) + ωff
eq
a (x, t), (19)

g̃∗

a(x, t) = (1 − ωg)g̃a(x, t) + ωgg
eq
a (x, t) − ωgτgfaha, (20)

where ωf = ∆t/(τf + 0.5∆t) and ωg = ∆t/(τg + 0.5∆t). The distribution

functions at the new time level are then streamed to the neighboring nodes in

the streaming step by

f̃a(x + ea∆t, t + ∆t) = f̃ ∗

a (x, t), (21)

g̃a(x + ea∆t, t + ∆t) = g̃∗

a(x, t), (22)

The LBM simulation is initialized by calculating Eq. (10–13) for the equilib-

rium distributions f̃ eq
a and g̃eq

a at all lattice nodes in the domain using the

initial velocity, density and temperature values. Then the effects of boundary

conditions and forces (if any) are incorporated in order to calculate the un-

known buffer distributions, f̃ ∗

a and g̃∗

a, at the boundaries that are directed into

the flow domain. First the boundary conditions at the open ends are imposed

according to the pressure and temperature values specified at inlet and outlet.

Then, no-slip and constant temperature boundary conditions are applied at
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the walls. This is followed by the collision step where the direction-specific

density distributions are relaxed toward quasi-equilibrium distributions. The

equilibrium distributions are recomputed by Eq. (10–13), and The particles

are streamed to the neighboring nodes by Eqs. (15,18). Finally the macro-

scopic flow properties are calculated at the next time step using Eq. (15–18).

The pressure is related to density by p = ρc2/3 where the particle streaming

speed is taken as c =
√

3RT0 (assigned to 1 for now), where T0 is the average

temperature. The relation between the relaxation parameters is determined

by the imposed Prandtl number, Pr = τp/τg.

2.1 Velocity and thermal boundary conditions

2.1.1 Inlet and Outlet Boundaries

Fig. 3 shows the various boundary conditions used in the current paper. For

Couette flow (Fig. 3(a)) and for the force driven channel flow (Fig. 3(b)) peri-

odic boundary conditions are applied at the inlet. For Poiseuille flow (Fig. 3(c))

and channel flow with a blockage (Fig. 3(a)) cases the a constant velocity and

temperature profile is assigned at the inlet and at the exit the unknown dis-

tribution functions were extrapolated from the neighboring fluid nodes. To

specify a constant temperature profile at the inlet boundary, the incoming

unknown thermal populations ( g̃1, g̃5, g̃8) are assumed to be equilibrium dis-

tribution functions, with ei thermal energy density imposed at the inlet. The

unknown exit thermal populations facing the flow domain are set equal to

those of the nearest interior nodes. To specify the velocity at the inlet, the

idea of bounce-back of non-equilibrium part of the particle distribution func-

tion proposed by Zou and He [12]. The velocity component normal to the inlet
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boundary is assumed to be zero and the density is to be determined. After

streaming, at the inlet boundary (f̃1, f̃5, f̃8) are unknown. Using Eqs. (), the

density at the inlet ρi and unknown density functions are calculated as follows:

ρin =
(f̃9 + f̃2 + f̃4 + 2(f̃3 + f̃6 + f̃7))

(1 − ui)
, (23)

f̃1 = f̃3 +
2

3
ρinuin, (24)

f̃5 = f̃7 −
1

2
(f̃2 − f̃4) +

1

6
ρiui, (25)

f̃8 = f̃6 +
1

2
(f̃2 − f̃4) +

1

6
ρiui, (26)

In order to obtain the above equations, the bounce-back rule for the non-

equilibrium part of the momentum density population normal to the inlet was

used as, f̃1 − f̃ eq
1 = f̃3 − f̃ eq

3 .

2.1.2 Solid Boundaries

For the thermal conditions for the solid nodes, we follow a similar approach

of Tang et al. [6] here. We demonstrate the procedure for the unknown energy

distribution lower wall boundary depicted in Fig. 2. At the end of the collision

step the unknown distributions at the lower wall boundary (g̃2, g̃5, g̃6) must be

calculated by Eq. (19, 20) however the unknown distribution functions at the

solid nodes need to be calculated first. The distribution function g̃a(xsolid, t)

can be decomposed into its equilibrium and non-equilibrium parts by

g̃a(xsolid, t) = geq
a (xsolid, t) + gneq

a (xsolid, t), (27)

which is submitted into Eq. (20) in order to get

g̃∗

a(xsolid, t) = (1 − ωg)g
eq
a (xsolid, t) + ωgg

neq
a (xsolid, t) − ωgτgfaha. (28)
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In order to calculate the non-equilibrium term gneq
a (xsolid, t) it is assumed that

gneq
a (xsolid, t) = ǫg1

a(xfluid, t) by using the Chapman-Enskog method, where ǫ is

the expansion parameter. For the fluid nodes adjacent to the solid corner node

in Fig. 2, ga(xfluid, t) can be determined by Eq. (9) since g̃a(xfluid, t) is known

after the streaming step. The computed value of ga(xfluid, t) is used to find

the non-equilibrium part of the distribution at the neighboring fluid node by

gneq
a (xfluid, t) = g̃a(xfluid, t)−geq

a (xfluid, t). This, in turn, is related to the non-

equilibrium distribution at the solid node by gneq
a (xsolid, t) = g̃neq

a (xfluid, t) +

O(ǫ2)). The solid node equilibrium distribution in Eq. (20) is calculated by

Eq. (10–13) using the u = us, v = vs and e = es since no-slip and Dirichlet

temperature boundary conditions are applied at the solid walls whereas the

density value is obtained from the nearest fluid node. A similar procedure is

followed for the no-slip velocity boundary condition at the solid nodes using

f̃a(xfluid, t) instead of g̃a(xfluid, t).

3 Results

The accuracy of the TLBM is tested for thermal channel flows with various

configurations as described in Fig. 3.

3.1 Thermal Couette flow

Couette flow with a temperature gradient provides a good test to describe

viscous heat dissipation. With the bottom wall fixed and the top boundary

moving at the speed of Ut, the temperature profile is given as
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T − Tb

Tt − Tb

=
y

H
+

PrEc

2

y

H

(

1 − y

H

)

, (29)

where Tb and Tt are the temperatures at the bottom and top boundaries,

respectivle; y is the distance from the bottom boundary; H is the height of

the channel; Pr = υ/χ is the Prandtl number; and Ec = U2

t /cv(T1−Tb) is the

Eckert number. The effects of viscous heating are determined by Brinkmann

number Br = PrEc which represents the ratio between viscous dissipation and

heat conduction. The flow is driven by the top wall moving at Ut while the top

wall is kept at a higher temperature compared to the bottom wall (Tt > Tb).

Periodic boundary conditions for both velocity and energy distributions were

applied at the open boundaries. Fig. 4 shows the comparison of present results

with the analytical solution for the temperature profile given by Eq. (29). In

Fig. 4(a) the Prandtl number is fixed at Pr = 2 and the Eckert number is

varied between Ec = 10−100 to obtain different Brinkmann number solutions.

It was observed that as the Brinkmann number increases the non-linearity of

the variation between the non-dimensional temperature profile is increased

where the effect of viscous heating is felt mostly in the core region. Same

effect is observed in Fig. 4(b) where the Eckert number is kept constant at

Ec = 100 and Prandtl number is varied between Pr = 0.5 − 5. The present

method was successful in predicting the temperature profiles compared with

the analytical solution.

3.2 Thermal Poiseuille flow

A 2D planar flow driven by a constant body force Fx, with the walls at rest

and at constant temperature Tt = Tb, is considered. At the open boundaries,

periodic conditions are applied. The flow is initially at rest with a temperature
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hotter than the wall temperature Tf > Tt = Tb. The analytical solution for

temperature profile in the limit Re = 0 is given by [dorazio]

T (y) = Tb +
(Tt − Tb)y

H
+

8PrU2

My

3cvH

[

(

1 − 3y

H

)

+ 4
(

y

H

)2

− 2
(

y

H

)3
]

(30)

where the center-line velocity UM is related to the body force by

Fx = 8ρ0νUM/H2. (31)

In Fig. 5(a) it is seen that the parabolic velocity profile is obtained. The

TLBM solution for the normalized temperature profile is plotted in Fig. 5(b)

where current TLBM results are found to be in good agreement with the

analytical temperature profile given by Eq. 30. The corresponding normalized

transverse heat flux profile is given in Fig. 5(c). In order to simulate a thermally

developing channel flow, the same geometry is used with a constant velocity

and temperature profile at the inlet boundary as depicted in Fig. 3(c). At the

exit, the unknown distribution functions were extrapolated from the adjacent

fluid nodes. The walls are kept at constant temperatures and the channel

is cooled at the inlet, Ti < Tt = Tb. The local friction coefficient and local

Nusselt number are plotted in Fig. 6. In the developed region of the channel

the analytical values of CfRe = 24 and Nu = 7.54 for hydraulically and

thermally developed flows in straight channels are obtained by the TLBM.

3.3 Channel flow with a square blockage

The TLBM which was verified for flow and heat transfer in channel with

straight walls in the previous section is further applied to simulate a chan-

nel including a square block in the flow domain (Fig. 3(d)). The boundary
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conditions are same with the thermal Poiseuille flow case. In the current prob-

lem, the incoming fluid temperature is same with the wall temperature while

the flow field is cooled by the square block which is kept at a lower temper-

ature, Ts < Ti = Tb = Tt. For the unknown distribution functions at the

surface of the square block, the same approach for wall boundaries given in

Section 2.1.2 is used. The velocity contours for the steady-state flow field at

an inlet Reynolds number of Rei = Ui(H−1)/ν = 20 is presented in Fig. 7(a).

The channel dimensions are H × L = 91 × 450. Prandtl number selected is

Pr = 6 with τf = 0.2. The authors have shown in another study that the

current settings simulate the characteristics of water with constant proper-

ties [11]. The ratio of the blockage height to channel width is d/H = 0.356.

The flow speeds up through the gaps around the square block and then attain

a parabolic profile at the downstream. The energy field contours are plotted

in Fig. 7(b) for the same problem. The region of the channel downstream of

the blockage is cooled by the square blockage. The upstream region of the

blockage is not effected due to the dependence of convection on the velocity

field. As the distance downstream of the blockage increases the temperature of

the flow is increased due to the effect of the walls. The same problem is solved

for a smaller blockage, h/D = 0.1223. The time evolution of the energy field

is shown in Fig. 8. It is observed that the cooled region by the square block is

reduced and the exit flow temperature is increased. In order to understand the

effect of blockage size and the blockage temperature on the cooling effective-

ness, the variation of the bulk temperature along the channel axial direction

is plotted in Fig. 9. In Fig. 9(a) results for a channel with a blockage kept at a

temperature of Ts = 0.86Ti = 0.86Tw is presented. By reducing the size of the

blockage from d/H = 0.356 to d/H = 0.1223 the exit temperature is increased

by 0.59%. However, when the temperature of a blockage of d/H = 0.356 is re-
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duced by half the exit boundary bulk temperature is reduced by 8% as shown

in Fig. 9(b). This indicates that the temperature of the blockage has a more

important role in cooling effectiveness compared to the size of the blockage.

4 Conclusions

In this paper the TLBM computations of incompressible flow and heat trans-

fer in channels have been reported. The TLBM is first validated for the case

of thermal Couette and thermal Poiseuille flow in a straight channel. Present

computations were found to be in good agreement with the analytic solutions.

Then the method has been successfully applied to analyze heat transfer in a

channel with a square blockage. Comparative results suggest that the tem-

perature of the cooling source in the channel plays a more important role

compared to the size of the source. It is observed that the present method is a

viable tool to model incompressible flows in channels including heat transfer.
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Fig. 3. Schematic showing the problems solved for straight channels.
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the thermally developing channel.
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Fig. 7. Cooling of flow in a channel with a square block with a blockage size

d/H = 0.356.
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Fig. 8. Evolution of temperature field in a channel with a square block with

d/H = 0.1223.
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Fig. 9. Effects of blockage size and temperature on the energy field (Rei = 20 and

Pr = 6).
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