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This work deals with the use of radial basis functions for the interpolation of the
likelihood function in parameter estimation problems. The focus is on the use
of Bayesian techniques based on Markov Chain Monte Carlo (MCMC) methods.
The proposed interpolation of the likelihood function is applied to test cases of
inverse problems in heat and mass transfer, solved with the Metropolis–Hastings
algorithm. The use of the interpolated likelihood function reduces significantly
the computational cost associated with the implementation of such Markov
Chain Monte Carlo method without loss of accuracy in the estimated parameters.
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Nomenclature

a, b, c Sides of the parallelepiped
C Normalized concentration
cj Shape parameter for the radial basis functions
D Dispersion coefficient
hm Mass transfer coefficient between the column and an outflow plenum
I Number of measurements

k1, k2, k3 Thermal conductivity components in the x, y and z directions, respectively
N Number of unknown parameters
P Vector of unknown parameters

q1, q2, q2 Uniform heat fluxes applied at the surfaces x¼ a, y¼ b and z¼ c,

respectively
R Retardation factor
T Vector of estimated variables
V Pore velocity
W Inverse of the covariance matrix of the measurements
Y Vector of measurements
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Greeks

� Probability density
�(�) Radial basis functions, see Equations (8a–d)
� Standard deviation of the measurements

Superscripts

t Current state in the Markov chain
n Number of states in the Markov chain

1. Introduction

A variety of techniques are currently available for the solution of inverse problems.
However, one common approach relies on the minimization of an objective function that
generally involves the squared difference between measured and estimated variables, like
the least-squares norm, as well as some kind of regularization term. Despite the fact that
the minimization of the least-squares norm is indiscriminately used, it only yields
maximum likelihood estimates if the following statistical hypotheses are valid [1]: the errors
in the measured variables are additive, uncorrelated, normally distributed, with zero mean
and known constant standard-deviation; only the measured variables appearing in the
objective function contain errors; and there is no prior information regarding the values
and uncertainties of the unknown parameters. Although very popular and useful in many
situations, the minimization of the least-squares norm is a non-Bayesian estimator.
A Bayesian estimator is concerned with the analysis of the posterior probability density,
which is the conditional probability of the parameters given the measurements, while the
likelihood is the conditional probability of the measurements given the parameters [1–4].
Recent examples of works dealing with Bayesian techniques for the solution of inverse
heat transfer problems include [5–8].

If we assume the parameters and the measurements to be independent Gaussian
random variables, with known mean and covariance matrices, and that the measurement
errors are additive, a closed form expression can be derived for the posterior probability
density. In this case, the estimator that maximizes the posterior probability density can be
recast in the form of a minimization problem involving the maximum a posteriori objective
function [1–4].

On the other hand, if different prior probability densities are assumed for the
parameters, the posterior probability distribution does not allow an analytical treatment.
In this case, Markov Chain Monte Carlo (MCMC) methods are used to draw samples of
all possible parameters, so that inference on the posterior probability becomes inference on
the samples [2–4]. As such, the number of samples required to accurately approximate the
posterior distribution is generally large, resulting in prohibitive computational costs for
many practical applications. Such is specially the case when the solution of the forward
problem, which is needed for the computation of the likelihood function, requires large
computational times.

In this work, we examine the use of radial basis functions (RBFs) to interpolate
the likelihood function, in order to reduce the computational cost of MCMC methods
in the Bayesian approach of solution of inverse problems. The likelihood function is
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interpolated in the space of all possible parameters, by using a small number of solutions

of the forward model as compared to that required for the implementation of the MCMC

methods. Hence, the interpolated likelihood function, instead of the actual function, is

used afterwards in the sampling procedure of the MCMC method, providing a substantial

reduction on computational costs.
The use of RBFs followed by collocation, a technique first proposed by Kansa [9]

after the work of Hardy [10] on multivariate approximation, is now becoming an

established approach. Various applications to problems in mechanics have been made in

recent years – see, for example, Leitão [11,12]. A systematic evaluation of the use of RBFs

to approximate multivariable functions is presented in [13].
The proposed approach to reduce the computational cost of MCMC methods is

examined below, as applied to the solution of inverse parameter estimation problems in

heat and mass transfer.

2. Bayesian technique for the solution of inverse problems

In the Bayesian approach to statistics, an attempt is made to utilize all available

information in order to reduce the amount of uncertainty present in an inferential or

decision-making problem. As new information is obtained, it is combined with any

previous information to form the basis for statistical procedures. The formal mechanism

used to combine the new information with the previously available information is known

as Bayes’ theorem [14]. Therefore, the term Bayesian is often used to describe the so-called

statistical inversion approach, which is based on the following principles [2]:

(1) All variables included in the model are modelled as random variables.
(2) The randomness describes the degree of information concerning their realizations.
(3) The degree of information concerning these values is coded in probability

distributions.
(4) The solution of the inverse problem is the posterior probability distribution.

Consider the vector of parameters appearing in the physical model formulation as

PT � ½P1,P2, . . . ,PN� ð1aÞ

and the vector of available measurements as

YT � ½Y1,Y2, . . . ,YI� ð1bÞ

where N is the number of parameters and I is the number of measurements.

Bayes’ theorem can then be stated as [2]:

�posteriorðPÞ ¼ �ðP Yj Þ ¼
�priorðPÞ�ðY Pj Þ

�ðYÞ
ð2Þ

where �posterior(P) is the posterior probability density, that is, the conditional probability

of the parameters P given the measurements Y; �prior(P) is the prior density, that is, the

coded information about the parameters prior to the measurements; �(Y jP) is the

likelihood function, which expresses the likelihood of different measurement outcomes

Y with P given; and �(Y) is the marginal probability density of the measurements, which

plays the role of a normalizing constant.
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In practice, such normalizing constant is difficult to compute and numerical

techniques, like MCMC methods, are required in order to obtain samples that accurately

represent the posterior probability density. In order to implement the Markov chain,

a density q(P*, P(t�1)) is required, which gives the probability of moving from the current

state in the chain P(t�1) to a new state P*.
The Metropolis–Hastings algorithm was used in this work to implement the MCMC

method. It can be summarized in the following steps [2–4]:

(1) Sample a Candidate Point P* from a jumping distribution q(P*, P(t�1)).
(2) Calculate:

� ¼ min 1,
�ðP�jYÞqðPðt�1Þ,P�Þ

�ðPðt�1ÞjYÞqðP�,Pðt�1ÞÞ

� �
: ð3Þ

(3) Generate a random value U which is uniformly distributed on (0, 1).
(4) If U��, define P(t)

¼P*; otherwise, define P(t)
¼P(t�1).

(5) Return to step 1 in order to generate the sequence {P(1),P(2), . . . ,P(n)}.

In this way, we get a sequence that represents the posterior distribution and inference

on this distribution is obtained from inference on the samples {P(1),P(2), . . . ,P(n)}. We note

that values of P(i) must be ignored until the chain has not converged to equilibrium. For

more details on theoretical aspects of the Metropolis–Hastings algorithm and MCMC

methods, the reader should consult references [2–4].
We assume in this work that the errors in the measured variables are additive,

uncorrelated, normally distributed, with zeromean and known constant standard-deviation.

Hence, the likelihood function is given by [1–4]:

�ðY Pj Þ ¼ ð2�Þ�I=2 W�1
�� ���1=2

exp �
1

2
½Y� TðPÞ�TW½Y� TðPÞ�

� �
ð4Þ

where T is the vector of estimated variables, obtained from the solution of the forward

model with an estimate for the parameters P, andW is the inverse of the covariance matrix

of the measurements.

3. Interpolation of the likelihood function

We note that Equation (3) involves a ratio between the posterior distributions for P*

and P(t�1). As a result, only the exponential term appearing in the likelihood

function, Equation (4), actually needs to be computed in the implementation of the

Metropolis–Hastings algorithm. In the approach proposed in this work, such exponential

term is interpolated by using RBFs as described below [13].
Consider a function of L variables xi, i¼ 1, . . . ,L. The RBF model used in this work

has the following form:

f ðxÞ ¼
XN
j¼1

�j� x� xj
�� ��� �

þ
XM
k¼1

XL
i¼1

�i, kpkðxiÞ þ �0 ð5Þ

where x¼ {x1, . . . ,xi, . . . , xL) and f(x) is known for a series of N points x. Here, pk(xi) is

one of theM terms of a given basis of polynomials. This approximation is solved for the �j
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and �i,k unknowns from the system of N linear equations, subject to the following
conditions required for the sake of uniqueness:

PN
j¼1

�jpkðxiÞ ¼ 0

..

.

PN
j¼1

�jpkðxLÞ ¼ 0

ð6aÞ

XN
j¼1

�j ¼ 0: ð6bÞ

In this work, the polynomial term appearing in Equation (5) was taken as

pkðxiÞ ¼ xki ð7Þ

and the RBFs are selected among the following

Multiquadrics : � xi � xj
�� ��� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ

2
þ c2j

q
ð8aÞ

Gaussian : � xi � xj
�� ��� �

¼ exp �c2j ðxi � xjÞ
2

h i
ð8bÞ

Squared multiquadrics : � xi � xj
�� ��� �

¼ ðxi � xjÞ
2
þ c2j ð8cÞ

Cubical multiquadrics : � xi � xj
�� ��� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ

2
þ c2j

q� �3
: ð8dÞ

The choice of which polynomial order, which RBF and which shape parameter cj are
the best to a specific function, was made based on a cross-validation procedure. Let us
suppose that we have PTR training points, which are the locations on the multidimensional
space where the values of the function are known. Such set of training points is equally
subdivided into two subsets of points, named PTR1 and PTR2. Equations (5) and (6a and b)
are solved for a polynomial of order zero with a small value of the shape factor cj and for
each RBF given by Equations (8a–d) using the subset PTR1. The initial value of the shape
factor is taken as equal to the minimum distance among two points of the training data.
Then, the value of the interpolated function is checked against the known value of the
function for the subset PTR2 and the error is computed as

RMSPTR1
¼

XPTR2

i¼1

finterðxiÞ � fðxiÞ½ �
2

ð9aÞ

where finter(xi) is the value of the interpolated function at xi.
Then, the same procedure is repeated by using the subset PTR2 to solve Equations (5)

and (6a and b) and the subset PTR1 to calculate the error as

RMSPTR2
¼

XPTR1

i¼1

finterðxiÞ � fðxiÞ½ �
2: ð9bÞ
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Finally, the total error is obtained as

RMSRBF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSPTR1

þRMSPTR2

p
: ð10Þ

This procedure is repeated for all polynomial orders, up to M¼ 6, for each one of the

RBF expressions given by Equations (8a–d) and for increasing values of the shape factor

cj. The best combination that is used in the interpolation of the likelihood function is the

one that returns the lowest value of the RMS error.

4. Results and discussions

We now examine the approach described above for the interpolation of the likelihood

function, as applied to two different test cases of practical interest. These test cases include

the transport of tracers in soil columns and the three-dimensional heat conduction in an

orthotropic media. The results obtained with the interpolated approach described above

are compared to those obtained without interpolation, as well as those interpolated with

multiquadrics RBFs. For the sake of clarity, such tecnhiques are hereafter referred to as:

(i) Technique 1: without interpolation; (ii) Technique 2: interpolation with multiquadrics

RBFs with the shape factor given by the inverse of the standard-deviation of the

measurement errors and (iii) Technique 3: interpolation with RBFs using the cross-

validation procedure described above.

5. Transport of tracers in soil columns

Consider the identification of soil properties based on the dispersion of a tracer in a

column. We assume that a column of length L is filled with a soil saturated with water.

After establishing a constant flow of a solution with tracer concentration Cb, the inflow

concentration is changed to C0. Dispersion is assumed to be onedimensional along the

longitudinal direction through the column. Also, we assume that the relation between

adsorbed and solution concentrations is described by a linear isotherm, so that the

diffusion–advection equation describing the salt dispersion through the column is

given by:

R
@cðz, tÞ

@t
¼ D

@2cðz, tÞ

@z2
� V

@cðz, tÞ

@z
for 05 z5L and t4 0: ð11aÞ

The initial condition is given by:

cðz, 0Þ ¼ Cb for t ¼ 0, in 05 z5L ð11bÞ

and the boundary conditions as:

cð0, tÞ ¼ C0 at z ¼ 0 and for t4 0 ð11cÞ

D
@cðL, tÞ

@z
þ hmcðL, tÞ ¼ hmCb at z ¼ L and for t4 0 ð11dÞ

where D is the dispersion coefficient, R is the retardation factor and V is the pore velocity.
Note in Equation (11c) that the boundary condition at z¼ 0 is taken as of the

first kind, by assuming that the advective effects are locally dominant. Also, note in
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Equation (11d) that the boundary condition at z¼L was taken as of the thirdkind, where

hm is the mass transfer coefficient between the column and an outflow plenum.
For the solution of the problem given by Equation (11) we use finite-differences with

the McCormack predictor–corrector scheme [15].
The objective of the inverse problem is to estimate the vector of parameters

PT ¼ ½D,R, hm,V� ð12Þ

from the measurements of the outflow concentration of the tracer at z¼L. For the

solution of the inverse problem, the concentration is considered to be normalized in the

form:

Cðz, tÞ ¼
cðz, tÞ

C0
: ð13Þ

We utilize in this analysis simulated experimental data containing random errors with

constant standard deviation of 0.05. The simulated measurements were generated in a

column with length L¼ 5.4 cm, by considering the following values for the parameters:

R¼ 14.4, D¼ 11.08 cm2min�1, hm¼ 0.39 cmmin�1 and V¼ 0.59 cmmin�1. It is assumed

that 90 measurements of the outflow concentration are available for the inverse analysis,

taken in intervals of 1min.
For the solution of the inverse problem, the prior information for the parameters was

considered in the form of uniform distributions, as follows:

9 � R � 20

9 cm2 min�1
� D � 20 cm2 min�1

0:3 cmmin�1
� hm � 0:6 cmmin�1

0:58 cmmin�1
� V � 0:60 cmmin�1:

Due to the linear dependence between the pore velocity and the dispersion coefficient,

a quite small interval was used as the prior for the pore velocity. Such a fact is not

restrictive from the practical point of view, since this parameter can be directly

obtained with relative high accuracy from the measurements of the volume flow at the

column outlet. The number of samples used in the Metropolis–Hastings algorithm was

20,000 and, for the computation of the results, the first 500 samples were discarded.
Table 1 presents the results obtained with Technique 1, in terms of the mean and the

standard-deviation for each parameter. This table shows that quite accurate estimates can

be obtained for the mean values of the parameters, in comparison to the exact ones used to

generate the simulated data. Such is the case despite the fact that the simulated errors are

Table 1. Results obtained with Technique 1.

Parameter Mean Standard deviation

R 16.7 1.9
D (cm2min�1) 12.7 1.5
hm (cmmin�1) 0.50 0.06
V (cmmin�1) 0.59 0.01
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actually quite large, as illustrated in Figure 1. Figure 1 presents the errorless simulated

experimental data (solution of the forward problem with the exact parameters), the

simulated data containing random errors that were used for the inverse analysis and

the estimated concentration obtained with the mean values estimated for the parameters,

by using Technique 1. The agreement between estimated and measured concentrations is

quite good. The relatively large standard-deviations observed in Table 1 are due to the

large errors assumed for the simulated measurements, as well as due to small and

correlated sensitivity coefficients.
Tables 2 and 3 present the results obtained with Techniques 2 and 3, respectively, for

two different numbers of interpolating points. A comparison of Tables 1 and 2 reveals that

Technique 2 is not capable of reaching the same level of accuracy obtained with

Technique 1. The mean values estimated for the parameters with Technique 2 are in fact

0 20 40 60 80 100

Time, min

0.2

0.4

0.6

0.8

1

O
ut

flo
w

 c
on

ce
nt

ra
tio

n,
 C

/C
0

Simulated data - errorless
Simulated data containing random errors
Estimated

Figure 1. Comparison between measured and estimated concentrations: Technique 1.

Table 2. Results obtained with Technique 2.

Parameter Mean Standard deviation Number of interpolating points

R 18.3 2.2 300
D (cm2min�1) 14.7 1.6
hm (cmmin�1) 0.57 0.03
V (cmmin�1) 0.58 0.01

R 18.9 0.7 500
D (cm2min�1) 15.2 0.7
hm (cmmin�1) 0.57 0.03
V (cmmin�1) 0.59 0.01
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quite different from the exact ones, as well as from those obtained with Technique 1.

On the other hand, results quite close to those obtained with Technique 1 were obtained

with the use of Technique 3 (Tables 1 and 3). Tables 2 and 3 also show that the results

obtained with the interpolated likelihood function were not significantly affected by the

number of interpolating points used.
Figure 2(a–c) present the states of the Markov chain obtained for the retardation

factor, dispersion coefficient and mass transfer coefficient, with Techniques 1–3,

respectively. For Techniques 2 and 3; 300 points were used to interpolate the

likelihood function with RBFs. A comparison of Figure 2(a)–(c) shows that

Technique 2 results in a distribution for these parameters completely distinct from

Table 3. Results obtained with Technique 3.

Parameter Mean Standard deviation Number of interpolating points

R 16.4 1.9 300
D (cm2min�1) 12.6 1.7
hm (cmmin�1) 0.41 0.06
V (cmmin�1) 0.58 0.01

R 17.4 2.0 500
D (cm2min�1) 13.4 1.7
hm (cmmin�1) 0.47 0.07
V (cmmin�1) 0.59 0.01
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Figure 2. Samples obtained with (a) Technique 1; (b) Technique 2; (c) Technique 3.
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those obtained with Techniques 1 and 3. Such behaviour results from the poor

interpolation of the likelihood function with Technique 2. On the other hand, the
distributions obtained with Techniques 1 and 3 are quite similar, as a result of the accurate
interpolation procedure developed in Technique 3, which automatically selects the most

appropriate interpolation function for each specific case.
Table 4 presents the computing times required by the application of Techniques 1–3

to the solution of the present parameter estimation problem. Such computing times
correspond to FORTRAN codes running under the Compaq Visual FORTRAN
Professional Edition 6.6a platform, in an Intel Centrino Duo T2400 1.83GHz processor,

with 1 Gbyte of RAM memory. Table 4 shows a reduction of at least 20 times when the
likelihood function interpolated with RBFs is used in the Metropolis–Hastings algorithm.
If we compare Technique 1 with Technique 3, which accurately interpolate the likelihood

function with 300 points, the reduction in computing time reaches 35 times. A comparison
of the computing times for Techniques 2 and 3 shows a small increase in computational
cost when the automatic selection of the interpolation function is applied, as described

above, instead of using only multiquadric RBFs.

6. Heat conduction in orthotropic medium

As another example of application of the above interpolation procedure used to reduce the
computational cost of the Metropolis–Hastings algorithm, we now consider the inverse
problem of estimating the thermal conductivity components of an orthotropic solid. Such

an inverse problem was addressed in [16] by using the Levenberg–Marquardt method, and
is now revisited with the solution via the Bayesian MCMC approach.

The physical problem considered here involves the three-dimensional linear heat
conduction in an orthotropic solid, with thermal conductivity components k�1, k

�
2 and k�3 in

the x*, y* and z* directions, respectively. The solid is a parallelepiped with sides a*, b* and
c*, initially at temperature T�

0. For times t*4 0, uniform heat fluxes q�1ðtÞ, q
�
2ðtÞ and q�3ðtÞ

are applied at the surfaces x*¼ a*, y*¼ b* and z*¼ c*, respectively. The other three

remaining surfaces at x*¼ 0, y*¼ 0 and z*¼ 0 are maintained at a constant temperature
(equal to the initial temperature). The mathematical formulation of such physical problem
is given in dimensionless form by:

k1
@2T

@x2
þ k2

@2T

@y2
þ k3

@2T

@z2
¼

@T

@t
in 05 x5 a, 05 y5 b, 05 z5 c; t4 0 ð14aÞ

T ¼ 0 at x ¼ 0; k1
@T

@x
¼ q1ðtÞ at x ¼ a, for t4 0 ð14b;cÞ

Table 4. Computing times.

Technique Number of interpolating points Computing time (s)

1 – 1324
2 300 31

500 52
3 300 38

500 68
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T ¼ 0 at y ¼ 0; k2
@T

@y
¼ q2ðtÞ at y ¼ b, for t4 0 ð14d; eÞ

T ¼ 0 at z ¼ 0; k3
@T

@z
¼ q3ðtÞ at z ¼ c, for t4 0 ð14f; gÞ

T ¼ 0 for t ¼ 0; in 05 x5 a, 05 y5 b, 05 z5 c: ð14hÞ

Here, the superscript * denotes dimensional variables and the following dimensionless

groups were introduced:

t ¼
k�reft

�

��C�L�2
T ¼

T� � T�
0

ðq�refL
�Þ=ðk�refÞ

x ¼
x�

L�
y ¼

y�

L�
z ¼

z�

L�
ð15a�eÞ

a ¼
a�

L�
b ¼

b�

L�
c ¼

c�

L�
k1 ¼

k�1
k�ref

k2 ¼
k�2
k�ref

k3 ¼
k�3
k�ref

ð15f�kÞ

q1 ¼
q�1
q�ref

q2 ¼
q�2
q�ref

q3 ¼
q�3
q�ref

ð15l�nÞ

where �*C* is the volumetric heat capacity, L* is a characteristic length of the solid,

while q�ref and k�ref are reference values for heat flux and thermal conductivity, respectively.
The boundary heat fluxes are supposed to be pulses of finite duration th, written

in dimensionless form as

qjðtÞ ¼
�qj for 05 t � th

0 for t4 th

�
for j ¼ 1, 2, 3: ð16Þ

The inverse problem under examination is concerned with the estimation of the vector

of unknown parameters PT
¼ [k1, k2, k3], by using temperature measurements of sensors

located at the centres of the heated surfaces. In reference [16], the D-optimum approach

was used in the experimental design in order to estimate these parameters with identical

relative accuracies, by appropriately selecting the body dimensions and the magnitudes of

the applied heat fluxes. The same optimally experimental variables selected in [16] were

used here: for k1¼ 1, k2¼ 15 and k3¼ 15, we have b/a¼ c/a¼ q2/q1¼ q3/q1¼ 3.87 and the

heating and final times were th¼ tf¼ 1.
The solution of the direct problem was obtained analytically with the classical integral

transform technique as [17]:

Tðx, y, z, tÞ ¼
8

abc

X1
o¼1

X1
n¼1

X1
m¼1

�ð�m,xÞ�ð�n, yÞ�ð�o, zÞ
~̂�T

� ð�m,�n, �oÞð1� e�tðk1�
2
mþk2�

2
nþk3�

2
o ÞÞ ð17aÞ

where

~̂�Tð�m; �n; �oÞ ¼
ð�1Þmþ1 �q1

�n�o
þ

ð�1Þnþ1 �q2
�m�o

þ
ð�1Þoþ1 �q3

�m�n

k1�
2
m þ k2�

2
n þ k3�

2
o

ð17bÞ
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and the eigenfunctions are given by

�ð�m, xÞ ¼ sinð�m xÞ

�ð�n, yÞ ¼ sinð�n yÞ

�ð�o, zÞ ¼ sinð�o zÞ

ð17c�eÞ

with eigenvalues

�m ¼
ð2m� 1Þ

2a
�; �n ¼

ð2n� 1Þ

2b
�; �o ¼

ð2o� 1Þ

2c
�; m, n, o ¼ 1, 2, . . . ð17f�hÞ

Simulated temperature measurements, obtained with the solution of the direct problem

with m¼ n¼ o¼ 50, were used in the inverse analysis. Such number of points in the series

(17a) was sufficient to achieve the desired convergence in the solution. In order to avoid

the inverse crime of using the same solution of the direct problem in the generation of the

simulated measurements and in the solution of the inverse problem [2], for the application

of the Metropolis–Hastings algorithm we used m¼ n¼ o¼ 20 in the series-solution.
Results are presented below for the estimation of the thermal conductivity components

PT
¼ [k1, k2, k3] with the Metropolis–Hastings algorithm, by using 20,000 samples and

neglecting the first 2000. As for the test-case involving the dispersion in soils examined

above, a uniform distribution is also used as prior information for the thermal

conductivity components. The unknowns were assumed to be in the intervals given by:

0:5 � k1 � 1:5

5 � k2 � 25

5 � k3 � 25

For this test-case, only the results obtained with Techniques 1 and 3 are presented

below, since the use of Technique 2 did not result in an accurate interpolation of the

likelihood function. We note, however, that for Technique 2 it was also examined the
automatic selection of the shape factor for the multiquadrics RBFs that resulted in linear

systems approaching ill-conditioning, as recommended in [18].
Figure 3(a) and (b) illustrate the exact and estimated temperatures, as well as

the simulated measurements, at the centre of the heated surface at x¼ a, for standard-

deviations of the errors of �¼ 0.01 and �¼ 0.05, respectively. The estimated temperatures

were obtained with Technique 1.
Figure 4(a) and (b) present the states of the Markov chain resulting from the

application of the Metropolis–Hastings algorithm without interpolation (Technique 1),
for the cases with standard deviations of the measurement errors of �¼ 0.01 and �¼ 0.05,

respectively. The mean parameters and their standard deviations obtained with

Technique 1 are presented in Table 5. This table shows that the MCMC Bayesian

approach with the Metropolis–Hastings algorithm provided very accurate estimates

for the unknown thermal conductivity components, even for large magnitudes of the

measurement errors, such as �¼ 0.05. In fact, the agreement between exact and estimated

temperatures is also excellent, as shown in Figure 3(a) and (b).
The results obtained with Technique 3 by using 500 interpolating points are

presented in Table 6. A comparison of Tables 5 and 6 reveals that the interpolation

utilized does not affect significantly the mean and standard deviations for the estimated

parameters. In reality, such quantities are quite close to those obtained without
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interpolation by using Technique 1. This is due to the accurate interpolation provided by
Technique 3, which practically does not affect the states of the Markov chain. Such a fact
is illustrated in Figure 5(a) and (b) which present the states of the Markov chain obtained
with Technique 3, for �¼ 0.01 and �¼ 0.05, respectively.

A comparison of computing times for the present test-case is shown in Table 7.
As for the test-case involving the dispersion in soil columns described above, the reduction
in computational time with the use of our interpolation procedure was substantial.
Even with a large number of interpolation points (500) the computational cost was
reduced 25 times with the use of interpolated likelihood function; the computing time
dropped from 13.3 h to 31min.
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Figure 3. (a) Temperature at the centre of the surface at x¼ a. Simulated measurements with
standard deviation �¼ 0.01 (Technique 1). (b) Temperature at the centre of the surface at x¼ a.
Simulated measurements with standard deviation �¼ 0.05 (Technique 1).
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Figure 4. Samples obtained with (a) Technique 1 for standard deviation �¼ 0.01; (b) Technique 1
for standard deviation �¼ 0.05.
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7. Conclusions

In this article we applied a Bayesian technique to the solution of inverse parameter

estimation problems involving the dispersion of tracers in soil columns and the heat

conduction in orthotropic media. The MCMC method, coded in the form of the

Table 5. Results obtained with Technique 1.

Standard deviation for the measurements Parameter Mean Standard deviation

�¼ 0.01 k1 1.000 0.004
k2 14.72 0.06
k3 14.84 0.07

�¼ 0.05 k1 0.97 0.02
k2 15.1 0.3
k3 15.1 0.2

Table 6. Results obtained with Technique 3.

Standard deviation for the measurements Parameter Mean Standard deviation

�¼ 0.01 k1 0.989 0.004
k2 14.79 0.05
k3 14.94 0.05

�¼ 0.05 k1 0.98 0.02
k2 14.7 0.3
k3 14.9 0.2
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Figure 5. Samples obtained with Technique 3 for standard deviation (a) �¼ 0.01; (b) �¼ 0.05.
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Metropolis–Hastings algorithm, was used to obtain the posterior probability density for
the parameters. Two different techniques were then proposed for the interpolation of the
likelihood function with RBFs, in order to reduce the computational cost associated with
the implementation of the Metropolis–Hastings algorithm. One of these techniques
involved only multiquadric RBF for the interpolation, while the other one allowed for
automatic selection of the RBF, shape factor and polynomial degree to be used for the
interpolation. The automatic selection of such quantities was based on a cross-validation
procedure described in the article.

For the two test-cases examined in this work, the use of only multiquadrics RBFs
resulted on poor approximation of the likelihood function. As a consequence, the
distributions for the parameters were distinct from those obtained with the actual
likelihood function. Such was the case even if the automatic selection of the shape factor
was used.

On the other hand, substantial reduction on the computational time could be obtained
with the interpolation technique that automatically selected the interpolation function and
its parameters by cross validation. Such interpolation technique did not cause loss
of accuracy on the estimated parameters. In fact, for both test-cases the states of the
Markov chain were not significantly affected if the interpolated likelihood function was
used instead of the actual function. The use of the interpolated likelihood function shall
allow the utilization of MCMC methods in problems requiring large computational times
for the solution of the forward problem.
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Table 7. Computing times.

Technique Standard deviation for the measurements Computing time (s)

1 �¼ 0.01 48,008
�¼ 0.05 47,928

3 �¼ 0.01 1873
�¼ 0.05 1875
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