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Abstract In predator–prey algorithm, a relatively small1

number of predators (“lions”) and a much larger number2

of prey (“antelopes”) are randomly placed on a two dimen-3

sional lattice with connected ends representing an unfolded4

surface of a torus. The predators are partially or completely5

biased towards one or more objectives, based on which6

each predator kills the weakest prey in its neighborhood. A7

stronger prey created through evolution replaces this prey.8

In case of constrained problems, the sum of constraint9

violations serves as an additional objective. Modifications10

of the basic predator–prey algorithm have been imple-11

mented in this paper regarding the selection procedure,12

apparent movement of the predators, and mutation strategy.13

Further modifications have been made making the algo-14

rithm capable of handling multiple equality and inequal-15

ity constraints. The final modified algorithm was tested16

on standard linear/nonlinear and constrained/unconstrained17

single-objective optimization problems.18

Keywords Predator–prey algorithm · Constrained19

optimization · Evolutionary algorithms · Crossover ·20

Mutation21
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1 Introduction 22

The last few decades have seen the development of opti- 23

mization algorithms inspired by the principles of natural 24

evolution. These algorithms, often termed Evolutionary 25

Optimization Algorithms (EOAs), use a set of candidate 26

solutions (population space) and follow an iterative pro- 27

cedure to produce a final set of the best compromise 28

solutions, the graphical representation of which is termed 29

as the Pareto front (Deb 2002). In case of single objec- 30

tive problems the Pareto front reduces to a single optimal 31

solution known as the global minimum or global maxi- 32

mum. Genetic algorithm, differential evolution, particle 33

swarm, and predator–prey algorithms are some of the most 34

prominent EOAs. 35

Hybrid optimization techniques with automatic switch- 36

ing capability among a number of EOAs and classi- 37

cal gradient-based optimization algorithms have also been 38

developed (Dulikravich et al. 1999; Colaço et al. 2005; 39

Moral and Dulikravich 2008) and successfully implemented 40

in multi-disciplinary problems (Martin and Dulikravich 41

2002). 42

In 1998, Hans Paul Schwefel proposed a new EOA to 43

search for Pareto-optimal solutions (Laumanns et al. 1998) 44

from a randomly generated initial population of candidate 45

solutions. This algorithm imitates the natural phenomena 46

that a predator kills the weakest prey in its neighborhood, 47

and the next generations of prey that evolve are relatively 48

stronger and more immune to such predator attacks. 49

In nature, individual predators have different means of 50

tracking their prey, as a result of which their choice of 51

prey might differ. This algorithm mimics such preferential 52

hunting tactics in associating each predator or a group of 53

predators with different objectives. In course of their ran- 54

dom movements in the prey neighborhood, each predator 55



AUTHOR'S PROOF!

UNCORRECTED
PROOF

JrnlID 158_ArtID 433_Proof# - 28/08/2009

S. Chowdhury, G.S. Dulikravich

tracks down the weakest local prey, that is, the one which56

is the most vulnerable to their particular hunting tactics.57

This refers to the prey which has the worst objective value58

with respect to that predator. The prey, thus killed, is then59

replaced by a stronger successor or a child.60

Such phenomenon repeating itself over generations leads61

to evolution of the prey population into stronger species that62

are more immune to the distinct hunting tactics of the differ-63

ent predators. This, in mathematical terms, reflects improve-64

ments of the prey population as a whole with respect to65

all function objectives. In case of a multi-objective opti-66

mization problem, natural selection based on such a method67

ensures convergence of solutions towards the Pareto front68

without any direct implementation of a dominance based69

criterion. This is the major contribution of the predator–prey70

class of evolutionary algorithms.71

In this light, application of the predator–prey selection72

technique to unconstrained single-objective optimization73

problems does not furnish any unique benefit. Conse-74

quently, in case of single-objective optimization problems,75

this algorithm acts like a typical genetic algorithm.76

However, there is one major difference between the77

predator–prey algorithm and any other evolutionary algo-78

rithm. Absence of any global mixing of the population79

members results in localized improvements of the prey80

population in the predator–prey algorithm. This is further81

facilitated by the evolutionary techniques (crossover and82

mutation) employed in predator–prey algorithm that estab-83

lish a localized and adaptive search, thereby enhancing the84

robustness of this optimization algorithm. This proves to be85

slower, but a more reliable mechanism of progress towards86

the global optimum in case of complex single-objective87

functions, like ones with multiple local optima.88

In the predator–prey algorithm, prey, which represent89

members of the population/solution space are randomly90

placed (unique integer co-ordinates are randomly generated91

for each prey) on a two dimensional lattice with connected92

ends, that is, an unfolded surface of a torus. Predators,93

which are comparatively fewer in number than prey, are94

placed at the cell centers of the same 2D lattice. Each95

predator is completely biased towards one of the objec-96

tives, which form the quantitative basis of determining97

the weakest local prey. After the weakest local prey (the98

local solution candidate with the lowest value of the fit-99

ness function) is identified, it is eliminated (this “prey” is100

“killed”) and a new prey is created through mutation of101

one of the immediate surviving neighboring prey. While102

the prey remain stationary, the predators move to a random103

neighboring location after every generation.104

However, this original predator–prey optimization algo-105

rithm appears to have difficulty in producing well dis-106

tributed non-dominated solutions along the Pareto front.107

Since then, several modifications of the above algorithm108

have appeared in literature. Deb (2002) suggested an 109

improved version of the algorithm which involved the asso- 110

ciation of each predator with a weighted sum of objectives 111

instead of one particular objective. Certain new features, 112

namely, the ‘elite preservation operator”, the ‘recombina- 113

tion operator’ and the ‘diversity preservation operator’ were 114

also included. A further modified version of the algorithm 115

was proposed by Li (2003), where a dynamic spatial struc- 116

ture of the predator–prey population was used. It involved 117

the movement of both predators and prey and changing 118

population size of prey. Some other versions of the algo- 119

rithm have been presented by Grimme and Schmitt (2006) 120

and Silva et al. (2002). The former uses a modified recom- 121

bination and mutation model. The latter, predominantly a 122

particle swarm optimization algorithm, introduces the con- 123

cept of predator–prey interactions in the swarm to control 124

the balance between exploration and exploitation, hence 125

improving both diversity and rate of convergence. 126

Most of the above versions are strictly directed towards 127

unconstrained multiobjective optimization problems. The 128

majority of practical applications of optimization involve 129

constraints. This demands optimization algorithms capa- 130

ble of producing solutions that are both optimum as well 131

as feasible with respect to the problem constraints. There 132

exist very few instances of published applications of any 133

form of the predator–prey algorithm to such real world 134

problems. Nevertheless, since the basic concept of the 135

predator–prey algorithm is significantly different from other 136

standard EOAs, there is sufficient basis to believe that the 137

potentials of this algorithm have not been fully realized. 138

The fundamental idea of the work presented here is 139

to combine the basic predator–prey algorithm with some 140

advanced features such as the constraint dominance cri- 141

terion, hypercube sizing and the epidemic operator, to 142

develop a reliable method of solving complex constrained/ 143

unconstrained single-objective optimization problems. 144

There are two benefits of using a multi-objective 145

approach. The algorithm can be used without changing 146

the basic dynamics of the predator–prey interaction and 147

weighted objective association of predators. 148

In case of solving constrained single-objective problems, 149

the total constraint violation acts as the third objective. The 150

constraint dominance criterion gives preference to selection 151

based on lower constraint violation. On the other hand, the 152

property that the first two objectives are equal to the actual 153

problem objective function leads to two-thirds biasing of 154

predators towards this objective. Both these factors acting 155

together provide a balance between selections of prey (solu- 156

tions) based on actual objective value as well as its distance 157

from the feasible domain (constraint violation). 158

This method is somewhat similar to the filter method 159

of constrained optimization, with the dominance crite- 160

rion biased towards selection based on total constraint 161
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violation. The weighted function association of predators on162

the other hand creates a counter effect as explained above.163

However, the version of the algorithm that was found to164

perform most satisfactorily when dealing with constrained165

problems involved selection based on ‘constraint domi-166

nance’ criterion instead of the ‘weighted sum of objectives’167

method which makes SOMPP very similar to NSGA II by168

Deb et al. (2000) with respect to the selection procedure.169

This study presents the development of a constrained170

single-objective version of the modified predator–prey171

algorithm which involves new features that are expected172

to promote dependability in terms of convergence of173

solutions as well as reduction of the number of func-174

tion evaluations necessary. This single-objective, modi-175

fied, predator–prey algorithm (SOMPP) has been derived176

from the basic predator–prey algorithm. Any unconstrained177

single-objective optimization problem was treated as a two-178

objective optimization problem, where the second objective179

is just a clone of the first one. In case of the constrained180

problems, all the equality and inequality constraints were181

collaged together to form a third objective and the prob-182

lem was solved as a three-objective optimization problem183

(Chowdhury et al. 2009, 2010) where the first two are184

equivalent and different from the third objective (constraint185

objective).186

2 Single objective modified predator–prey algorithm187

Any general constrained single objective test problem is188

reformulated as follows.189

Minimize f1 = f (X)

Minimize f2 = f1
(1)190

subject to191

gic ≤ 0, ic = 1, 2, 3, . . . , p
hic = 0, ic = p + 1, p + 2, . . . , p + q
p, q ∈ Nc

(2)192

Here, X is the vector of design variables, that is,193

X = (x1, x2, .., xv, . . . , xNv) , xv ∈ R194

The inequality and equality constraints are added up to form195

the third objective196

Minimize f3 =
p∑

ic=1

max (gic, 0)197

+
p+q∑

ic=p+1

max ((hic − ε) , 0) (3)198

where ε is the tolerance for equality objectives.199

In case of unconstrained problems, SOMPP indeed acts 200

as a generic genetic algorithm which selects solutions based 201

on their objective value. However, SOMPP also applies the 202

hypercube technique as a qualification criterion for accept- 203

ing new/child solutions. This incorporates diversity into the 204

population in the same way as the concept of crowding 205

distance does in case of NSGA II by Deb et al. (2000) 206

and the recently developed Constrained Particle Swarm 207

Optimization by Venter and Haftka (2009). 208

The initialization and subsequent steps executed by the 209

algorithm in each generation in solving a single-objective 210

optimization problem are sequentially presented below. It 211

should be noted that in case of a maximization problem the 212

function is multiplied by ‘−1’, to convert it into a general 213

minimization problem. 214

First, a population of N candidate solutions (prey) is 215

created using Sobol’s (1976) quasi-random sequence gen- 216

erator to generate their vectors of design variables. Using 217

these values of design variables, objective functions for each 218

candidate solution are evaluated. Sobol’s algorithm offers 219

significantly more uniform distribution of random numbers 220

than a typical random number generator routine. 221

Then, the prey are placed at the nodes of a two dimen- 222

sional grid with connected ends hence having a toroidal 223

nature. The grid is allowed to adjust its size dynamically 224

according to the population size maintaining the dimensions 225

I × J , where we found after numerical experimentation that 226

the most suitable value for J is J = 5. Consequently, I is 227

chosen such that I is the lowest possible integer for which 228

N < I × J . Random members of the prey population are 229

cloned (four or less) if required in order to ensure that all 230

grid points (having integer co-ordinates) are occupied by 231

prey. 232

Similarly, M predators are placed on the same 2D 233

grid such that they occupy random cell centers (Fig. 1). 234

Fig. 1 An active four prey locality/neighborhood on the grid drawn on
an unfolded toroidal surface
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The value of M is determined by the following empirical235

formula.236

M = max

(([
N

20

)
× Nf

)
, 4

)
(4)237

where, [r) is the lowest integer greater than r , r ∈ R+, and238

Nf is the number of objectives. Each predator is associated239

with a weighted value of the objectives as follows.240

f j =
2∑

i=1

w j
i fi

2∑

i=1

wi = 1

(5)241

Here, f j is the effective objective function value that the242

jth predator is associated with and w j
i is respective weight of243

the ith objective with respect to the jth predator. The weights244

are distributed uniformly in case of two-objective problems245

(from (0,1) to (1,0)) and using Sobol’s (1976) algorithm in246

case of problems with more than two objectives (constrained247

problems).248

Thus, the basic SOMPP algorithm was designed to han-249

dle problems with more than one objective. The dynamics of250

the algorithm is also conducive to multi-objective optimiza-251

tion. Hence, an unconstrained single objective optimization252

problem is treated as a two-objective problem with equal253

objective values, that is,254

f1 (X) = f2 (X)255

This allows one to use the same predator–prey dynamics256

as in a multi-objective problem. However, mathematically257

the algorithm will be solving the single objective problem,258

because each predator will be completely biased towards a259

single objective (5) since f j = f1 = f2 for each predator260

in the grid.261

In case of a constrained single-objective problem, the262

total constraint violation is treated as the third objective.263

This is why the number of objectives is defined by the264

general notation Nf, where N f = 2 for an unconstrained265

single-objective problem and N f = 3 for a constrained266

single-objective problem. However, the single-objective267

MPP (SOMPP) algorithm is significantly different from268

the multi-objective MPP in some other features, such as269

the mutation operator, the hypercube operator, rank based270

predator relocation, nine prey neighborhoods and the epi-271

demic operator. By the virtue of the above features, SOMPP272

acts as a distinct version of the Modified Predator Prey algo-273

rithm suitable for handling single-objective optimization274

problems.275

The presence of three objectives, among which the first276

two are equivalent and different from the third objective277

(constraint objective), creates a platform where one can reap 278

substantial benefits from the preferential hunting nature of 279

predators based on their colligation with different objec- 280

tives. The property that the first two objectives are equal to 281

the actual problem objective function entails a higher prob- 282

ability of prey killings (almost two thirds) based on their 283

weakness with respect to the actual objective. On the other 284

hand, the constraint dominance measure that acts as one 285

of the qualification criterion when accepting new (replace- 286

ment for the killed) prey, promotes selection based on lower 287

constraint violation. 288

Notice also that the constraint handling technique used 289

in SOMPP is free of any user-defined constants/coefficients, 290

unlike most penalty function methods (shown in the review 291

by Coello Coello 2002), where the user has to tune different 292

problem specific algorithm coefficients. Consequently, the 293

scope of applying SOMPP universally to any single objec- 294

tive problem with equality and/or inequality constraints 295

seems promising. 296

Since predators are randomly located at the centers of 297

quadrilateral cells drawn on an unfolded toroidal surface, 298

each neighborhood that contains a predator can be termed 299

as an ‘active locality’ as shown in Fig. 1. In each of these 300

localities/cells, the value of f as defined by (5) correspond- 301

ing to the local predator, is calculated for each prey (local 302

fitness of prey). The weakest prey, that is, the prey hav- 303

ing the maximum value of f is selected to be killed and 304

replaced by a new prey produced by the crossover of the 305

two strongest neighboring prey and a subsequent mutation 306

of the crossover child. 307

The blend crossover (BLX-α) (Deb 2002) was used in 308

this case. 309

y(1,t+1)
v = (1 − γv) x (1,t)

v + γvx (2,t)
v

γv = (1 + 2α) uv − α
(6) 310

Here, x (1,t)
v and x (2,t)

v are the design variables that define 311

parent solutions, y(1,t+1)
v is the design variable that defines 312

the child solution and uv is a random number between 0 and 313

1. A value of 0.5 was used for α as suggested by Deb (2002). 314

Non-uniform mutation (Deb 2002), as defined below, 315

was used in this algorithm. 316

β = 10
−
(

1+K t
/

tmax

)

317

y(1,t+1)
v = x (1,t+1)

v 318

+ τ
(

x (U )
v − x (L)

v

)(
1 − r

(
1−t/tmax

)b

v

)
× β (7) 319

Here, 10−K is the terminal order of magnitude of the extent 320

of mutation, y(1,t+1)
v is the child produced by mutation of 321
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the vth variable, x (U )
v and x (L)

v are upper and lower lim-322

its of the vth variable, rv is a random number between323

0 and 1, τ takes a Boolean value −1 or 1, each with a324

probability of 0.5, t and tmax are the number of function325

evaluations performed until then and maximum allowed326

number of function evaluations, respectively, while b is the327

user defined parameter (b = 1.5 determined empirically)328

and β is the scaling parameter.329

The evolutionary operators such as crossover and muta-330

tion operator applied in SOMPP are based on the niching331

strategies used in genetic algorithms. The BLX-α crossover332

is utilized since it facilitates genetic recombination that333

is adaptive to the existing diversity in the parent popula-334

tion; a desirable characteristic for Pareto front convergence.335

Also, non uniform mutation (Michalewicz 1992) is utilized336

since it provides a uniformly distributed search in the ear-337

lier generations and a relatively focused search in the later338

ones.339

The child prey produced by crossover and mutation qual-340

ifies to be accepted only if it fulfills the following three341

criteria:342

1. The child is stronger than the worst local prey based on343

f calculated by (2),344

2. The child is non-dominated (Deb 2002) with respect to345

the other three local prey, and346

3. The child is not within the objective space hypercube347

(Deb 2002) of the remaining three neighboring prey.348

Apparently, the treatment of constrained single-objective349

problems as bi-objective problems with total constraint vio-350

lation as the second objective is similar to the constrained351

handling method adopted in other filter algorithms. Nev-352

ertheless, the selection criterion is different from the con-353

ventional weak dominance criterion used in multi-objective354

problems. Instead, the constrained dominance criterion as355

introduced by Deb et al. (2000) is used in SOMPP. The con-356

straint dominance criterion for a minimization problem is357

defined as follows.358

Solution i is said to dominate solution j if:359

1. Both solutions are infeasible, and solution i has lower360

value of constraint violation than solution j (i.e., f i
3 <361

f j
3 )362

2. Solution i is feasible and solution j is infeasible.363

3. Both solutions are feasible (or problem is uncon-364

strained) and solution i has a lower objective value than365

solution j (that is, f i
1 < f j

1 ).366

SOMPP, thus, does not follow the actual Pareto approach367

in searching for optimal solutions. Under such circum-368

stances the predator–prey algorithm demonstrates a desir-369

able balance between selection of solutions based on actual 370

objective value and its distance from the feasible domain. 371

This allows one to incorporate the useful genetic traits of 372

strong infeasible solutions, while driving the prey popula- 373

tion towards the feasible domain. 374

In case of the third criterion, each old local prey is con- 375

sidered to be at the centre of its hypercube, the size of which 376

is dynamically updated with generations and is determined 377

by the following novel equation. 378

ω = 10
−
(

2+L t
tmax

)

ηi = ω × min
(

f new prey
i , f old prey

i

)
(8)

Here, 10−L is the terminal order of magnitude of relative 379

window size, ω is the window size of the hypercube and 380

ηi is the half side length of the hypercube corresponding to 381

the ith objective. The first two criteria promote convergence 382

towards the global minimum. The third criterion helps in 383

maintaining diversity in the solution space in order to avoid 384

converging to a local minimum. Ten trials were allowed to 385

produce a qualified child that satisfies these three criteria, 386

failing which the worst prey was retained. 387

Hence, to conclude, selection in SOMPP is chiefly based 388

on constraint dominance. This gives feasibility a preference 389

over optimality, but promotes both simultaneously, which is 390

partially similar to the filter algorithms. At the same time, 391

the mutation operator and the hypercube operator incorpo- 392

rate the traits of niching. Niching has been applied in the 393

field of evolutionary algorithms using various techniques 394

such as dynamic mutation, preselection (Cavicchio 1970), 395

crowding distance concept (Dejong 1975), sharing func- 396

tion model (Goldberg and Richardson 1987), etc. However, 397

SOMPP demonstrates a search radius that is adaptive to 398

the extent of convergence of the population (through adap- 399

tive mutation) and a diversity preserving technique (the 400

hypercube operator) adaptive to the current diversity of the 401

population; the simultaneous existence of both is rare in lit- 402

erature. This reinforces SOMPP with the ability to adapt to 403

the complexities of the problem (especially multimodality) 404

at hand. 405

Thus, we can conclude that the preferential hunting tac- 406

tics of predators in the predator–prey algorithm do not 407

contribute any unique gain in case of unconstrained single- 408

objective problems. However, when dealing with con- 409

strained single-objective problems, such characteristic is 410

highly favorable to ensure simultaneous achievement of 411

feasibility and objective optimization. 412

Upon completion of the above predator–prey interactions 413

in each active locality, the predators were relocated ran- 414

domly. A probability based relocation criterion was intro- 415

duced here, which ensures that each cell is visited, therefore 416

favoring an even distribution of the number of visitations by 417
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a predator to each cell. The predator relocation criterion is418

defined as follows:419

if cellcount (i, j) > cellcountavg + 1, locate = no
else , locate = yes

(9)420

Here, cellcount (i, j) is the number of times predators have421

visited the cell (i, j) in previous generations, cellcountavg422

is the average of all cellcount (i, j) and (i, j) is the ran-423

domly generated location on the 2D lattice. This new feature424

ensures that every member of the prey population irrespec-425

tive of its location in the 2D lattice gets fair opportunity of426

improvement.427

At the end of each generation the objective value of428

the strongest prey (based on dominance criterion) is found429

and the algorithm checks for termination. The termination430

criteria are as follows:431

1. Maximum allowed number of function evaluations432

(fcallmax) has been exhausted, or433

2. The best objective value searched by the algorithm has434

not changed during the last 100 generations.435

The dynamic reduction of the window size of the hyper-436

cube and the mean extent of mutation along the course of437

generations introduces the desirable attribute of ‘adaptive438

shrinkage of the search radii’ as solutions converge towards439

the global optimum.440

The above steps summarize the basic version of SOMPP441

which can be termed as SOMPP Version-1. During the442

course of further development of SOMPP, other alter-443

ations/additional features were also implemented causing444

minor to significant improvements in its performance. These445

versions of SOMPP are described in detail as follows.446

2.1 SOMPP version-2: rank based predator relocation447

Localities with relatively stronger prey were designed to448

have a higher affinity of attracting predators. The probabil-449

ity ‘cellprobi, j ’ of locating a predator in a particular locality450

(co-ordinates i , j generated by a random number generator)451

is determined as follows.452

cellranki, j = min

(
ranki, j ranki+1, j

ranki+1, j+1 ranki, j+1

)

cellprobi, j = N − cellranki, j

N

(10)453

Here, cellranki, j is the rank of the cell/locality (i, j) and454

ranki, j is the rank of the prey located at the grid point (i, j),455

ranking being determined on the basis of dominance. N456

is the total number of prey, hence equal to the maximum 457

rank in the population. This feature introduces substantial 458

amount of elitism into the algorithm thereby speeding up 459

convergence. However, in some cases this might limit the 460

domain of search and hence should be applied carefully. 461

2.2 SOMPP version-3: nine prey neighbourhood 462

Instead of the predator being located at the center of a four- 463

vertex quadrilateral cell, the predator is now located on the 464

same grid nodes as prey and allowed to have access to all 465

eight preys around it as well as the prey at that very grid 466

location (Fig. 2). This increases the neighbourhood scope of 467

the predator from four to nine. Since prey are not relocated 468

in SOMPP, this modification facilitates faster communica- 469

tion of genetics among prey irrespective of their location on 470

the unfolded toroidal surface grid, which in turn accelerates 471

the rate of improvement of the prey population as a whole. 472

2.3 SOMPP version-4: global elitist crossover 473

Here, the worst prey in each active neighbourhood is 474

replaced by the crossover of the strongest two prey in the 475

entire prey population, instead of the strongest two local 476

prey. Strength of the prey in this case is determined on the 477

basis of the objective value. This significantly decreased 478

the number of function evaluations necessary, but often led 479

to stalling of solutions at the local minima. This might be 480

avoided by selecting the parents for crossover out of the top 481

‘p’ percentage of the prey population based on dominance, 482

instead of the two global prey with minimum objective val- 483

ues. Nevertheless, even then the fundamental characteristics 484

Fig. 2 An active nine prey locality/neighbourhood on the grid drawn
on an unfolded toroidal surface
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of predator–prey approach, that is localized evolution of485

solutions, will be lost.486

2.4 SOMPP version-5: version-2 and version-3 combined487

with an epidemical operator488

In this version of SOMPP, the concepts of nine-prey active489

neighborhoods and rank based relocation of predators are490

implemented simultaneously to promote faster convergence491

and better communication among the prey. However, the492

rank for each cell is calculated as the average of the ranks493

of all the local prey in that cell. In addition to that, to494

counteract the possibility of convergence to a local min-495

imum, a concept of an epidemic genetic operator was496

introduced as implemented by Cuco et al. (2008) in the497

Epidemic Genetic Algorithm. If the objective value of the498

strongest prey does not change over a certain number of499

consecutive iterations, a part of the prey population is dis-500

carded and replaced with new population generated using501

Sobol’s (1976) quasi-random sequence generator. This is502

implemented as follows.503

If Nchng > 10,504

1. Rank prey population by dominance.505

2. Discard weakest 0.0 < fw < 1.0 fraction of the prey506

population.507

3. Set variable limits suitable to the order of magnitude of508

the remaining prey and generate N × fw new prey to509

replace the discarded ones.510

Here, Nchng is the consecutive number of generations with-511

out any change in the objective value of the strongest prey512

by a relative tolerance of 10e-03. Numerical experiments513

showed that a high value of fw ( fw = 0.9) should be used514

for all test cases since whenever the above conditions for515

the application of the epidemical operator was satisfied, the516

existing diversity in the population was significantly below517

that required to produce new solutions. As a result of which,518

retaining a few representative solutions (stongest of the lot)519

from the existing population, should be sufficient.520

2.5 SOMPP version-6: version-5 with dominance based 521

selection in active neighbourhoods 522

Here, the relative strength of the prey in an active locality is 523

determined on the basis of the dominance criterion instead 524

of the weighted f value given by (5). In case of uncon- 525

strained problems, this has no additional influence because 526

the dominance is merely based on the actual objective value. 527

However, in case of constrained problems, this modification 528

helps significantly in directing solutions into the feasible 529

region first, before the process of minimization takes over. 530

This is because the dominance criterion (Deb 2002) was 531

designed so that feasibility has a preference over minimiza- 532

tion. This in turn substantially reduces the domain of search 533

at the later stages making the algorithm more robust and 534

efficient. 535

The final version of SOMPP (version 6) also incorpo- 536

rates rank based relocation of predators. This is a specific 537

attribute of this single-objective version of predator–prey. 538

Single-objective optimization demands more focused search 539

for optimal solutions compared to multi-objective prob- 540

lems. The rank based relocation ensures that the algorithm 541

does not waste too much time searching sections of the 542

domain which are less likely to contain the optimal solu- 543

tion. However, this can prove to be disadvantageous in cases 544

of highly non-convex or discontinuous functions (like delta 545

functions). 546

It should be noticed that in SOMPP version 5, the 547

weighted sum of objectives determines the strength of prey, 548

each predator being associated with a different distribu- 549

tion of weights. Whereas in SOMPP version 6 selection is 550

guided by the constraint dominance criterion. This proves to 551

be more favorable for faster convergence of solutions. 552

3 Numerical experiments 553

All six versions of SOMPP were implemented using a 554

C++ programming language. The objective functions were 555

evaluated by the corresponding external executable files. 556

Table 1 Details of three unconstrained single-objective test cases

Problem Nv Variable limits Objective function 1 Analytical solution

Griewank 2 xi ∈ [−600, 600] f (X) =
m∑

i=1

x2
i

4000
−

m∏

i=1

cos

(
xi√

i

)
+ 1 f (X) = 0, xi = 0

Rosenbrock 2 xi ∈ [−2.048, 2.048] f (X) = 100
(
x2 − x2

1

)2 + (1 − x1)
2 f (X) = 0, xi = 1

Miele-Cantrell 4 xi ∈ [−10, 10] f (X) = (
e(x2−x1)

)4 + 100 (x2 − x1)
6 f (X) = 0, x1 = 0,

+ (tan−1 (x3 − x4)
)4 + x2

1 x2 = x3 = x4 = 1

Nv number of variables
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The final version of the algorithm, that is, SOMPP557

Version-6 was initially tested on three popular uncon-558

strained single-objective test functions namely Griewank559

function, Rosenbrock function and Miele-Cantrell function560

as evaluated by Colaco et al. (2008). Details about these561

functions are given in Table 1.562

The user-defined parameters used in the SOMPP563

Version-6 algorithm in case of the above three test problems564

are summarized in Table 2.565

The prey population size used here is the ‘small set’ pop-566

ulation size defined by Colaco et al. (2008) as equal to567

10 Nv. The crossover probability should be maintained at568

unity (i.e., 100%) since localized recombination is abso-569

lutely necessary for evolution of a population which lacks570

global mixing of solutions. The mutation probability used is571

also high (around 0.25, i.e., 25%) which is usual for applica-572

tion of evolutionary algorithms to unconstrained problems.573

However, specific real world problems might demand a574

higher or lower mutation probability, which may not be575

possible to predict a priori without some knowledge of the576

function topology.577

The values of K and L reflect the degree of conver-578

gence that the user expects to achieve. However, care should579

be taken to allow a sufficient number of function evalua-580

tions to converge. Otherwise, the local search radii would581

reduce too much and too soon rendering the algorithm582

incapable of producing substantially better solutions in sub-583

sequent generations. In this case, high values of K and L are584

used because the above test problems are unconstrained and585

relatively easy to solve.586

The test functions were run until the relative error in587

the computed minima reduced to 10e-09 or the maximum588

allowed number of function evaluations was exhausted. The589

relative error was calculated as follows.590

relative error =

⎧
⎪⎨

⎪⎩

∣∣Mincomp − Minanal
∣∣

Minanal
, if Minanal �= 0

∣∣Mincomp − Minanal
∣∣ , if Minanal = 0

(11)591

Table 2 SOMPP Version-6 user-defined parameters for three single-
objective test cases

Parameter Value

Population size (# prey) 10 Nv

Crossover probability 1.0

Mutation probability 0.25

Maximum allowed function evaluations 10,000

K (mutation) 6

L (hypercube) 10

fw (epidemic operator) 0.9
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Fig. 3 Convergence history of SOMPP version-1 applied to Griewank,
Miele-Cantrell and Rosenbrock functions

The convergence histories of the three test problems are 592

shown in Figs. 3 and 4. It is noticeable that numerous mod- 593

ifications introduced in SOMPP Version-6 made it superior 594

to SOMPP Version-1. 595

The results for these three test cases for SOMPP Version- 596

1 (Fig. 3) and SOMPP Version-6 (Fig. 4) are shown a priori 597

for ease of latter comparison against results of testing all 598

six version of SOMPP on a much larger set of test func- 599

tions. Though multiple runs were performed, the outcome 600

of only one of the representative runs is shown here due to 601

obvious constraints in demonstrating convergence histories 602

of multiple runs together on the same graph. 603
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Fig. 4 Convergence history of SOMPP version-6 applied to Griewank,
Miele-Cantrell and Rosenbrock functions
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Test Problem
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Fig. 5 Number of variables for each of the 293 test cases defined by
Hock and Schittkowski (1981)

Figure 4 shows that the SOMPP Version-6 reduced the604

relative error by ten orders of magnitude in less than 10,000605

function evaluations for the Griewank function. However,606

in case of the Rosenbrock function and the Miele–Cantrell607

function the algorithm ran for 10,000 function evaluations608

to reduce the relative error by ten orders and by only three609

and a half orders of magnitude, respectively.610

Further fine calibration of the extent of mutation and611

the relative hypercube size together with allowing more612

function evaluations is likely to achieve better accuracy in613

finding the global minimum.614

In order to test the SOMPP thoroughly, the algorithm615

in its original version (SOMPP Version-1) was tested on616

the 293 constrained and unconstrained single objective test617

cases with known analytic solutions that were derived from618

the collection of 395 linear/nonlinear test cases (actually619

295 test problems) formulated by Hock and Schittkowski620

(1981) and Schittkowski (1987). The number of variables621

involved in these 293 cases ranges from two to 100 as shown622

in Fig. 5. The number of inequality and equality constraints623

range from 0 to 38 and 0 to 6, respectively.624

Table 3 SOMPP Version-1 user-defined parameters for the 293 test
cases

Parameter Value

Population size (# prey) 10 Nv

Crossover probability 1.0

Mutation probability 0.1

Maximum allowed function evaluations 20,000

K (mutation) 2

L (hypercube) 4
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Fig. 6 Relative error of computed minima for the 293 test problems
(SOMPP version-1)

The user-defined parameters used in the SOMPP 625

Version-1 algorithm in case of the above 293 test problems 626

are summarized in Table 3. 627

A lower mutation probability is used in this case, because 628

most of the above test cases are constrained and care should 629

be taken to avoid already feasible solutions (near the bound- 630

aries of the feasible domain) from leaving the feasible space. 631

Similarly, lower values of K and L were used to impose 632

stricter restrictions on the rate of decrease of search radii, 633
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Fig. 7 Number of function evaluations for each of the 293 test
problems (SOMPP version-1)
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Table 4 Details of the 13 test problems from the set of 293

# TP Nv q P value

1 1 2 0 0

2 37 3 0 2

3 44 4 0 6

4 55 6 6 0

5 75 4 3 2

6 110 10 0 0

7 112 10 3 0

8 118 15 0 29

9 246 3 0 0

10 251 3 0 1

11 301 50 0 0

12 393 48 2 1

13 395 50 1 0

since a lower degree of convergence is expected for such634

a set of complex constrained/unconstrained test problems.635

A relative tolerance of ε = 0.001 was used for equality636

constraints.637

To compensate for performance fluctuations induced by638

random generators used in creating the initial population639

and other genetic operators, the algorithm was run five times640

for each of the 293 test problems resulting in a total of 1,465641

test runs. An explicit termination criterion was also imple-642

mented when relative error became less than 0.001. The643

final relative error for the computed minimum and the num-644

ber of function evaluations exhausted in doing so for each645

of these test problems can be seen in Figs. 6 and 7. In both646

of these figures the corresponding maximum, minimum and647

average (of five runs) are given for each test problem.648

It is evident from Fig. 6 that some of the test cases exhibit649

partial convergence with a relative error of the order of650

around 1.0. This can be attributed to the presence of either651

multiple equality or inequality constraints (linear /nonlin-652

ear) or both in most of these test problems (Hock and653

Schittkowski 1981; Schittkowski 1987). Some of the test654

cases do not converge at all leading to a relative error of655

orders above unity. This is primarily due to the lack of any656

Table 5 SOMPP user-defined parameters for the 13 test cases

Parameter Value

Population size (# prey) 10 Nv

Crossover probability 1.0

Mutation probability 0.25

Maximum allowed function evaluations 20,000

K (mutation) 3

L (hypercube) 6

fw (epidemic operator) 0.9
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specified variable limits for some of the variables in the orig- 657

inal publications. In such cases, a comprehensive range of 658

−10e10 to +10e10 was assigned for each design variable. 659

The number of function evaluations varied significantly 660

from problem to problem as seen from Fig. 7. Test problems 661

(TP) from TP-80 onwards till TP-118 (test runs 400–590) 662

have relatively high number of constraints leading to a 663

higher number of function evaluations. Whereas test prob- 664

lems ranging from TP-190 to TP-210 as well as from 665

TP-260 to TP-293 have a relatively high number of design 666
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variables leading also to a higher number of the objective667

function evaluations. Though 20000 function evaluations668

were allowed, some test cases show total executed num-669

ber of evaluations to be a little more than that. This is670

because in SOMPP the number of function evaluations in671

each generation is not limited to the population size (not672

predictable either) unlike in other evolutionary algorithms.673

Consequently, the total number of function evaluations674

might just exceed that allowed in course of the last executed675

generation. This is also evident from Table 6 presented later676

in the paper.677

Running all 293 test problems in series is computation-678

ally extremely time consuming. Consequently, a set of 13679

test problems were chosen from among these 293 cases. 680

These 13 test cases involve number of variables ranging 681

from two to 50 (with or without specified limits), num- 682

ber of equality constraints ranging from 0 to 6 and number 683

of inequality constraints ranging from 0 to 38, thereby 684

exhibiting varying degree and nature of complexity. Details 685

pertinent to these test problems are given in Table 4. It 686

should be noted that, compared to Table 3, a higher mutation 687

probability was used to prevent intermediate convergence 688

to local minima and subsequent stagnancy in the region of 689

the local minima. Higher values of K and L were used to 690

achieve better accuracy. 691

Here, p = number of inequality constraints, q = number 692

of equality constraints. 693

All the latter five versions of SOMPP (versions 2 to 6) 694

were tested on these 13 test problems. Each of these test 695

problems was run five times on a small population size 696

(10 Nv) as before. The user-defined parameters used in the 697

SOMPP algorithm in case of these 13 test problems are 698

summarized in Table 5. 699

The relative error of the computed minima, the con- 700

straint violation of the computed minima, and the number 701

of function evaluations exhausted for each of the five ver- 702

sions of SOMPP running on each of the 13 test problems 703

thus resulting in 65 runs can be seen in Figs. 8, 9 and 10. 704

It can be observed from Fig. 8 that SOMPP Version- 705

6 performs better than the other versions of SOMPP in 706

approaching the global minima. It also has the maximum 707

potential in driving solutions into the feasible domain as 708

seen from Fig. 9. In case of some of the constrained prob- 709

lems the data points are not visible in Fig. 9. This is because 710

the constraint violation is zero, that is the final computed 711

minima in these cases are feasible solutions, and hence 712

Table 6 Output for the 13 test
problems with SOMPP
Version-6

TP Computed Actual Relative Constraint Number of function Computing

minima minima error violation evaluations time (s)

1 0.00701 0.00 0.00701 19,291 989

37 −3,454.06 −3,456 0.00056 0 1,347 69

44 −14.9708 −15.00 0.00195 0 5,635 290

55 6.33959 6.3333 0.00098 0.996963 10,952 568

75 5,176.05 5,174.41 0.00031 2.45536 3,522 182

110 −45.7493 −45.7785 0.00064 2,385 123

112 −0.05151 −0.47761 0.89215 0 20,059 1,045

118 751.617 664.82 0.130556 0 20,031 1,045

246 0.011518 0.00 0.011518 19,696 1,021

251 −3,454.81 −3,456 0.000345 0 294 15

301 0 −50 1.000000 20,052 1,062

393 1.8623 0.86338 1.15699 0 20,712 1,192

395 19,990.6 1.91667 10,428.9 163.789 20,150 1,071
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cannot be represented in a logarithmic plot of Fig. 9. The713

relevant output parameters relating to the most accurate714

solution (of the five runs for each problem) for SOMPP715

Version-6 running on the 13 cases are summarized in716

Table 6.717

The significantly low accuracy and inability to find feasi-718

ble solutions in case of TP-395 can be attributed to the fact719

that there were no specified variable limits for any of the720

50 design variables involved in this problem provided in the721

original publications (Schittkowski 1987).722

SOMPP Version-6 being the most efficient and robust of723

all the different forms of the SOMPP, was then tested on the724

entire set of 293 single objective test problems (Hock and725

Schittkowski 1981; Schittkowski 1987) run five times each.726

The various user-defined parameters used were the same as727

given in Table 5. The relative error of the computed min-728

ima, the constraint violation of the computed minima and729

the number of function evaluations exhausted for all the 293730

test runs are displayed in Figs. 11, 12 and 13 respectively. In731

all the three figures, the corresponding maximum, minimum732

and average (of five runs) are given for each test problem.733

It is seen from Fig. 11 that SOMPP Version-6 performs734

well in achieving relative error of the order of less than 1.0,735

except for in cases which have a high number of design736

variables with unspecified variable limits. However, the737

most prominent improvement of this version of SOMPP is738

its ability to find the feasible space in case of constrained739

problems (as shown in Fig.12) irrespective of the number740

and complexity of the inequality and equality constraints741

(whether linear or nonlinear). It should be noted that in742
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Fig. 11 Relative error of computed minima for the 293 test problems
(SOMPP version-6)
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Fig. 12 Total constraint violation for each of the 293 test problems
that are constrained (SOMPP version-6)

many of these constrained problems the initial population is 743

completely in the infeasible space. The inability to converge 744

to the feasible space in case of the last few test problems 745

can be attributed to the involvement of relatively high num- 746

ber of design variables (from 20 to 50) as seen from Fig. 5. 747

The number of function evaluations exhausted by SOMPP 748

Version-6 is relatively high as shown in Fig. 13, which 749
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Fig. 14 Comparison of the frequency of occurrence of different
orders of magnitude of relative error in the computed minima between
SOMPP version-1 and SOMPP version-6. Note: frequency is the num-
ber of test runs that converged to that particular order of magnitude of
relative error

is expected as a substantial amount of functions evalua-750

tions are consumed in successfully searching for the feasible751

space in case of constrained problems.752

The improved performance of SOMPP Version-6753

becomes more evident from the histogram presented in754

Fig. 14.755

It is seen from Fig. 14 that in case of SOMPP Version-6,756

more test cases have converged to relative errors of orders757

of magnitude less than 1.0 (higher histogram bars for log758

(relative error) ≤ 0).759

4 Conclusion760

All versions of the predator–prey algorithm that exist in761

literature are mostly suited for unconstrained multiobjec-762

tive optimization problems. Consequently, the predator–763

prey algorithm in its modified form (SOMPP) is the first764

of its kind that specifically deals with constrained single-765

objective optimization problems. It performs well on the766

popular unconstrained test functions, namely Griewank,767

Rosenbrock and Miele-Cantrell functions. The 293 single-768

objective test problems given by Hock and Schittkowski769

(1981) and Schittkowski (1987) form the most expansive770

set of single objective test functions (both constrained and771

unconstrained and linear and nonlinear) available in the lit-772

erature. SOMPP performs satisfactorily on a large number773

of these test problems, in driving solutions into the feasible774

domain and consequently converging to the global mini-775

mum, using a relatively frugal population size defined by 776

the ‘small set’, i.e. ten times the number of design variables 777

Colaco et al. (2008). However, the accuracy of SOMPP 778

is noticeably affected by the absence of specified limits of 779

design variables especially in problems with a large number 780

of design variables. 781

SOMPP proves expensive in terms of function evalua- 782

tions when dealing with multiple equality/inequality con- 783

straints. This can be attributed to the fact that a substantial 784

amount of function calls are consumed in search of the 785

feasible domain. This expense increases significantly with 786

increase in the dimensionality of the problem, which is 787

however a generic problem with any kind of evolutionary 788

algorithm. Another drawback of SOMPP is that the algo- 789

rithm demands fine tuning of three user-defined parameters 790

namely the mutation probability, the relative hypercube 791

window size L, and the relative extent of mutation K . 792

Depending upon the problem, a value of 0.05 to 0.25 is 793

suggested for the probability of mutation, whereas values 794

of K and L are subject to the convergence expected with 795

L − K ≥ 2 always. Nevertheless, coupling SOMPP with an 796

efficient response surface model that interpolates both linear 797

and highly non linear functions in multidimensional spaces 798

(Colaco et al. 2008) is expected to improve the robustness 799

and accuracy of the SOMPP algorithm considerably. 800
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