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The objective of this study is to develop a new family of aluminum alloys with superior stress corrosion cracking resistance (SCCR) and
mechanical properties. This approach uses experimentally obtained stress corrosion resistance, tensile strength, and yield strength data from the
literature and then performs hybrid multiobjective evolutionary optimization combined with multidimensional response surfaces. This software
has the proven capability to deal with various alloy design applications using minimal amount of experimental data. The selected objectives in
this study are superior stress corrosion resistance, tensile strength, and yield strength. The design variables are concentrations of alloying elements
and the individual alloy tempers as they are important parameters that directly affect macroscopic properties and microscopic details of the alloy
such as grains, phases, precipitates, etc. The computational trials yield optimal alloys’ chemical compositions and standard thermal treatment
protocols for the best combination of superior stress corrosion resistance and mechanical properties. Single-objective optimization results confirm
the known experimental observations that dilute Al alloys yield the best corrosion resistance at the expense of tensile strength. Optimizations with
two simultaneous objectives and more alloying elements create better trade-off solutions. Quality and number of initially available experimentally
evaluated alloys have decisive effects on accuracy of this alloy design method.

Keywords Alloy design; Alloy optimization; Alloy tempering; Aluminum alloys; Stress corrosion.

Introduction

The basic assumption in this work is that multiple
thermomechanical properties of aluminum alloys depend
strongly on the concentrations of each of the alloying
elements and on the thermal treatment (tempering) of
such alloys in an a posteriori mode. Thus, extreme
thermomechanical properties of such alloys could be
obtained if appropriate (optimized) values of concentrations
of each of the alloying elements could be found
simultaneously with an appropriate (optimized) thermal
treatment. Obtaining the best trade-off (Pareto frontier)
optimized alloys cannot be performed using a brute-force
approach. It would take an exorbitant number of candidate
alloys to be generated and experimentally evaluated. For
example, if only three alloying elements are used in an
alloy, the concentrations of each of the two alloys should
be varied in increments of, say, 10%. This means that 1000
alloys would need to be manufactured and tested so that
a meaningfully accurate search could be performed in this
three-dimensional space of design variables (concentrations
of the three alloys). This means that in the case of
an alloy with six alloying elements, this “optimization”
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would require determining properties of 10∗∗6 = 1�000�000
alloys, each having a different chemical composition. This
approach is obviously unrealistic and should be replaced
by a more economical mathematical optimization in order
to reduce the number of alloy candidates by orders of
magnitude.
In order to significantly reduce the number of

experimentally evaluated alloys in the alloy design process,
during the past decade, there has been an intense effort
to develop and use several very complex mathematical
models that are based on nonequilibrium thermodynamics
of solids, thus minimizing the need for manufacturing
and experimental evaluation of the actual alloy samples.
However, the exclusive use of this strictly computational
approach has been shown to have its own limitations
concerning reliability and versatility, as demonstrated by
Bhadeshia [1] and Bhadeshia and Sourmail [2]. For
example, artificial neural networks (ANNs) are efficient
interpolating (“data mining”) algorithms for multiparameter
functions, but they are not capable of performing reliable
extrapolations outside of an initial data set. Therefore,
ANNs cannot be used alone for designing truly new alloys
with possibly significantly better multiple properties than
any of the alloys that belong in the initial data set. Moreover,
ANNs require a large number of alloys having different
chemical concentrations to be manufactured and tested in
order to provide a sufficiently reliable training set. An
alternative to ANNs is using genetic algorithms [3] for
designing new alloys. Even with this approach, the number

363

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
d
i
a
n
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
 
K
h
a
r
a
g
p
u
r
]
 
A
t
:
 
1
2
:
1
3
 
1
1
 
A
p
r
i
l
 
2
0
1
1



364 S. BHARGAVA ET AL.

of alloys that need to be manufactured and experimentally
evaluated becomes too large, as the number of alloying
elements in an alloy is increased.
The proposed methodology [4–13] for simultaneously

extremizing the multiple properties of alloys, by accurately
determining proper concentrations of each of the alloying
elements, is based on combining: a) experimentally
obtained multiple properties of the alloys and b)
an advanced, stochastic, multiobjective, evolutionary
optimization algorithm using multidimensional response
surface as a metamodel. During the iterative computational
design procedure, a relatively small number of new alloys
need to be periodically manufactured and experimentally
evaluated for their properties in order to continuously
verify and improve the accuracy of the entire design
methodology. The total number of alloys that needs to be
manufactured and experimentally evaluated as a part of
this optimization strategy is expected to be approximately
at least 2∗A∗A∗�1 + P�, where A is the number of design
variables (concentrations of alloying elements) and P is the
number of simultaneous objectives (properties of the alloy
that need to be extremized simultaneously).
The proposed computational design optimization method

was recently verified by Ni-based steel superalloys using
strictly experimental data [6–8] and has already been
applied to design optimization of H-class steels [4, 5], bulk
metallic glasses [9–11], and titanium-based alloys [12]. The
proposed optimization methodology is expected to perform
equally well in the optimization of chemical concentrations
and thermal treatment protocols of aluminum alloys.
Specifically, a novel methodology for predicting the

concentration of each of the important alloying elements
and the best standard thermal treatment protocol (temper)
in aluminum-based alloys is being proposed here. The new
alloys will have simultaneously increased stress corrosion
cracking resistance (SCCR), increased tensile strength, and
increased yield strength. It should be pointed out that
this work uses strictly experimentally obtained values for
these three objectives, thus avoiding explicit modeling of
microstructure, grain, phases, precipitates, boundary films,
etc., which is still insufficiently reliable for predicting
multiple macroscopic properties of thermally treated alloys.
Furthermore, the objective of this research was not
to determine the degree of sensitivity (interdependence)
of any of the three chosen objectives on any other
possible objective, such as toughness, but to limit this
study to the information that could be extracted from
a very small set of experimental data available in the
open literature linking chemistry and tempers to chosen
macroscopic properties. The proposed optimization method
is based on combining experimentally obtained multiple
properties of the aluminum-based alloys and a sophisticated,
multiobjective, hybrid, evolutionary optimization algorithm
[14, 15] that utilizes a polynomial form of radial basis
functions to construct multidimensional response surfaces
[16]. This alloy design method is capable of exploring alloy
concentrations that are outside of the initial data set, since
response surfaces can be extended outside of the domain
populated by the original data points because expressions
for the response surfaces are analytical functions. Notice
that such response surfaces are built from values of

experimentally evaluated macroscopic properties of alloys,
thus directly accounting for the influences of different
concentrations of the alloying elements and influences
of different tempers (which then influence the alloys’
microstructures) that will be optimized.

Optimization algorithms: background

Classical gradient-based optimization algorithms can find
the optimal value only in the case of a single-objective
and only if the minimized function is smooth and convex
[17]. In the case of multiobjective optimization, one is
dealing with a problem of finding the best trade-off
solutions among several objectives simultaneously. That is,
for multiobjective optimization there is not a single optimal
solution, but an entire set of Pareto-optimal (nondominated)
solutions [18] for which it is not possible to improve further
any individual objective without deteriorating the value of
at least one of the remaining objectives. If using gradient-
based optimization algorithms, the problem of finding the
group of nondominated solutions (the Pareto front) is
reduced to several single objective optimizations where the
objective function becomes a weighted linear combination
of the actual objectives called utility function. This approach
is computationally very lengthy, and it can find only a few
points on the Pareto front if such a front is continuous.
In this work, a true multiobjective hybrid optimization

[14, 15] was used. This optimizer utilizes several
multiobjective, evolutionary optimization algorithms and
orchestrates the application of these algorithms to
multiobjective optimization problems, using an automatic
internal switching algorithm. The switching algorithm is
designed to favor those search algorithms that quickly
improve the Pareto approximation and grades improvements
using five criteria. A thorough testing of reliability and
accuracy of this code against a number of prominent
multiobjective optimization algorithms and one hybrid
optimizer confirmed that it performs reliably and accurately.
For problems where objective function evaluations are

already expensive and where the number of design variables
is large, thus requiring many such objective function
evaluations, the only economically viable approach to
optimization is to use a cheap and accurate surrogate model
(a metamodel) instead of the actual high-fidelity evaluation
method (experiments). Such low-fidelity surrogate models
are known as response surfaces [14, 16, 18–20] which,
in case of more than three dimensions, become high-
dimensional hyper-surfaces that need to be fitted through
the available, often small, original set of high-fidelity values
of the objective function. Once the response surface (hyper-
surface) is created using an appropriate analytic formulation,
it is very easy and fast to search such a surface for its minima
given a set of values of design variables (concentrations
of alloying elements and tempers used) supporting such a
response surface. Separate response surfaces were generated
for each of the three objectives to be optimized: inverse
of SCCR, inverse of tensile strength, and inverse of yield
strength. The multidimensional response surfaces were
fitted through the initial set of experimental data points
by using polynomials of multidimensional Radial Basis
Functions (RBFs), since they required low computing time
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STRESS CORROSION CRACKING RESISTANT ALUMINUM ALLOYS 365

and performed accurate fitting of the provided data including
the capability of dealing with scattered data [14, 16, 18, 21].
A convincing comparison [16] of a RFB-based-response
surface method and a wavelet-based ANN method [19]
demonstrated superiority of RBF-based methods, especially
for high dimensionality response surfaces.

Aluminum alloys classification and properties

Aluminum alloys can be divided into nine groups
[22–26]. In this study we have decided to focus on 2xxx,
6xxx and especially 7xxx series aluminum alloys. For
clarity, definitions of these alloy groups are provided here:

2xxx Series: These alloys require solution heat treatment
to obtain optimum properties; in the solution heat-
treated condition, mechanical properties are similar to, and
sometimes exceed, those of low-carbon steel. In some
instances, precipitation heat treatment (aging) is employed
to further increase mechanical properties. This treatment
increases yield strength, with attendant loss in elongation;
its effect on tensile strength is not as great. The alloys in
the 2xxx series do not have as good corrosion resistance as
most other aluminum alloys, and under certain conditions
they may be subject to intergranular corrosion. Alloys in
the 2xxx series are good for parts requiring good strength at
temperatures up to 150�C (300�F). Except for alloy 2219,
these alloys have limited weldability, but some alloys in
this series have superior machinability.

6xxx Series: Alloys in the 6xxx series contain silicon
and magnesium approximately in the proportions required
for formation of magnesium silicide (Mg2Si), thus making
them heat treatable. Although not as strong as most
2xxx and 7xxx alloys, 6xxx series alloys have good
formability, weldability, machinability, and relatively good
corrosion resistance, with medium strength. Alloys in this
heat-treatable group may be formed in the T4 temper
(solution heat treated, but not precipitation heat treated)
and strengthened after forming to full T6 properties by
precipitation heat treatment.

7xxx Series: Zinc, in amounts of 1 to 8% is the major
alloying element in 7xxx series alloys, and when coupled
with a smaller percentage of magnesium results in heat-
treatable alloys of moderate to very high strength. Usually
other elements, such as copper and chromium, are also
added in small quantities. 7xxx series alloys are used in
airframe structures, mobile equipment, and other highly
stressed parts. Higher strength 7xxx alloys exhibit reduced
resistance to stress corrosion cracking and are often utilized
in a slightly over aged temper to provide better combinations
of strength, corrosion resistance, and fracture toughness.

Optimization of aluminum-based alloys

using 41 alloys without temper

Although each of the three series of aluminum based
alloys used in this study has more than four alloying
elements (besides aluminum), only three or four alloying
elements (besides aluminum) were taken into account when
optimizing their respective concentrations by weight. From

Figure 1.—Distribution of the initial 41 alloys in the space formed by the Cu
concentrations (X1), Zn concentrations (X2), and Mg concentrations (X3).

open literature resources [24–26], a table was compiled that
contains chemical concentrations for 4 alloying elements
(Cu, Mg, Zn, Mn) so that sum of their respective
concentrations by weight and the concentration of aluminum
in each such alloy amounts to 100 percent. In the same open
sources, two additional experimentally evaluated properties
(P1 = stress corrosion cracking resistance (given on a scale
1-100) and P2 = tensile strength [Ksi]) were also found
(Fig. 1). Initially, design optimization was performed on a
data set of 41 aluminum alloys. Notice that more than half
of this space is not covered with the available experimental
data.
Furthermore, notice (Fig. 2) that the objective P1 (SCCR)

in this initial data set depends on the concentrations of
each of the alloying elements in a manner which appears to
form three distinct bands of dependencies, rather than being
distributed uniformly over the entire range.

Figure 2.—SCCR criterion of the initial 41 alloys as a function of the Cu
concentration alone (top figure) and Zn concentration alone (bottom figure).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
n
d
i
a
n
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
 
K
h
a
r
a
g
p
u
r
]
 
A
t
:
 
1
2
:
1
3
 
1
1
 
A
p
r
i
l
 
2
0
1
1



366 S. BHARGAVA ET AL.

When performing a simultaneous maximization of two
objectives (SCCR and tensile strength), a Pareto-optimal
front of superior alloys was generated (Fig. 3) using
a multi-objective hybrid optimization software package
[14] and polynomial radial basis functions based response
surfaces. For comparison purposes, also shown are
results obtained with a commercially available constrained
Indirect Optimization based upon SelfOrganization (IOSO)
algorithm [26]. IOSO is a semi-stochastic, multi-objective
optimization algorithm incorporating certain aspects of
a selective search on a continuously updated multi-
dimensional response surface created using Ivanenko’s
selforganizing principle [27, 28] and graph theory.
In Fig. 3, for comparison, commercial optimization

algorithm IOSO [26–28] predicted inferior properties (light
diamond symbols). In the left figure, each optimized alloy
was made with different concentrations of Cu, Mg and Zn
in addition to Al base. In each right figure, each alloy was
made with different concentrations of Cu, Mg, Zn and Mn
in addition to Al base. No thermal treatment (temper) was
involved in this optimization.
Although this initial data set was extremely small and

the data was not distributed evenly over the concentration

Figure 3.—Results of simultaneous hybrid optimization of 2 objectives (P1
= SCCR and P2 = tensile strength) by varying concentrations of 3 alloying
elements (top figure) and 4 alloying elements (bottom figure). Initial data set
had 41 alloys.

ranges, both optimization algorithms were able to solve
the multi-objective optimization problem. With more
initial experimental data and/or better distribution of their
concentrations, it should be possible to obtain more accurate
optimization results.

Optimization of aluminum-based alloys using 57

alloys including temper

For this reason, a few more experimentally evaluated
aluminum alloys of 2xxx, 6xxx and 7xxx series were
found in the open literature and added to the original
data set of 41 alloys thus creating a data set that had 57
experimentally evaluated alloys. In addition, each of these
57 alloys was thermally treated using a particular standard
thermal protocol. Table 1 shows for each of the 57 alloys
the concentrations of the four leading alloying elements (X1
= Cu, X2 = Zn, X3 = Mg, X4 = Mn), thermal treatment
code number (X12), experimentally evaluated SCCR factor
(A = 100, B = 75, C = 50, D = 25), and their respective
maximum tensile stress and maximum yield stress. There
were 28 different thermal protocols used in this set of 57
alloys.
Since temper (thermal treatment protocols) in the open

literature is specified with a letter and a number, they had to
be converted into numerical values in order to treat temper
as an additional variable that should be optimized. Table 2
depicts the numerical values that were assigned to each of
the thermal treatment protocols used for 57 aluminum alloys
depicted in Table 1.
Results of this multi-objective optimization of aluminum

alloys that were based on an initial data set of experimental
values for 57 such alloys that belong to 2xxx, 6xxx and
7xxx series (where each of these 57 alloys was also
subjected to a standard temper out of a total of 28 different
tempers – see Table 2) suggest that the best trade-off next
generation Al-based alloys (those having simultaneously
high stress corrosion cracking resistance (SCCR), high
tensile strength, and high yield strength) will have to
incorporate an unusually high concentration of Cu. From
practical experience with Al-based alloys, it is known
that high concentrations of Cu will make it harder to
manufacture such alloys and will probably negatively affect
SCCR.
So, the question is: Why did the powerful proven

multi-objective design optimization software predict alloys
with unusually high concentrations of Cu and/or Zn? The
possible answers are:

Inadequate Size of the Initial Data Set
From open literature resources available, a data set of

57 Al-based alloys was compiled that contains chemical
concentrations for four alloying elements (Cu, Mg, Zn,
Mn) so that the sum of their respective concentrations by
weight and the concentration of aluminum in such alloys
amounts to 100 percent. This initial data set for the Al-based
alloys of 2xxx, 6xxx and 7xxx series with tempers and the
three properties (SCCR, tensile strength, yield strength) that
were compiled from the open literature sources is extremely
small. That is, when performing optimization where there
are three simultaneous objectives and five design variables
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STRESS CORROSION CRACKING RESISTANT ALUMINUM ALLOYS 367

Table 1.—Concentrations, tempers, and values of three objectives for the 57 experimentally evaluated aluminum alloys of 2xxx, 6xxx, and 7xxx series used for
creating response surfaces.

P1 P2 P3
X1 X2 X3 X4 X12 Tensile Yield
% % % % Temper SCCR strength strength Actual Actual

No. Alloy Cu Zn Mg Mn Code Code [Mpa] [Mpa] Temper SCCR

1 2011 5�5 0�3 0 0 3 25 380 295 T3 D
2 2011 5�5 0�3 0 0 20 25 405 310 T8 D
3 2014 4�45 0�25 0�6 0�8 7 50 425 290 T4 C
4 2014 4�45 0�25 0�6 0�8 11 50 485 415 T6 C
5 2024 4�35 0�25 1�5 0�6 2 50 485 345 T3 C
6 2024 4�35 0�25 1�5 0�6 11 25 475 395 T6 D
7 2024 4�35 0�25 1�5 0�6 4 50 470 325 T351 C
8 2024 4�35 0�25 1�5 0�6 7 50 470 325 T4 C
9 2024 4�35 0�25 1�5 0�6 5 50 495 395 T361 C
10 2124 4�35 0�25 1�5 0�6 25 75 490 440 T851 B
11 2218 4 0�25 1�5 0�2 12 50 405 305 T61 C
12 2218 4 0�25 1�5 0�2 15 50 330 255 T72 C
13 2219 6�3 0�1 0�02 0�3 3 50 360 250 T31 C
14 2219 6�3 0�1 0�02 0�3 4 50 360 250 T351 C
15 2219 6�3 0�1 0�02 0�3 6 50 395 315 T37 C
16 2219 6�3 0�1 0�02 0�3 21 75 455 350 T81 B
17 2219 6�3 0�1 0�02 0�3 25 75 455 350 T851 B
18 2219 6�3 0�1 0�02 0�3 11 100 470 345 T6 A
19 2219 6�3 0�1 0�02 0�3 28 75 475 395 T87 B
20 2618 2�3 0�1 1�55 0 12 50 440 370 T61 C
21 6005 0�1 0�1 0�5 0�1 9 100 260 240 T5 A
22 6009 0�375 0�25 0�6 0�5 7 100 235 130 T4 A
23 6010 0�375 0�25 0�8 0�5 7 100 255 170 T4 A
24 6061 0�275 0�25 1 0�15 7 75 240 145 T4 B
25 6061 0�275 0�25 1 0�15 8 75 240 145 T451 B
26 6061 0�275 0�25 1 0�15 11 100 310 275 T6 A
27 6061 0�275 0�25 1 0�15 14 100 310 275 T651 A
28 6063 0�1 0�1 0�675 0�1 1 100 150 90 T1 A
29 6063 0�1 0�1 0�675 0�1 7 100 170 90 T4 A
30 6063 0�1 0�1 0�675 0�1 9 100 185 145 T5 A
31 6063 0�1 0�1 0�675 0�1 11 100 240 215 T6 A
32 6063 0�1 0�1 0�675 0�1 22 100 255 240 T83 A
33 6063 0�1 0�1 0�675 0�1 23 100 205 185 T831 A
34 6063 0�1 0�1 0�675 0�1 24 100 290 270 T832 A
35 6066 0�95 0�25 1�1 0�85 7 75 360 205 T4 B
36 6066 0�95 0�25 1�1 0�85 8 75 360 205 T451 B
37 6066 0�95 0�25 1�1 0�85 11 75 395 360 T6 B
38 6066 0�95 0�25 1�1 0�85 14 75 395 360 T651 B
39 6070 0�275 0�25 0�85 0�7 7 75 315 170 T4 B
40 6070 0�275 0�25 0�85 0�7 11 75 380 350 T6 B
41 6201 0�1 0�1 0�75 0�03 21 100 330 310 T81 A
42 6351 0�1 0�2 0�6 0�6 11 100 310 285 T6 A
43 6463 0�2 0�05 0�675 0�05 1 100 150 90 T1 A
44 6463 0�2 0�05 0�675 0�05 9 100 185 145 T5 A
45 6463 0�2 0�05 0�675 0�05 11 100 240 215 T6 A
46 7005 0�1 4�5 1�4 0�45 10 75 393 345 T53 B
47 7039 0�1 4 2�8 0�1 13 25 450 380 T64 D
48 7049 1�55 7�7 2�45 0�2 16 25 517 448 T73 B
49 7050 2�3 6�2 2�25 0�1 19 50 550 490 T76 C
50 7050 2�3 6�2 2�25 0�1 18 75 510 450 T74 B
51 7075 1�6 5�6 2�5 0�3 11 25 570 505 T6 D
52 7075 1�6 5�6 2�5 0�3 16 100 505 435 T73 A
53 7075 1�6 5�6 2�5 0�3 18 75 505 435 T74 B
54 7075 1�6 5�6 2�5 0�3 19 50 511 442 T76 C
55 7075 1�6 5�6 2�5 0�3 14 50 570 505 T651 C
56 7175 1�6 5�6 2�5 0�1 18 75 524 455 T74 B
57 7178 2 6�8 2�75 0�3 19 50 570 505 T76 C

(four concentrations plus one temper), typically, an initial
data set should have involved at least 2∗A∗A∗�1 + P� =
2∗5∗5∗�1 + 2� = 150 alloys instead of 57 alloys that were
available in the open literature. In case of sparse data, one

possible alternative would be to use some standard data
mining techniques as it was done in a recent work that
creatively attempted it in conjunction with evolutionary
multi-objective optimization [30]. Genetic programming
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Table 2.—Numerical values assigned to each of the 28 tempers used for any
of the 57 aluminum alloys utilized in this alloy design optimization exercise.

Temper T1 T3 T31 T351 T361 T37 T4 T451 T5 T53
Value 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Temper T6 T61 T64 T651 T72 T73 T736 T74 T76
Value 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0

Temper T8 T81 T83 T831 T832 T851 T8510 T8511 T87
Value 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0

Table 3.—Results of optimization of a single objective (SCCR) by varying
concentrations of 3 and 4 alloying elements and values of temper.

Cu
%

Zn
%

Mg
%

Mn par
% Temper SCCR

Tensile
strength
[MPa]

Yield
Strength
[MPa]

0.1 0.05 0.184 N/A T31 100 N/A N/A
0.1 4.543 0.0 0.771 T83 100 N/A N/A

combined with ANNs could be another possible approach
to deal with this challenge [30].
In addition, each of the 57 alloys has more than four

alloying elements besides aluminum. However, we have

chosen not to take more than three or four alloying elements
(besides aluminum) into account when optimizing their
respective concentrations by weight. This might have been a
mistake as those alloying elements that have been neglected
obviously have an influence on the three objectives: SCCR,
tensile strength, and yield strength. The objective function
spaces (the topologies of the response surfaces for the three
objective functions) do not have to be smooth. Actually,
yielding of Aluminum alloys often exhibits highly non-
linear behavior as discussed in a recent publication using
an evolution criterion [31].

Inadequate Distribution of the Initial Data Set

However, probably the most serious insufficiency of this
initial data set was the extreme non-uniformity of the
distribution of concentrations of the alloying elements. This
can be clearly seen from Fig. 6.
Fitting a multidimensional response surface over such

unevenly distributed support data points represents a
challenging task as such a response surface will almost
definitely have significantly large errors, especially in the
areas where there is no information from the initial data set.

Figure 4.—Results of simultaneous optimization of 2 objectives (P1 = SCCR and P2 = tensile strength) by varying values of temper and concentrations of 3
alloying elements (left) and 4 alloying elements (right). Initial data set had 57 alloys.

Figure 5.—Results of simultaneous optimization of 2 objectives (P1 = SCCR and P3 = yield strength) by varying values of temper and concentrations of 3
alloying elements (left) and 4 alloying elements (right).
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Figure 6.—Distributions of concentrations for Cu, Zn, and Mg in the initial
set of 57 experimentally tested Al-based alloys. Units of concentration in all
figures and tables are mass of the alloying element in the alloying mixture
divided by the mass of the entire mixture.

There could also be a significant degree of interaction
among variables in the decision space. A simple method to
check this out was published very recently [32].

Oscillations in the Response Surface Due to Inadequate
Distribution of the Initial Data Set
Multidimensional response surface is nothing more than a

five-dimensional (because of the four alloying elements plus
temper that are considered as design variables) interpolation
of very sparse data (only 57 high fidelity or support points).
It is well known that even when fitting a spline of the
type y = y�x� through a number of y-values will result in
oscillations of the spline if the x-values are highly unevenly
distributed. This same phenomenon (oscillatory behavior

Table 4.—Temper codes for 27 different tempers used among 57 initial alloys.

Temper T1 T3 T31 T351 T361 T37 T4 T451 T5 T53
Value 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Temper T6 T61 T64 T651 T72 T73 T74 T76
Value 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0

Temper T8 T81 T83 T831 T832 T851 T8510 T8511 T87
Value 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0

of the fitted hyper-surface) was observed in the Pareto
optimized results for this set of Al-based alloys. That is,
our algorithm for generating the multi-dimensional hyper-
surfaces apparently makes these surfaces oscillatory just
like other known algorithms are doing in cases when the
distribution of the support points is extremely uneven, as is
the case in our initial data set (Fig. 1).

Mixture of Real Values and Integers as Design Variables
In this multiobjective optimization problem, the problem

is that one has to deal with concentrations of either three
or four alloying elements (treated as real numbers) and
with code numbers assigned to different thermal treatment
protocols (treated as integers). Most optimization algorithms
treat all design variables as real numbers and then, at the
end of the optimization cycle, round the optimized values to
nearest integers. Other optimization algorithms work with a
binary system which is an integer system to represent any
real variables. This approach is beneficial in all evolutionary
optimization algorithms where crossover of chromosomes
is a required step since it is much easier to perform
the crossover at prespecified values of the chromosome
elements than at the prespecified values of the actual
design variables. In our hybrid multiobjective optimization
algorithm, currently all design variables are treated as
real numbers. Thus, when incorporating thermal treatment
protocols as an additional design variable, although they
vary as assigned integers, they were treated as real numbers.
Consequently, in the final optimized results, the optimized
values of codes for the thermal treatment protocols turned
out to be real numbers which then had to be rounded-off
to the nearest integer code number. This can also influence
the optimized values of other design variables (optimized
concentration values of alloying elements).
Consequently, a few parameters in the response surface

generation algorithm were adjusted to minimize oscillations
of the response surface. In addition, the total number of
tempers considered was reduced to 27 instead of 28 because
T736 was now treated at T74. Thus, the new assignment of
code numbers to different tempers used was as follows (see
Tables 4 and 5 and Fig. 7).
Then, the same optimization tasks were repeated while

accounting for these minor alterations.
When comparing these new results (Fig. 7) against the

Pareto optimized results reported in Fig. 4, one can see
that the new Pareto front envelopes the initial data more
closely. However, notice that for high SCCR alloys the
newly suggested concentrations of Cu and Zn are now in
the widely accepted range (Tables 6 and 7).
When comparing these new results (Fig. 8) against the

Pareto optimized results reported in Fig. 5, one can see

Table 5.—Results of a single-objective optimization for P1 = SCCR using 3 and 4 design variables
(X1, X2, X3, X4) and one extra design variable (X12 = temper) which varied from 1 to 27.

X1 X2 X3 X4 X12 P1 P2 P3 X5
Cu Zn Mg Mn Temper SCCR Tensile Yield Al

0.74956 2.02219 N/A 0.325 27 100 257.916 238.76 96.9033
0.38206 1.49512 0.36315 0.20558 25 100 256.81 237.922 97.5541
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Figure 7.—Results of simultaneous optimization of two objectives (P1 = SCCR and P2 = tensile strength) by varying values of temper and concentrations of
3 alloying elements (left) and 4 alloying elements (right). These results (partial data shown in Tables 6 and 7) were obtained with a modified response surface
method and 57 initial alloys. It should be compared to results in Fig. 4.

Table 6.—Results of simultaneous optimization of 2 objectives (P1 = SCCR and P2 = tensile strength)
using 3 design variables (X1, X2, X3) and one extra design variable (X12 = temper).

X1 X2 X3 X4 X12 P1 P2 P3 X5
Cu Zn Mg Mn Temper SCCR Tensile Yield Al

1.10069 0.7902 0.25042 0.325 27 100 258.181 239.007 97.5337
1.06698 1.26882 1.01639 0.325 20 99.9888 272.28 248.507 96.3228
0.74485 1.47754 1.50297 0.325 17 99.537 307.726 272.274 95.9496
1.16716 2.34806 1.34523 0.325 18 97.4006 314.59 278.976 94.8145
1.06144 2.35756 1.44083 0.325 17 93.9808 327.674 289.31 94.8152

Table 7.—Results of simultaneous optimization of 2 objectives (P1 = SCCR and P2 = tensile strength) using 4 design
variables (X1, X2, X3, X4) and one extra design variable (X12 = temper).

X1 X2 X3 X4 X12 P1 P2 P3 X5
Cu Zn Mg Mn Temper SCCR Tensile Yield Al

0.55826 2.37353 0.13541 0.45959 25 99.9984 305.476 280.973 96.4732
2.36293 2.31366 0 0.66913 27 98.7213 318.794 292.557 94.6543
2.61489 1.63181 0.09406 0.57119 26 94.8363 346.852 316.437 95.088
2.56317 1.8821 0.18641 0.67268 27 90.0923 380.694 345.848 94.6956
2.74757 2.53814 0.16946 0.65579 26 86.0949 409.126 370.25 93.889
2.69177 3.49744 0.29233 0.60034 27 80.2857 451.799 407.042 92.9181
2.55594 0.82201 0.58157 0.6504 26 78.3398 465.626 419.013 95.3901

Figure 8.—Results of simultaneous optimization of 2 objectives (P1 = SCCR and P3 = yield strength) by varying values of temper and concentrations of 3
alloying elements (left) and 4 alloying elements (right). These results were obtained with a modified response surface method and 57 initial alloys. It should be
compared to results in Fig. 5.

that the new Pareto front envelopes the initial data more
closely. The resulting optimized concentrations of Cu and
Zn for high SCCR alloys were now in the widely accepted
range.

In conclusion, our minor modifications to the existing
initial data set and to the response surface algorithm resulted
in an overly conservative Pareto front estimate, although
the predicted optimal values of Cu and Zn were now in
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Table 8.—Initial set of 46 (series 2xxx, 6xxx, and 7xxx) Al-based alloys that do not use T8xx tempers.

X1 X2 X3 X4 X12 P1 P2 P3

Alloy
Cu
%

Zn
%

Mg
%

Mn
% Temper SCCR

Tensile
strength

Yield
strength

Actual
temper

2011 5�5 0�3 0 0 2 25 380 295 T3
2014 4�45 0�25 0�6 0�8 7 50 425 290 T4
2014 4�45 0�25 0�6 0�8 11 50 485 415 T6
2024 4�35 0�25 1�5 0�6 2 50 485 345 T3
2024 4�35 0�25 1�5 0�6 11 25 475 395 T6
2024 4�35 0�25 1�5 0�6 4 50 470 325 T351
2024 4�35 0�25 1�5 0�6 7 50 470 325 T4
2024 4�35 0�25 1�5 0�6 5 50 495 395 T361
2218 4�0 0�25 1�5 0�2 12 50 405 305 T61
2218 4�0 0�25 1�5 0�2 15 50 330 255 T72
2219 6�3 0�1 0�02 0�3 3 50 360 250 T31
2219 6�3 0�1 0�02 0�3 4 50 360 250 T351
2219 6�3 0�1 0�02 0�3 6 50 395 315 T37
2219 6�3 0�1 0�02 0�3 11 100 470 345 T6
2618 2�3 0�1 1�55 0 12 50 440 370 T61
6005 0�1 0�1 0�5 0�1 9 100 260 240 T5
6009 0�375 0�25 0�6 0�5 7 100 235 130 T4
6010 0�375 0�25 0�8 0�5 7 100 255 170 T4
6061 0�275 0�25 1 0�15 7 75 240 145 T4
6061 0�275 0�25 1 0�15 8 75 240 145 T451
6061 0�275 0�25 1 0�15 11 100 310 275 T6
6061 0�275 0�25 1 0�15 14 100 310 275 T651
6063 0�1 0�1 0�675 0�1 1 100 150 90 T1
6063 0�1 0�1 0�675 0�1 7 100 170 90 T4
6063 0�1 0�1 0�675 0�1 9 100 185 145 T5
6063 0�1 0�1 0�675 0�1 11 100 240 215 T6
6066 0�95 0�25 1�1 0�85 7 75 360 205 T4
6066 0�95 0�25 1�1 0�85 8 75 360 205 T451
6066 0�95 0�25 1�1 0�85 11 75 395 360 T6
6066 0�95 0�25 1�1 0�85 14 75 395 360 T651
6070 0�275 0�25 0�85 0�7 7 75 315 170 T4
6070 0�275 0�25 0�85 0�7 11 75 380 350 T6
6351 0�1 0�2 0�6 0�6 11 100 310 285 T6
6463 0�2 0�05 0�675 0�05 1 100 150 90 T1
6463 0�2 0�05 0�675 0�05 9 100 185 145 T5
6463 0�2 0�05 0�675 0�05 11 100 240 215 T6
7005 0�1 4�5 1�4 0�45 10 75 393 345 T53
7039 0�1 4�0 2�8 0�1 13 25 450 380 T64
7049 1�55 7�7 2�45 0�2 16 75 517 448 T73
7075 1�6 5�6 2�5 0�3 11 50 570 505 T6
7075 1�6 5�6 2�5 0�3 16 100 505 435 T73
7075 1�6 5�6 2�5 0�3 14 50 570 505 T651
7075 1�6 5�6 2�5 0�3 16 100 505 435 T73
7175 1�6 5�6 2�5 0�1 17 75 525 455 T736
7175 1�6 5�6 2�5 0�1 18 50 550 505 T74
7178 2�0 6�8 2�75 0�3 19 50 570 505 T76

the widely accepted range. Similarities in Fig. 8 suggest
that yielding of Al alloys follow some unique behavior. An
excellent work was carried out recently [31] using evolution
criteria to address this issue.

Optimization results using 46 alloys that did not

have T8xx class tempers

After eliminating all alloys that had thermal treatment
protocols that belong to T8xx class of tempers (see yellow
colored tempers in Table 1 of temper codes listed earlier),
there were only 46 Al-based alloys left in the initial data
set. They are given in Table 8.
Also note that there are now only 19 different tempers

considered since T736 became temper 17, T74 became
temper 18, and T76 became temper 19 in Table 4. It should
be pointed out that now there are 4 design variables (X1,

X2, X3, X4) that are real numbers and one design variable
(X12 = temper code) that is integer. There is also the
fifth design variable (X5 = concentration of aluminum), but
it is treated as a constraint, that is, X5 = 100 − �X1 +
X2 + X3 + X4�. It means that, for example, for the first
point of data set X1 = 5.5, X2 = 0.3, X3 = 0, X4 = 0.

Table 9.—Results of optimization of a single objective (P1 = SCCR) by
varying concentrations of 3 and 4 alloying elements and values of temper
(X12), while excluding any alloys with T8xx tempers.

X1 X2 X3 X4av X5 X12 P1

1.68005 7.241 0.51393 N/A 90.56502 8 100
0.23737 0.05 0.66061 0.35435 98.69767 11 100
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Figure 9.—Results of simultaneous optimization of 2 objectives (P1 = SCCR and P2 = tensile strength) by varying values of temper and concentrations of 3
alloying elements (left) and 4 alloying elements (right) using a data set with 46 alloys (none with T8xx class of tempers). These results (partial data shown in
Tables 10 and 11) were obtained with a modified response surface method and should be compared to results in Fig. 7.

Figure 10.—Results of simultaneous optimization of 2 objectives (P1 = SCCR and P3 = yield strength) by varying values of temper and concentrations of 3
alloying elements (left) and 4 alloying elements (right) using a data set with only 46 alloys (none with T8xx class of tempers). These results (partial data shown
in Tables 12 and 13) were obtained with a modified response surface method and should be compared to results in Fig. 8.

Hence, the remaining concentration will be this of the
base metal (aluminum), which in this case is X5 = 100 −
�5�5+ 0�3+ 0+ 0� = 94�2. This means that one can define
X5 for current values of X1, X2, X3, and X4 including
optimization procedure. Thus, in this formulation, there are
5 independent design variables (X1, X2, X3, X4, and X12)
and one dependent variable (X5). As a result, approximation
functions (response surfaces) were built using (X1, X2,
X3, X4, and X12), optimization was performed using these
functions, and then X5 was defined for current point. For
the test cases with 3 alloying elements, X5 = �100 −
X4initial� − �X1 + X2 + X3� optimized was used. This
means that each value X5 can be defined for each point of
the data set (for example, for first point it is X5 = 94�2,
which is the same value obtained for test cases when X4
is included as a design variable). Thus, X5 was not used
for building approximation functions (response surfaces).
Instead, X5 (concentration of aluminum) was defined for
each current value (X1, X2, X3, X4) during optimization
procedure.

Table 9 and Fig. 9 show the results of optimization runs
based on an initial data set having only 46 alloys, where
none of these alloys was subjected to T8xx class of temper.
From Figs. 9 and 10 (and Tables 10–13), it is again

evident that by involving more alloying elements in the
optimization process, better performing alloys can be
developed.

Table 10.—Results of simultaneous optimization of 2 objectives (P1 = SCCR
and P2 = tensile strength) using 3 design variables (X1, X2, X3) and one extra
design variable (X12 = temper). Initial data had only 46 alloys, none of which
used any of the T8xx class tempers.

X1 X2 X3 X4av X5 X6 P1 P2

4.86052 7.7 2.8 0.354348 84.28513 14 52 580.807
4.309192 7.7 2.693342 0.354348 84.94312 15 55 578.659
2.768017 6.580344 2.477758 0.354348 87.81953 14 62 569.371
1.678668 5.680418 2.49579 0.354348 89.79078 16 97 511.196
1.674659 5.676813 2.495771 0.354348 89.79841 16 98 510.791
1.638711 5.645006 2.495338 0.354348 89.8666 16 99 507.488
1.626474 5.63446 2.495051 0.354348 89.88967 16 100 506.561
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Table 11.—Results of simultaneous optimization of 2 objectives (P1 = SCCR
and P2 = tensile strength) using 4 design variables (X1, X2, X3, X4) and one
extra design variable (X12 = temper). Initial data had only 46 alloys, none of
which used any of the T8xx class tempers.

X1 X2 X3 X4 X5 X12 P1 P2

6.3 7.7 0 0.85 85.15 19 71 671.902
0.1 7.7 0 0.85 91.35 19 89 560.097
0.1 7.7 0 0.59349 91.6065 19 92 519.098
0.1 7.7 0 0.55800 91.6419 19 93 514.824
0.1 4.4336881 0 0.40656 95.0597 19 100 419.644
0.53313 4.0262615 0 0.34763 95.0929 19 100 409.899
0.97974 2.9725843 0 0.41114 95.6365 19 100 398.993

Table 12.—Partial results of simultaneous optimization for two objectives
(P1 = SCCR and P3 = yield strength) using 3 design variables (X1, X2, X3)
and one extra design variable (X12 = temper). Initial data had only 46 alloys,
none f which used any of the T8xx class tempers.

X1 X2 X3 X4av X5 X12 P1 P3

0.10003 5.02348 0.25116 0.35435 94.2709 6 87 500
0.11300 4.13551 0 0.35435 95.3971 5 89 500
0.17428 0.95443 0 0.35435 98.5169 8 100 500
0.24298 1.25978 0.00578 0.35435 98.1371 17 100 500
0.35625 0.99193 0.02207 0.35435 98.2754 16 100 500
0.18075 1.28627 0.03790 0.35435 98.1407 17 100 500
0.40153 0.79242 0.05421 0.35435 98.3975 15 100 500
1.6 5.6 2.5 0.35435 89.9456 16 100 435

Table 13.—Partial results of simultaneous optimization for 2 objectives (P1
= SCCR and P3 = yield strength) using 4 design variables (X1, X2, X3, X4)
and one extra design variable (X12 = temper). Initial data had only 46 alloys,
none of which used any of the T8xx class tempers.

X1 X2 X3 X4 X5 X6 P1 P3

6.3 7.7 0 0.85 85.15 19 71 577.301
0.1 7.7 0 0.85 91.35 19 89 501.241
0.1 7.7 0 0.63671 91.5633 19 92 476.85
0.1 7.7 0 0.59025 91.6097 19 93 472.597
0.1 3.9261069 0 0.49766 95.4762 19 100 399.936

Conclusions

Based on these proof-of-concept optimization results
shown above (using 41 alloys without accounting for
temper, using 57 alloys accounting for all tempers actually
used, and using only 46 alloys with tempers that do not
include T8xx series), the following conclusions could be
drawn:

1. Initial data set must be enlarged if more trustworthy
numerical results are to be obtained. Specifically, at
least 10 additional alloys need to be manufactured and
tested experimentally (after appropriate tempers have
been applied). Each of these new alloys should be made
having concentrations of the alloying elements that cover
the previously not covered domain of concentrations.
Compositions (concentrations of each of the alloying
elements) and temper for each of these 10 new alloys
should be determined using the results of the Pareto
optimization process presented in this work.

2. Multidimensional response surface generation of the
three objective functions (SCCR, maximum tensile
strength, and maximum yield strength) should be further
improved in order to minimize oscillations of such hyper-
surfaces when utilizing non-uniformly distributed scarce
data of experimentally tested alloys.

3. Some of the macroscopic properties of the alloys that
were chosen to be extremized might be progressively
similarly depended on more than one of the alloying
element. In other words, there could be a linear
dependency between two design variables thus making
one of them redundant as the design variable. Although
we have not included an algorithm for detecting such
possibilities in this work, such algorithms exist and can
be useful in reducing the overall computing time effort.

4. In case of sparse data one possible alternate would be to
use some standard data mining techniques in conjunction
with evolutionary multiobjective optimization. Genetic
programming could be another possible approach to
address this problem.
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