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Abstract

In this paper, we propose a multilevel approach based on our previously developed hybrid optimizer to solve double-diffusive fluid-

flow problems in the presence of magnetic body forces. The problem consists in a square cavity subjected to a thermosolutal flow where

the patterns of the isoconcentration lines are prescribed. Thus, the optimization problem is formulated in terms of the magnetic

boundary conditions that must induce such a prescribed concentration profile. The optimizer is based on several deterministic and

evolutionary techniques with automatic switching among them, combining the best features of each one. This code was validated against

transient benchmark results for thermosolutal problems.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The objective of this work is to explore the feasibility of
a concept of specifying a desired pattern of concentration
distribution of impurities, dopants or micro-particles in
liquids undergoing thermo-circulation. For example, when
growing single crystals from a melt, it is desirable that any
impurities that originate from the walls of the crucible do
not migrate into the mushy region and consequently
deposit in the crystal. On the other hand, it is highly
desirable to achieve a distribution of dopants in the crystal
that is as uniform as possible [1,2]. Similarly, micro-
segregation results in the interdendritic spaces when
freezing a solute-enriched liquid. It does not constitute a
major quality problem of the cast part, since the effects of
micro-segregation can be removed during subsequent
soaking and hot working. Macro-segregation, on the other
hand, causes non-uniformity of composition in the cast
section on a larger scale [3]. Another example is in the
manufacturing of composites and functionally graded
e front matter r 2006 Elsevier Ltd. All rights reserved.
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materials when it would be highly desirable to have the
ability to manufacture composite parts with specified
distributions of concentration of micro-fibers or nano-
particles.
This de facto control of the distribution of a solute in a

thermo-convective flow could be achieved by applying
appropriate distributions of magnetic and/or electric fields
[4] acting on the electrically conducting fluid containing the
solute [5].
In this work, we will demonstrate the use of magnetic

fields only. Then, the task is to determine the proper
strengths, locations, and orientations of magnets that will
have to be placed along the boundaries of the container so
that the resulting magnetic forces will create such a thermo-
convective motion of the fluid that will create the solute
concentration pattern that coincides with the specified
(desired) pattern of the micro-particle distribution.
Mathematical models for the combined electro-magneto-

hydro-dynamics (EMHD) became available only recently
[6,7]. Numerical simulation using these advanced models is
still impossible because of the unavailability of the large
number of physical properties that still need to be
evaluated experimentally. Consequently, the complete
EMHD model has traditionally been divided into two
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Nomenclature

Bx magnetic flux component in x-direction
By magnetic flux component in y-direction
C concentration of the solute
CP specific heat at constant pressure
D mass diffusion coefficient of the solute
g acceleration of the gravity
Gr Grashoff number
GrS solute Grashoff number
h enthalpy per unit mass
H height of the cavity
k thermal conductivity
Le Lewis number
N buoyancy ratio N ¼ GrS=Gr

p pressure
Pr Prandtl number
Sc Schmidt number
t time
T temperature

u velocity component in x-direction
v velocity component in y-direction
W width of the cavity
x, y Cartesian coordinates

Greek letters

a thermal diffusivity
aS mass diffusivity
b thermal expansion coefficient (40)
bS solute expansion coefficient (o0)
m dynamic fluid viscosity
mm magnetic permeability
s electric conductivity
n kinematic viscosity n ¼ ~m=r
r fluid density

Subscripts

0 reference value
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sub-models [8,9]: (a) magneto-hydro-dynamics (MHD)
that models incompressible fluid flows under the influence
of an externally imposed magnetic field, while neglecting
any electric fields and electrically charged particles, and (b)
electro-hydro-dynamics that models the incompressible
fluid flows under the influence of an externally imposed
electric field, while neglecting any magnetic fields. These
simplified analytical sub-models have recently been used to
numerically demonstrate the feasibility of solving inverse
problems in thermo-convection involving optimized mag-
netic and electric fields. That is, this novel manufacturing
concept involves the numerical solution of MHD model
and application of a constrained optimization algorithm
that is capable of automatically determining the correct
strengths, locations, and orientations of a finite number of
magnets that will produce the magnetic field force pattern
that will create the specified concentration pattern in the
fluid.

2. General system of equations

The physical problem considered here involves the
laminar MHD natural convection of an incompressible
Newtonian fluid. The fluid physical properties are assumed
constant. The energy source term resulting from viscous
dissipation is neglected and buoyancy effects are approxi-
mated by the Oberbeck–Boussinesq hypothesis. Radiative
heat transfer, Soret and Dufour effects are neglected. The
modifications to the Navier–Stokes equations for the
MHD fluid flow with heat transfer come from the
electro-magnetic force on the fluid where all induced
electric field terms have been neglected [6–9]. Then, the
Navier–Stokes and the Maxwell equations for the MHD
model can be written, for the Cartesian coordinate
system as

qQ

qt
þ

qE

qx
þ

qF

qy
¼ S, (1)

Q ¼ lf, (2a)

E ¼ luf� � G
qf���

qx
, (2b)

F ¼ lvf�� � G
qf���

qy
. (2c)

The values of S, l, f, f*, f**, f*** and G are given in
Table 1 for the equations of conservation of mass, species,
x-momentum, y-momentum, energy, magnetic flux in the
x-direction and magnetic flux in the y-direction.
Note that we used the Oberbeck–Boussinesq approx-

imation for the variation of the density with temperature
and concentration in the y-momentum conservation
equation. Also note that in the energy conservation
equation, the term CPT was replaced by the enthalpy, h,
per unit mass. This is useful for problems dealing with
phase change where we could use the enthalpy method [10].
The above equations were transformed from the physical
Cartesian (x, y) coordinates to the computational coordi-
nate system (x, Z) and solved by the finite volume method.
The SIMPLEC method [11] was used to solve the
velocity–pressure coupling problem. The WUDS interpola-
tion scheme [12] was used to obtain the values of u, v, h, Bx

and By as well as their derivatives at the interfaces of each
control volume. The resulting linear system was solved by
the GMRES method [13].
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Table 1

Parameters for the Navier–Stokes and Maxwell equations

Conservation of l f f* f** f*** G S

Mass r 1 1 1 1 0 0

Species r C C C C D 0

x-momentum r u u u u m
�
qp

qx
�

By

mm

qBy

qx
�

qBx

qy

� �

y-momentum r v v v v m
�

qp

qy
� rg½1� bðT � T0Þ � bSðC �C0Þ�

þ
By

mm

qBy

qx
�

qBx

qy

� �

Energy r h h h T K CP

sm2m

qBy

qx
�

qBx

qy

� �2

Magnetic x-flux 1 Bx 0 Bx Bx
1

mms
qðuByÞ

qy

Magnetic y-flux 1 By By 0 By
1

mms
qðvBxÞ

qx

Adiabatic and Impermeable Wall

Adiabatic and Impermeable Wall

T1 Binary Flow
C1

T2
C2

Fig. 1. Geometry and boundary conditions for the thermosolutal analysis

problem.
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3. Validation of the analysis code for a transient

thermosolutal flow with no phase change

The MHD analysis code was validated against available
analytical and experimental benchmark test cases. They
involved forced convection in regular [14] and irregular
channels [15], natural convection in regular and irregular
cavities [16], forced convection in the presence of magnetic
fields (Pouiseuille–Hartmann Flow), phase change in heat
conduction and heat convection problems, natural convec-
tion in the presence of magnetic fields [17] and steady-state
cooperating thermosolutal convection in enclosures [5].

In order to validate the code for the problem involving
the transient cooperating thermosolutal convection in
enclosures, we compared the present results with numerical
results obtained by Gobin and Bennacer [18,19]. In this
problem, the flow is driven by two kinds of body forces:
one due to thermal buoyancy in the y-momentum
conservation equation and the other due to the concentra-
tion buoyancy in the y-momentum conservation equation.

The problem considered by Gobin and Bennacer was a
rectangular cavity having height H and width W as shown
in Fig. 1. Different, but uniform, temperatures T1 and T2

and concentrations C1 and C2 are specified at the two
vertical walls. Zero heat and mass fluxes are assumed at the
top and bottom walls of the enclosure and no-slip dynamic
boundary conditions are imposed at all four walls.

The following non-dimensional parameters were used in
Gobin and Bennacer’s work:

Grashoff number Prandtl number

Gr ¼ gbDTH3

n2 ; Pr ¼ n
a ;

(3a,b)
Solute Grashoff number Schmidt number

GrS ¼
gbSDCH3

n2 ; Sc ¼ n
aS
; (4a,b)

Buoyancy ratio Lewis number

N ¼ GrS
Gr
; Le ¼ aS

a ;
(5a,b)

where

a ¼
k

rCP
; aS ¼

D

r
. (6a,b)

Gobin and Bennacer [18,19] used the following para-
meters for their test cases involving a square cavity: Pr ¼ 7,
Le ¼ 100, Gr ¼ 4� 105 and N ¼ 20. Since we are dealing
with the conservation equations in the dimensional form,
we chose the following dimensional quantities:
r ¼ 1000 kgm�3
 CP ¼ 4181.8 J kg�1K�1
k ¼ 0.597Wm�1K�1
 m ¼ 9.9933� 10�4 kgm�1 s�1
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Isoconcentration lines
Time (s)
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b ¼ 0.18� 10�3K�1
Streamlines
Time (s)

Current Results Gobin and Benn
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7400

 

8900

 

Fig. 2. Comparison between the cur

numerical results for the streamlines
D ¼ 1.4276� 10�6 kgm�1 s�1
Current Results Gobin and Bennacer 
T1 ¼ 20.5 1C
 T2 ¼ 19.5 1C

C1 ¼ 4.5 kgm�3
 C2 ¼ 5.5 kgm�3
H ¼ 305mm
 W ¼ 610mm
1700

  

2400

  

3200

  

7400

  

8900
The parameter bS was calculated using Eq. (4a) in order
to obtain N ¼ 20 for the given parameters above. In order
to obtain a cooperating thermosolutal flow, parameter b
was taken less than zero, in order to obtain N40, since
DT ¼ T22T1o0 and DC ¼ C2 � C140. The reference
quantities T0 and C0 were obtained as

T0 ¼
T1þT2

2
; C0 ¼

C1þC2

2 . (7a,b)

Figs. 2 and 3 show the comparisons between the
numerical results obtained using the present formulation
and our software and those obtained numerically by Gobin
and Bennacer for the streamlines, isotherms and iso-
concentration lines at different times. In all these figures,
DT ¼ 0:05K and DC ¼ 0:05 kgm�3. Although the valida-
tions are only qualitative, one can notice that the results
have a very good agreement, except for a little divergence
in the iso-concentration lines. A possible explanation is
that this minor difference arises from the fact that in Gobin
and Bennacer’s work, the grid had 64� 64 irregularly
spaced volumes, while in the present results it has 80� 80
irregularly spaced volumes. The time step used in the
present work was 0.005 s.
acer Current Results Gobin and Bennacer

   

   

   

   

   

Isotherms

rent and Gobin and Bennacer [18,19]

and isotherms.

  

Fig. 3. Comparison between the current and Gobin and Bennacer [18,19]

numerical results for the isoconcentration lines.
4. Multilevel hybrid optimizer

A hybrid optimization is a combination of the determi-
nistic and the evolutionary/stochastic methods, in the sense
that it utilizes the advantages of each of these methods. The
hybrid optimization method usually employs an evolu-
tionary/stochastic method to locate a region where the
global extreme point is located and then automatically
switches to a deterministic method to get to the exact point
faster. The hybrid optimization method used here is quite
simple conceptually, although its computational imple-
mentation is more involved. The global procedure is
illustrated in Fig. 4. It uses the concepts of four different
methods of optimization, namely: the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) quasi-Newton method [20], the
particle swarm method [21], the differential evolution
method [22] and the simulated annealing method [23].
In order to speed up the optimization task, a multilevel

approach is utilized, where the procedure illustrated in
Fig. 4 is repeated over several levels of grid refinement.
Thus, the optimization procedure starts with a very coarse
grid and it goes to a finer grid as the iteration continues. In
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Fig. 4. Global procedure for the hybrid optimization method.

LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3

Fig. 5. A multilevel optimization sequence.
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this paper, we used a four-level optimization approach.
Fig. 5 shows a different grid size used in each of the
optimization levels.

The driven module is the particle swarm method, which
performs most of the optimization task. The particle
swarm method is a non-gradient-based optimization
method created in 1995 by an electrical engineer (Russel
Eberhart) and a social psychologist (James Kennedy) [21]
as an alternative to the genetic algorithm methods. This
method is based on the social behavior of various species
and tries to equilibrate the individuality and sociability of
the individuals in order to locate the optimum of interest.
The original idea of Kennedy and Eberhart came from the
observation of birds looking for a nesting place. When the
individuality is increased, the search for alternative places
for nesting is also increased. However, if the individuality
becomes too high, the individual might never find the best
place. In other words, when the sociability is increased,
individuals learn more from their neighbor’s experience.
However, if the sociability becomes too high, all the
individuals might converge to the first place found
(possibly a local minimum).

In the particle swarm method, the iterative procedure is
given by

xkþ1
i ¼ xk

i þ vkþ1
i , (8a)
vkþ1
i ¼ avk

i þ br1i pi � xk
i

� �
þ br2i pg � xk

i

� �
, (8b)

where x
i
is the ith individual of the vector of parameters,

v
i
¼ 0, for k ¼ 0, r1i and r2i are random numbers with

uniform distribution between 0 and 1, p
i
is the best value

found for the vector x
i
, p

g
is the best value found for the

entire population, 0oao1; 1obo2
In Eq. (8b), the second term on the right-hand side

represents the individuality and the third term the
sociability. The first term on the right-hand side represents
the inertia of the particles and, in general, must be
decreased as the iterative process proceeds. In this
equation, the vector pi represents the best value ever found
for the ith component vector of parameters xi during the
iterative process. Thus, the individuality term involves the
comparison between the current value of the ith individual
xi and its best value in the past. The vector pg is the best
value ever found for the entire population of parameters
(not only the ith individual). Thus, the sociability term
compares xi with the best value of the entire population in
the past.
The differential evolution method [22] is an evolutionary

method based on Darwin’s theory of evolution of the
species. This non-gradient-based optimization method was
also created in 1995 as an alternative to the genetic
algorithm methods. Following Darwin’s theory, the
strongest members of a population will be more capable
of surviving under a certain environmental condition.
During the mating process, the chromosomes of two
individuals of the population are combined in a process
called crossover. During this process, mutations can occur,
which can be good (individual with a better objective
function) or bad (individual with a worse objective
function). The mutations are used as a way to escape from
local minima. However, their excessive usage can lead to a
non-convergence of the method.
The method starts with a randomly generated popula-

tion matrix P in the domain of interest. Thus, successive
combinations of chromosomes and mutations are per-
formed, creating new generations until an optimum value is
found.
The iterative process is given by

xkþ1
i ¼ d1xk

i þ d2½aþ F ðb� cÞ�, (9)

where x
i
is the ith individual of the vector of parameters, a,

b and c are three members of population matrix P,
randomly chosen, F is a weight function, which defines the
mutation (0.5oFo1), k is a counter for the generations, d

1

and d
2
are delta Dirac functions that define the mutation.

In this minimization process, if U(xk+1)oU(xk), then
xk+1 replaces xk in the population matrix P. Otherwise, xk

is kept in the population matrix.
The binomial crossover is given as

d1 ¼ 0; if RoCR;

1; if R4CR;
(10a,b)
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where CR is a factor that defines the crossover
(0.5oCRo1) and R is a random number with uniform
distribution between 0 and 1.

In the hybrid optimizer, when a certain percent of the
particles find a minimum, the algorithm switches auto-
matically to the differential evolution method and the
particles are forced to breed. If there is an improvement in
the objective function, the algorithm returns to the particle
swarm method, meaning that some other region is more
prone to having a global minimum. If there is no
improvement on the objective function, this can indicate
that this region already contains the global value expected
and the algorithm automatically switches to the BFGS
method in order to find its location more precisely. In
Fig. 4, the algorithm returns to the particle swarm method
in order to check if there are no changes in this location
and the entire procedure repeats itself. After some
maximum number of iterations is performed (e.g., five),
the process stops. Details of this hybrid optimizer as well of
other optimizers can be found in a recent tutorial [24].

5. Inverse problem of determining the unknown magnetic

field boundary conditions

In this paper, we deal with the inverse determination of
the magnetic boundary conditions that interact with
thermal buoyancy and create such a fluid flow that gives
some pre-specified concentration distribution of the solute
within some region. Fig. 6 shows the geometry and the
boundary conditions for the test cases considered here [5].
The height and length of the cavity were equal to 23mm.
The top and bottom walls were kept thermally insulated.
The left boundary was kept at a ‘‘hot’’ temperature and
low concentration of solute while the right wall was kept at
a ‘‘cold’’ temperature and high concentration of the solute.
There was no phase change, since the ‘‘hot’’ and ‘‘cold’’
temperatures were above the solidification temperature of
the fluid.

The four walls were subjected to unknown magnetic field
distributions whose directions were made orthogonal to
each wall. In order to satisfy the magnetic flux conservation
Adiabatic and Impermeable Wall, B4

Binary Flow

Adiabatic and Impermeable Wall, B3

T1
C1
B1

T2
C2
B2

Fig. 6. Geometry and boundary conditions for MHD-controlled thermo-

solutal problems.
equation

r � B ¼ 0, (11)

the following periodic conditions were imposed:

B1ðyÞ ¼ B2ðyÞ and B3ðxÞ ¼ B4ðxÞ. (12a,b)

The objective was to minimize the natural convection
effects by reducing the gradient of concentration along the
y-direction, thus attempting to obtain a concentration
profile similar to those obtained for pure conduction. The
objective function to be minimized is therefore formulated
as

F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

#cells

X#cells
i¼1

qCi

qyi

� �2

vuut . (13)

The magnetic field boundary conditions were discretized
at six points equally spaced along the x ¼ 0:0 and along
y ¼ 0:0 boundaries and interpolated using B-splines for the
other points at those boundaries. The magnetic boundary
conditions at x ¼ 23mm and y ¼ 23mm were then
obtained using periodic conditions from Eqs. (12a) and
(12b).
The physical properties were taken for molten silicon

[25] were used as
r ¼ 2550 kgm�3

k ¼ 64Wm�1K�1

CP ¼ 1059 J kg�1K�1

m ¼ 0.0032634 kgm�1 s�1

s ¼ 12.3� 105 1/mO
b ¼ 1.4� 10�4K�1

g ¼ 9.81m s�2

mm ¼ 1.2566� 10�5 TmA�1

Pr ¼ 0.054.
For the test case analyzed in this paper, we considered
thermosolutal convection, with
Gr ¼ 105

Le ¼ 2
GrS ¼ 5� 105

N ¼ 5.0
Sc ¼ 0.108
D ¼ 0.0302172 kgm�1 s�1.
The temperature difference T1�T2 was set equal to
10.0K, while the concentration difference C2�C1 was set
equal to 10.0 kgm�3.
Fig. 7 shows the velocity, temperature and concentration

profiles predicted for this test case without any magnetic
flux applied and no phase change.
Fig. 8 shows the velocity and temperature profiles

resulting from six optimized terms in the B-spline on each
boundary for the estimation of the magnetic boundary
conditions. Under the influence of the magnetic field,
the original single recirculation cell broke into two
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Fig. 7. Streamlines (a), magnetic flux lines (b), iso-concentration lines (c)

and isotherms (d) with no applied magnetic field (B ¼ 0).

Fig. 8. Streamlines (a), magnetic flux lines (b), iso-concentration lines (c)

and isotherms (d) resulting from magnetic flux B optimized at six points

per boundary.

0 5 10 15 20 25
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0.0E+0
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8.0E–2
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; B

y(
x

=
0)

 [
T

es
la

]

y=0

x=0

 

Fig. 9. Optimized magnetic boundary conditions at x ¼ 0 (triangles) and

y ¼ 0 (crosses) with the estimation of magnetic flux B at six points per

boundary.
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counter-rotating cells. One can see that the gradients of
concentration in the y-direction are reduced. Using more
design variables (B-spline control points) in the optimiza-
tion could create better results where the gradients of
concentration in the y-direction would be further reduced.
It is interesting to note that since Lewis number and the
buoyancy ratio N are both moderate, the curvatures of the
temperature profiles are also reduced. A further investiga-
tion of the reduction of the gradients of the concentration
profiles under strong thermosolutal convection is needed.
Fig. 9 shows the optimized magnetic field boundary

condition for x ¼ 0 and y ¼ 0. Notice that the strengths of
the required magnetic field are very small and could be
easily achieved with small permanent magnets. Fig. 10
shows the convergence history of the process of minimizing
the objective function (Eq. (13)) using the hybrid optimizer
with automatic switching among the optimization modules
for both the Single-Level Optimization [5] and for Multi-
Level Optimization. One can note that the optimum value
was found quite quickly in the iterative process in this
particular test case. In fact, the multilevel approach could
find the optimum faster than the single level approach. In
this case, only three levels (levels 0, 1 and 2 in the Fig. 5)
were required. The algorithm switched the levels after 10
iterations each in this case.
6. Conclusions

In this paper, we presented the results of a transient
MHD analysis code that is capable of dealing with
thermosolutal problems in enclosures. The code was
validated against analytical and numerical (benchmark)
results showing good agreement and was applied to test
cases involving steady-state optimization. The ability to
minimize the natural convection effects in problems with-
out phase change was demonstrated by determining an
optimized distribution of magnetic field along the bound-
aries of a container. A multilevel hybrid-constrained
optimization algorithm was used for reducing the concen-
tration gradients to those similar to pure conduction
problems. The multilevel optimization strategy proved to
be superior to the single-level approach by reducing the
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Fig. 10. Optimization convergence histories for the estimation of

magnetic flux B at six points per boundary.
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number of iterations required to reach the optimum as by
finding a lower value of the objective function.
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