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A practical approach to non-intrusive controf of clectrically conducting melt flow-fields and
heat transfer could be achieved by using externally applied magnetic and electric fields. This
approach can also be used to enhance the convective heat transfer. Computational methods
are needed to give us better understanding of this phenomena and its potential in practical
industrial processes. In addition, numerical simulation can be used together with optimization
to determine distributions of magnets and/or clectrodes on the walls of a container with an
electrically conducting fiuid so that the resulting Lorentz forces could affect the flow
throughout the domain or in desired regions only. so that desired thermal gradients could be
maintained and desired solid/melt interface topology could be created and preserved during
unsteady solidification.

Implicit numerical algorithms were developed and used in this research to integrate equa-
tions of classical magneto-hydro-dynamics and classical electro-hydro-dynamics. The algo-
rithms utilized finite volume method and a hybrid optimizer with automatic switching among
different optimization modules. Both algorithms were used to develop accurate computer
codes for prediction and optimization of solidification from a melt under the influence of ex-
ternally applied magnetic and electric fields. The objective was to find such distributions of
intensities of wall-mounted magnets and electrodes that will create desired features of the
flow-field or melt/solid interface topology. The computational results indicate significantly
different flow-field patterns and thermal fields in the melt and the accrued solid in the cases
of externally applied optimized magnetic and electric fields. This clearly suggests the possi-
bility of developing smart manufacturing protocols for creating objects that will have func-
tionally graded physical properties.
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NOMENCLATURE
b electric charge mobility " Ra Rayleigh number
B magnetic field vector t time
B, magnetic flux component in x-direction T temperature
B, magnetic flux component in y-direction u velocity component in x-direction
Cp specific heat at constant pressure v velocity component in y-direction
D, electric charge diffusion coefficient X,y Cartesian coordinates
E electric field vector Greek symbols
E. electric field component in x-direction B thermal expansion coefficient
£y  electric field component in y-direction € vacuum electric permittivity
f solid fraction in a fluid/solid mixture ¢ electric potential
g acceleration of the gravity 38 fluid viscosity
h enthalpy per unit mass U magnetic permeability
J total electric current density vector c electric conductivity
k thermal conductivity Subscripts
L latent heat of solidification/melting h hot surface
n partition coefficient in Sheil’s equation [Eq. (5)] c cold surface
p pressure 1 liquid value
q, local free electric charge per unit volume s solid value
need to be evaluated experimentally [Eringen and
1. INTRODUCTION Maugin, 1990; Ko and Dulikravich, 2000].

It has been well known that fluid flow, thus convec-
tive heat transfer, could be influenced if the electri-
cally conducting fluid is subjected to either magnetic
or electric or combined fields. This concept has been
used for decades in electromagnetic stirring of molten
metals, electrophoretic separation and filtration proc-
esses, magneto—hydro-dynamic and electro-hydro-dy-
namic pumping, etc. [Sabhapathy and Salcudean,
1990; Motakeff, 1990; Lee et al., 1991; Dulikravich et
al., 1993, 1994; Dulikravich and Ahuja, 1994; Dulik-
ravich, 1999; Dennis and Dulikravich, 2000; Fe-
doseyev et al., 2001]. However, mathematical models
allowing for detailed understanding of the interaction
of the electric, magnetic, thermal, gravitational, and
pressure fields have not been available until relatively
recently [Eringen and Maugin, 1990; Dulikravich and
Lynn, 1997ab; Ko and Dulikravich, 2000]. Numerical
simulation of such processes using these advanced
models is still unavailable because of the unavailabil-
ity of the large number of physical properties that still

Consequently, the complete electro-magneto-hydro-
dynamic (EMHD) model has been solved for only
simple problems. Actually, EMHD has traditionally
been divided into two overly simplified sub-models:
magneto-hydro—dynamics (MHD) and electro-hydro-
dynamics (EHD). MHD models incompressible fluid
flows under the influence of an externally imposed
magnetic field, while neglecting any electric fields and
electrically charged particles. EHD models incom-
pressible fluid flows under the influence of an exter-
nally imposed electric field, while neglecting any
magnetic fields.

These simplified analytical sub-models of the
EMHD have recently been used in the attempts to nu-
merically simulate separate MHD and EHD involving
heat transfer and in the attempts to demonstrate feasi-
bility of solving the inverse problems in convection
involving optimized magnetic and electric fields
[Dulikravich et al., 1994, 2003; Sampath and Zabaras,
2001; Dennis and Dulikravich, 2001, 2002; Colago
et al., 2003, 2004a.,b].
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2. MELTING/SOLIDIFICATION PHASE
CHANGE MODEL

In this paper we used the enthalpy method [Voller
et al., 1989] to deal with the phase change problem.
In this method, the energy equation appears as a
mixed enthalpy—-temperature equation. Thus, we must
obtain some relationship between the temperature and
the enthalpy to be used in the energy equation.

For the case of a binary alloy, if & < hgiy, we
have

h

T= (1)
CP.\'
or, if h > Miquid-
Tz(CI’I'CPx)Tx_L'*'h @)
Cpy

For the case of mixture, we have a range of tem-
peratures where the solidification might occur. Thus, if
hsolid < M < Mtiquids

T = (1= FMCp =Cp )T — L]+ h 3)
Cp = f(Cp =Cpy)

The solid fraction f is given by the Scheil model
[Rappaz, 1989]

C))

In the above equation, we set the partition coeffi-
cient n = 2, which reduces the Scheil model to the lin-
ear interpolation function. Note that if T < Tyg, f
must be set to unity and, if T < Tiiquid> f must be set
to zero.

The magnetic, electric and thermal properties were
approximated as linear functions within the mushy re-
gion (Tgoidg < T < Tiiquig) and kept constant within
each phase. Thus, in the mushy region

w=fu,+0-f, (5)

where  represents the density, thermal conductivity,
viscosity, magnetic permeability, and electric conduc-
tivity. For the viscosity of the solid phase we used

Es 5106 )
Ky
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Note that this formulation implicitly introduces rap-
idly increased viscous dissipation inside the mushy re-
gion thus creating a similar effect as if using a
considerably more complicated dissipation of a porous
flow in the mushy region. Furthermore, this formula-
tion allows a typical computational fluid dynamics
code to simultaneously predict liquid and solid phases
in the mixture flow whereby the solid phase is treated
as the second fluid phase with an extremely high vis-
cosity.

For the specific heat at constant pressure within the
mushy region, we used the thermodynamic property
[Voller et al., 1989]

2 2
( oh )“ ( ah)
) "oy
cp=d N 4 %)
T
I arY (orY
—_— + —_—
ox Jdy
When dealing with a mixture, the enthalpy is a
function of the temperature, which is a function of the
solid fraction which itself is a function of the tempera-

ture. Thus, if g < h < Miquigs We must solve a non-
linear system for 7. From Egs. (3) and (4) we have

Tl_Ts

T 1/(n—1)
(1——‘) [(Cp—CpyJrs - L]+ n
r- . 1/(n—1)
Cp = 1—[ > ) (Cp; —Cpy)

=0 ¥

TI_TS

This equation can be solved for local temperature,
T, by the secant method.

Note also that according to Boussinesq approxima-
tion the energy source term resulting from viscous
dissipation is neglected and buoyancy effects are ac-
counted only in the vertical component of the linear
momentum balance.

3. MAGNETO-HYDRO-DYNAMICS (MHD)
MODEL

Typical formulation for the laminar MHD natural con-
vection of an incompressible Newtonian fluid involves
conservation laws for mass, momentum, and energy
and a magnetic field transport equation [Dulikravich,
1999].
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TABLE 1. Parameters for the Navier-Stokes and Maxwell Equations in a Standard MHD Model

e R T e B S

Conservation of A ¢ 0" o7 o™ T S
Mass p 1 1 1 1 0 0
X-momentum P “ “ “ “ H _9%_B 9By _0B:
ox Mm| dx 9y
y-momentum P Y Y v v “ _ip__pg [1-B(T- To)]+ﬁ a_BL_%
) dy Um| dx oy
F 2
Energy P ! ! 1 r ¢ 1 21_9.‘_ - %
opm| O 9y
Magnetic flux in x-direction ! B 0 B Bef L M"_)
UmC dy
Magnetic flux in y-direction ! By By 0 I duBy)
HUmO ox
Vov=0 ©
D where
v *
—=—pg|1-B(T-T)|-Vp+V. Vv+V
P, =—Pe[1-B(T-T,)]-Vp [u( v vﬂ 02 .
+[‘7x£)xB (10 36+
“‘m ) E = }\,u(b*—r‘ ¢a (15)
X
pCP_QZ-_-V(kVT).}..l_ in . Vx£ a¢***
Dt G l"Lm m F = A’Vq)**—r_a_ (16)
y

an

When there is no imposed electric field E =0,
thereis no polarization, no magnetization due to circu-
lation of charges, no Secbeck effect, no electric charge
diffusion, no free electric charge. When fluid is in-
compressible and with constant electric conductivity,
the general magnetic field transport equation assumes
the familiar form

-‘?aTB—Vx(va)=—lo_ VB a2

m

These equations can be cast into the following gen-
eral system
JE oF
90 O

o ox oy 1

The values of S, A, o, ¢*, ¢**, ¢***, and T" are
given in Table 1 for the equations of conservation of
mass, x-momentum, y-momentum, energy, magnetic
flux in the x-direction and magnetic flux in the y-di-
rection,

These equations were transformed from the physi-
cal Cartesian (x, y) coordinates to the computational
coordinate system (§, 1) and were solved by the finite
volume method. The implicit SIMPLEC method [Van
Doormal and Raithby, 1984] was used to solve the ve-
locity—pressure coupling problem. The WUDS interpo-
lation scheme [Raithby and Torrance, 1974] was used
to obtain the values of u, v, h, B,, and By as well as
their derivatives at the interfaces of each control vol-
ume. The resulting linear system was solved by the
GMRES method.
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4. ELECTRO-HYDRO-DYNAMICS (EHD)
MODEL

A typical model for laminar EHD natural convection
of a Newtonian fluid involves conservation of mass,
linear momentum, energy, electric charge conserva-
tion, and electric charge transport equations. The en-
ergy source term resulting from viscous dissipation is
neglected and buoyancy effects are approximated by
the Boussinesq hypothesis. Then the Navier-Stokes
and Maxwell equations for non-polarizable fluids are
[Dulikravich, 1999]

where the total current can be formulated as

J=q,(bE+v)-D, Vg, 22)
Note that electric conductivity and charge mobility
are related as

¢ = qeb (23)

When electric fields are in the 10* to 10° V cm'1

range, the charge difusion contribution will be very
small, except when gradients- occur over lengths of the
order less than 10_6 cm [Dulikravich, 1999]. Under
the action of the electrical field, the charge carriers of

Vov=0 (17)  mobility b migrate with a velocity bE, E being the
field modified by the space-charge density ge.
Dv Since the electric field is irrotational, it follows that
v ~pg[1-B(T-T, )]
E=-Vo Q4)
. where ¢ is the electric potential. Thus, from Eq. (1a),
_Vp +V-[u(Vv+Vv )}Lqu (18)  we have
2 de
DT Vép=—— 25
pC,,-Bt—==V-[kVT]+JXE (19) ¢ £, 3
The complete system of the Navier—Stokes and
V(eE)=q, (20)  Maxwell equations can be written then as
Bq . aLQ_ + @. + 21_7_ =9 26
'5'7'+V'J=0 @ ot ox dy 20
t
TABLE 2. Parameters for the Navier-Stokes and Maxwell Equations in a Standard EHD Model
Conservation of A 'Y ¢ o o ¢*** r S
Mass o] 0 1 1 1 1 0 0
p
x-momentum P 0 u u u u 1) “ + geEx
X
op
y-momentum p 0 v v v v o= = pg [1 - B(T-To)l + qeEy
Yy
qe[b(E3+ E)?) +uEx+ vEy]
Energy P 0 h h h T k olE dqe e dge
T ox Th ay
Electric potential 0 0 0 0 0 (0} -1 - -qeﬁ
Electric charged particles transport 1 b ge qe qe qe D, 0
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where projection method provided scarch directions that
guided descent-directions tangent to active constraint
Q=20 (27)  boundaries. In the feasible scarch. designs that vio-
lated constraints were automatically restored to feasi-
E:(?»u+CE,\,)¢*—I“ Ok * 28) bility Yia the minimizalion of.lhc ac.:tive glotfal
ax constraint functions. If at any time this constraint
minimization failed, random designs were generated
) 9% about the current design until a new feasible design

F= (?w +CE, )¢**—F 5 (29)  was reached.

The values of S, A, §, ¢, q>*, ¢**, ¢”/, and T are
given in Table 2 for the equations of conservation of
mass, x-momentum, y-momentum, energy, electric po-
tential, and electrically charged particles distribution.

The above equations were transformed from the
physical to the computational coordinate system (x, M)
and were solved by the finite volume method. The
SIMPLEC Method [Van Doormal and Raithby, 1984]
was used to solve the velocity—pressure coupling prob-
lem implicitly. The WUDS interpolation scheme
[Raithby and Torrance, 1974] was used to obtain the
values of u, v, h, ¢, and g, as well as their derivatives
at the interfaces of each control volume. The resulting
linear system was solved by the GMRES method.

5. OPTIMIZATION OF MAGNETIC AND
ELECTRIC FIELDS

The hybrid optimization algorithm [Dulikravich et al.,
1999] utilized in this work incorporates some of the
most popular optimization modules: genetic algorithm,
a quasi-Newtonian Pschenichny-Danilin algorithm,
modified Nelder-Mead simplex algorithm, sequential
quadratic programming algorithm, Davidon—Fletcher—
Powell gradient search algorithm, and differential evo-
lution algorithm. Each of these modules provides a
unique approach to optimization with varying degrees
of convergence, reliability, and robustness at different
cycles during the iterative optimization procedure. A
set of analytically formulated heuristic switching crite-
ria were coded into the program to automatically
switch back and forth among the different optimiza-
tion modules as the iterative minimization process pro-
ceeds [Dulikravich et al., 1999].

The evolutionary hybrid algorithm handles the ex-
istence of equality and inequality constraint functions
in three ways: Rosen’s projection method, feasible
searching, and random design generation. Rosen’s

Gradients of the objective and constraint functions
with respect to the design variables. also called design
sensitivities, were calculated using finite differencing
formulas. The population matrix was updated every it-
eration with new designs and ranked according to the
value of the objective function. Whenever the optimi-
zation process detects that it is terminating in a local
minimum, then a currently used optimization module
is automatically switched to another optimization mod-
ule thus escaping from the local minimum. The opti-
mization problem was completed when the maximum
number of iterations or objective function. evaluations
were exceeded, or when the optimization program
tried all individual optimization modules, but failed to
produce a non-negligible decrease in the objective
function. The latter criterion was the primary qualifi-
cation of convergence, and it usually indicated that a
global minimum had been found.

6. NUMERICAL EXPERIMENTS

The first objective of this work was to develop and
validate MHD and EHD analysis codes in cases in-
volving convection heat transfer without and with so-
lidification. The second objective was to combine
these analysis codes and an optimization algorithm in
order to determine the appropriate variations of
strength of the magnetic and electric fields along the
boundaries of a container with a fluid that will create
desired flow-field and the solid/melt interface topol-
ogy. As a by-product of the solution of this de facto
inverse problem, appropriate variations of heat fluxes
along the boundary of the container could be found.
These types of inverse MHD and EHD problems
have a significant potential in actively controlling the
natural convection effects thus possibly producing
solids with desired shapes having lower thermal
stresses and lower and more uniform distribution of
impurities than those obtained in a presence of very
strong buoyancy forces.
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6.1. MHD Test Cases

First, let us demonstrate the inverse determination of

the magnetic boundary conditions that create certain
pre-specified flow-field within some domain. Figure !
shows the geometry and the boundary conditions for
the test cases considered here.

The height and length of the square container were
equal to 0.15 m. The top and bottom walls were kept
thermally insulated. The left boundary was kept at a
"hot" temperature while the right wall was kept at a
"cold" temperature. For the first test case, there was
no phase change, since the "hot" and "cold" tempera-
tures were above the melting temperature.

The four walls were subjected to unknown mag-
netic field distributions whose directions were made
orthogonal to each wall. In order to satisfy the mag-

netic flux conservation equation
VeB =0 (30)

the following periodic conditions were imposed

#Hoells

ey a )
#eells o,

0=t

(33)

The magnetic field boundary conditions were in-
versely determined at cither tfour or six points equally
spaced along each of the four boundaries and interpo-
lated using B-splines for the other points at those
boundaries. The magnetic boundary conditions at v =
(.15 m and y = 0.15 m were then obtained using pe-
riodic conditions from Eqs. (31) and (32).

The analyzed fluid was silicon [Colgo et al., 2003,
2004a). For the first test case. the temperature differ-
ence Ty — T, was set equal to 0.654351 K, which
gives a Rayleigh number of 10°.

Figure 2 shows streamlines, isotherms. and heat
fluxes on all four boundaries predicted without any
magnetic flux applied and no phase change (left col-
umn) and streamlines, isotherms and heat fluxes on all
tour boundaries resulting from the magnetic boundary
conditions optimized using six points on each bound-
ary. One can see that the gradients of temperature in

B,(y)=B, 3 o . :
1(7)=8:(7) (3h the y direction are reduced. Figure 3 shows the opti-
mized magnetic field boundary conditions for x = 0

B,(x)=B,(x) (32)  and v = 0 and Figure 4 shows the convergence history

The objective was to minimize the natural convec-
tion effects by reducing the gradient of temperature
along the y direction, thus trying to obtain a tempera-
ture profile similar to those obtained for pure conduc-
tion. The objective function to be minimized is then
formulated as

of the process. One can see that the differential evolu-
tion algorithm did almost all the work.

As a second test case, we minimized the curvature
of the isotherms in a solidifying process after a pre-
specified time from the start of the solidifying process.
The temperature difference Ty, — T, was set equal to
6.54351 K (T}, = 1686.04351 K, T, = 1676.5 K) and

B, ()
Insulated
s LSS LSS
i &=9.81 m's” T
B () B: (W

SIS S

Insulated
B3 (%)

FIGURE 1. Geometry and boundary conditions for MHD.
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Natural convection with no MHD
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FIGURE 2. Natural convection; results of analysis with no magnetic field (left column) and resuits with optimized
J magnetic boundary conditions (right column) for Ra = 10°. The parameter s is measured counterclockwise along
‘ the boundaries of the rectangular container starting from the lower left corer.
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FIGURE 3. Natural convection; optimized magnetic boundary conditions at x = 0 and y = 0 with the estimation of
B at six points per boundary.
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FIGURE 4. Natural convection; optimization of convergence history for the estimation of B at six points per
boundary.
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FIGURE 6. Optimized magnetic boundary conditions on x = 0 and y = 0 boundaries with the estimation of B at
six points per boundary in the case with solidification.
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FIGURE 7. Optimizatior of convergence history for the estimation of B at six points per boundary in the case with
solidification.
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the length of the square container was taken as
0.069624 m, which gives a Rayleigh number of 10°,
The solidus and liquidus temperatures were equal to
1681.0 K and 1686.0 K, respectively. Thus, a mushy
region exists between the phases. The initial condition
was set as Tp = 7},. Then, the solidifying process
started at the right wall, where 7 = T..

Figure 5 shows the streamlines, isotherms, and heat
fluxes on all four boundaries for this test case without
any magnetic flux applied, predicted at 500 seconds,
(left column) as well as the streamlines, isotherms,
and heat fluxes on all four boundaries resulting from
optimization of six B-spline points for the estimation
of the magnetic boundary conditions on each boundary
(right column). The boundary conditions at other

points were interpolated using B-splines. One can sce

_that the curvature of the isotherms is smaller than in

the case without any magnetic fields applied.

Figure 6 shows the optimized variation of the mag-
netic fields orthogonal to x = 0 and y = 0 boundaries.
Figure 7 shows the convergence history of the optimi-
zation process. Genetic algorithm module did most of
the work.

6.2. E_HD Test Cases

In another test case we dealt with the inverse determi-
nation of the electric boundary conditions that create
some pre-specified flow-field features within some re-
gion [Colaco et al., 2004b].

Natural convection with no EHD effects

Without EHD effects

. .

Heat fluxes along four boundaries

- T, : T
018 ngg e AL ) i 0.89. &2
Neormalized isotherms Normalized isotherms
500 3000
2000 1
2000
& 1500~
% 1000 o
] 1000 -
500 ]
0 v 1 T , 7 - 0 Y t ? 1
0 20 a0 80 80 0 20 40 60 80
8 s

Heat fluxes along four boundaries

FIGURE 8. Natural convection with no solidification; results of analysis with no electric field (left column) and
results of optimized electric boundary conditions (right column) for Ra = 1.9 x 10% . The parameter s is measured
counterclockwise along the boundaries of the rectangular container starting from the lower left corner.
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The height and length of the closed container filled
with the electrically conducting liquid were equal to
33.33 mm and 66.67 ram, respectively. The vertical
walls were kept thermally insulated. The bottom
boundary was kept at a "hot" temperature while the
top wall was kept at a "cold" temperature. A slightly
triangular temperature profile was applied to the bot-
tom wall in order to create a preferential direction for
the thermally induced fluid flow.

The vertical walls were subjected to unknown
electric potential boundary conditions. The electrically
charged particles were assumed to enter the fluid
from the walls where the electric potential was ap-
plied. The objective was to minimize the natural con-
vection effects by reducing the gradient of temperature
along the x direction, thus trying to obtain a tempera-
ture profile similar to those obtained for pure conduc-
tion. The objective function to be minimized was then

formulated as
ellsy 2
! Z#r aT,
F=_|— —L
#eells ox;

i=|

(34)

The electric boundary conditions were inversely de-
termined at six points equally spaced along each verti-
cal wall and parameterized using B-splines for other
points of these boundaries. In this case, we considered
natural convection of gallium arsenide [Colago et al.,

2004b]. The temperature difference T}, — 7, was set
equal to 1.0 K, which gives a Rayleigh number of 1.9
x 10%,

For the first test case, there was no phase change,
since the "hot" and "cold” temperatures were above the
melting temperature (T, = 1521.5 K; 7, = 1520.5 K).

Figure 8 shows the streamlines, isotherms, and heat
fluxes on all four walls predicted for the first test case
without any electric field applied and no phase change
(left column). Figure 8 also shows the streamlines,
isotherms, and heat fluxes on the four walls when
using six points on each vertical wall for the estimation
of the electric boundary conditions (right column). One
can see that the gradients of temperature in the x direc-
tion are reduced close to the top and bottom walls. One
can see that the isotherms start to become horizontal
which is similar to those obtained if the gravity vector
were acting in the horizontal direction.

Figure 9 shows the optimized electric potential and
Figure 10 shows the convergence history, where the
DFP and genetic algorithm modules did all the work.

In a second test case, we tried to minimize the cur-
vature of the isotherms in a solidifying process after a
pre-specified time from the start of the solidifying
process. Figure 11 shows (left column) the results ob-
tained for a Rayleigh number equal to 1.9 X 10* with-
out any electric field applied. In this case, the "hot"
and "cold" temperatures were equal to 1510.5 K and
1511.5 K, respectively.

700 —
3
x 600
G
2.. -
B
£ 500 —
2
Q
Q_ =~
i)
E 400 -
w
300 T T
0.00 20.00

! i ' A
40.00 60.00
y [mm]

FIGURE 9. Optimized electric field potential at x = 0 and y = 0 with the estimation of E at six points per boundary.
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FIGURE 10. Optimization of convergence history for the estimation of E at six points per boundary.
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Figure 11 also shows the results obtained with an
optimized electric potential acting in the horizontal di-
rection. Note that the isotherms are smoother than
those for a case without any electric field applied.

Figure 12 shows the optimized electric potential
and Figure 13 shows the convergence history for the
hybrid optimizer. Note that the differential evolution
module did almost all the work for this test case,

SUMMARY

In this paper, we showed the results of a time-accurate
MHD code that is capable of dealing with phase
change problems. The ability to minimize the natural
convection effects in problems with and without phase
changes was demonstrated by utilizing an optimized
distribution of magnetic filed along the boundaries of
a container. A hybrid constrained optimization algo-
rithm was used in reducing the isotherms pattern to
those similar to pure conduction problems.

We have also shown the results of a time-accurate
EHD code that is capable of dealing with phase change
problems. The ability to minimize the natural convec-
tion effects in problems with and without phase change
was demonstrated by utilizing an optimized distribution
of electric field along the boundaries of a solidification

container in order to control the solidification process.
A hybrid constrained optimization algorithm was used
in reducing such natural convection effects.

When space-varying electric potentials were ap-
plied, the fluid flow started to become highly unstable.

For cases where the electric potential was constant
along certain wall, such instability did not occur. Fur-
ther investigations concerning the stability of this type
of fluid flow are necessary. However. the concept that
it is possible to control the fluid flow and enhance the
convective heat transfer by means of an externally ap-
plied magnetic and electric fields is proved.
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