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We have adapted an advanced semistochastic evolutionary algorithm for constrained
multiobjective optimization and combined it with experimental testing and verification
to determine optimum concentrations of alloying elements in heat-resistant austenitic
stainless steel alloys and superalloys that will simultaneously maximize a number of the
alloy’s mechanical properties. The optimization algorithm allows for a finite number of
ingredients in the alloy to be optimized so that a [finite number of physical properties of
the alloy are either minimized or maximized, while satisfying a finite number of equality
and inequality constraints. Alternatively, an inverse design method was developed, which
uses the same optimization algovithm to determine chemical compositions of alloys that
will be able to sustain a specified level of stress at a given temperature Jor a specified
length of time. The main benefits of the self-adapting response surface optimization
algorithm are its outstanding reliability in avoiding local minimums, its computational
speed, ability to work with realistic nonsmooth variations of experimentally obtained
data and for accurate interpolation of such data, and a significantly reduced number
of required experimentally evaluated alloy samples compared with move traditional
gradient-based and genetic optimization algorithms. Experimentally preparing samples
of the optimized alloys and testing them have verified the superior performance of alloy
compositions determined by this multiobjective optimization.
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1. BACKGROUND

Design of superalloys to be used in hot sections of jet engines traditionally
involves a lengthy and costly experimental trial-and-error procedure that can easily
consume up to 10 years before the new alloy is actually implemented. However,
development time for a new aircraft is typically 5 years and has recently been
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reduced to only 4 years. Consequently, the jet engine material designers must
develop new alloy design methodologies that will be able to create the new alloys
in only a few years or less. During the past several decades of research on the
/7" nickel base superalloys, new alloys have been developed by casting, thermally
processing, and testing many hundreds and sometimes thousands of different alloy
concentrations. Eventually, it was often the use of personal experience and intuition
that was used to decide on a small group of finalist concentrations for testing and
the winning new alloy concentration adopted for actual commercial use. Thus, it
is evident that any reliable predictive modeling and mathematical optimization, at
any stage of this empirical alloy design procedure, should be able to reduce the cost
and especially the time involved in the development of new alloys with improved
performance. The objective of this research was to enable a significant proportion
of the development procedure to be done by computation by using the power
of mathematical evolutionary optimization techniques in their direct and inverse
modes. Although it is understood that the properties of the alloys strongly depend
not only on the alloy chemical composition but also on their microstructure, we
have decided to leave this important set of influencing parameters for a future more
complete alloys design optimization project.

1.1. The Cambridge University Effort

Probably the most prominent center for research activity in certain aspects
of predictive modeling and regression analysis in superalloys is at Cambridge
University in the United Kingdom [1-8]. Their approach is to use artificial neural
network logic for a nonlinear regression analysis where the input data are multiplied
by weights, but the sum of all these products forms the argument of a hyperbolic
tangent. The output is, therefore, a nonlinear function of the input, the function
usually chosen being the hyperbolic tangent because of its flexibility because altering
the weights can vary the shape of the hyperbolic tangent. Further degrees of
nonlinearity can be introduced by combining several of these hyperbolic tangents,
so that the neural network method is able to capture almost arbitrarily nonlinear
relationships. For example, it is well known that the effect of chromium on the
microstructure of steels is quite different at large concentrations than in dilute
alloys. Ordinary regression analysis cannot cope with such changes in the form of
relationships.

Using artificial neural networks [8], the Cambridge group has successfully
addressed solid solution strengthening, tensile properties, fatigue, creep, lattice misfit
in the context of nickel-based superalloys, and has applied the method to other
materials and processes. A large number of quantitative models have also been
produced by the Cambridge group, dealing with the microstructure and mechanical
properties of nickel-based superalloys. They have been used already, both in
reducing the scale of experimental programs and in identifying regimens where
experiments are essential.

1.2. The Artificial Neural Network

Neural networks are methods for the quantitative recognition of patterns in
data, without any a priori specification of the nature of the relationship between
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the input and output variables. They can model relationships of almost arbitrary
complexity. The outcome of neural network training is a set of coefficients (called
weights) and determination of the functions that in combination with the weights
relate the input to the output. The training process involves a search for the
optimum nonlinear relationship between the inputs and the outputs and is computer
intensive. However, once the network is trained, estimation of the outputs for
any given inputs is very rapid. There are methods, such as that of MacKay [5],
which implement a Bayesian framework on the neural network. The error bars then
depend on the specific position in input space, reducing the dangers of extrapolation
and interpolation. The Cambridge group has found that this method is capable of
revealing interesting metallurgical trends.

The yield and ultimate tensile strength of nickel-based superalloys with /7'
microstructures has been modeled [1, 3] by using the neural network method, as
a function of the Ni, Cr, Co, Mo, W, Ta, Nb, Al, Ti, Fe, Mn, Si, C, B, and Zr
concentrations, and of the test temperature. The analysis was based on data selected
from the published literature. The trained models were subjected to a variety of
metallurgical tests. As expected, the test temperature (in the range 25-1100°C) was
found to be the most significant variable influencing the tensile properties, both
via the temperature dependence of strengthening mechanisms and due to variations
in the y' fraction with temperature. Because precipitation hardening is a dominant
strengthening mechanism, it was encouraging that the network recognized Ti, Al,
and Nb to be key factors controlling the strength.

The Cambridge group methodology for tensile properties has already been
exploited at Rolls-Royce to reduce the number of variants involved in experimental
alloy design programs. The treatment of iron-based superalloys using both neural
network and physical modeling is described by Badmos et al. [7]. A lot of the work
and data are available from the materials algorithms project website of Cambridge
University [8] at http://www.msm.cam.ac.uk /phase-trans/index.html.

Neural network models in many ways mimic human experience and are
capable of learning or being trained to recognize the correct science rather than
nonsensical trends. A potential difficulty with the use of regression methods is
the possibility of overfitting data. For example, it is possible to produce a neural
network model for a completely random set of data. To minimize this difficulty, the
experimental data can be divided into two sets, a training data set and a test data
set. The model is produced by using only the training data. The test data are then
used to check that the model behaves itself when presented with previously unseen
data [8].

In addition, artificial neural networks, once fully trained, are very efficient and
accurate interpolating algorithms for any multiparameter function. However, this
does not mean that the neural networks are automatically efficient and accurate
search algorithms or extrapolation algorithms for venturing outside of the available
database. These, they are not.

Therefore, it is important to understand a need for mathematically sound
multiobjective stochastic optimization algorithms that are capable of finding
the global minimum and that can confidently search outside a given initial
database.
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2. MULTIOBJECTIVE OPTIMIZATION: BACKGROUND

There is a clear and urgent industrywide need for improving material property
performance for the applications that they are currently used for and to increase
their upper use temperature, strength, and corrosion resistance. The proposed
alloy design method takes the new approach of using a stochastic optimization
algorithm for optimizing alloy properties with a minimum number of experimental
evaluations of the candidate alloys. This approach has the potential of identifying
new compositions that cannot be identified without carrying out an unacceptably
large number of experiments. Furthermore, this approach has the potential for
creating and designing alloys for each application, thereby maximizing their use at
reduced cost.

The key to the success of the proposed method is the robustness, accuracy,
and efficiency of the multiobjective constrained optimization algorithm. There are
only a few commercially available general-purpose optimization software packages.
Currently, the most popular commercially available general-purpose optimization
software in the United States is iSIGHT [9]. However, these software packages
predominantly use a variety of standard gradient-based optimization algorithms,
which are known to be unreliable because of their tendency to terminate in
the nearest feasible minimum instead of finding a global optimum. Moreover,
these optimizers can perform only optimization of a weighted linear combination
of objective functions. This formulation does not provide a true multiobjective
optimization capability (i.e., each individual objective is not fully extremized).
Furthermore, these optimizers require an extremely large number of evaluations of
objective functions (mechanical and corrosion properties of alloys), which would
make the total number of experiméntal evaluations unacceptably large because
currently available algorithms for confidently predicting physical properties from
given alloy concentrations are unavailable. The industry is most probably aware of
these drawbacks of the commercially available optimization software: Some people
are also becoming aware of the neural network approach to alloy design as practiced
at Cambridge University and of the applications of genetic algorithms in materials
design [10] and of its coupling with a molecular dynamics simulation approach
[11]. However, for the most part, they are not aware of the latest developments in
the area of stochastic truly multiobjective constrained optimization because these
methods have not been commercialized and have not been demonstrated in this field
of application.

The growing need for the multidisciplinary and multiobjective approach to
design with a large number of design variables resulted in an increased interest
in the use of various versions of hybrid [12], semi-stochastic [13], and stochastic
[14-23] optimization algorithms. Including more objectives in the optimization
process has similar effects, including more constraints, especially if these constraints
are incorporated as penalty functions. With the introduction of the Pareto
dominance concept, the possible solutions are divided in two subgroups: the
dominated and the nondominated. The solutions belonging to the second group
are the “efficient” solutions (i.e., the ones for which it is not possible to improve
any individual objective without deteriorating the values of at least some of the
remaining objectives). Classical gradient-based optimization algorithms are capable,
under strict continuity and derivability hypotheses, of finding the optimal value only
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in the case of a single objective. For these algorithms, the problem of finding the
group of nondominated solutions (the Pareto front) is reduced to several single-
objective optimizations where the objective becomes a weighted combination of the
objectives called the utility function. Multiobjective optimization algorithms based
on a genetic algorithm have been successfully applied in a number of engineering
disciplines. However, for a large number of design variables and objective functions
that need to be extremized simultaneously, this approach becomes progressively too
time-consuming and unreliable for practical applications in industry.

3. MULTIOBJECTIVE OPTIMIZATION OF ALLOY COMPOSITIONS
USING 10SO [18]

We decided to take a new approach of using stochastic optimization algorithm
for optimizing alloy properties with minimum number of experimental evaluations
of the candidate alloys. The proposed method has the potential of identifying
new compositions that cannot be identified without carrying out an unacceptably
large number of experiments. Furthermore, the approach has the potential for
creating and designing alloys for each application, thereby maximizing their use
at reduced cost. The proposed method is based on the use and special adaptation
of a new stochastic optimization algorithm specifically for the task of optimizing
properties of alloys while minimizing the number of experimental evaluations of the
candidate alloys. This multiobjective optimization algorithm is of a semistochastic
type incorporating certain aspects of a selective search on a continuously updated
multidimensional response surface. Both weighted linear combination of several
objectives and true multiobjective formulation options creating Pareto fronts
are incorporated in the algorithm. The main benefits of this algorithm are
its outstanding reliability in avoiding local minimums, its computational speed,
and a significantly reduced number of required experimentally evaluated alloy
samples compared with more traditional semistochastic optimizers like genetic
algorithms. Furthermore, the self-adapting response surface formulation used in this
project allows for incorporation of realistic nonsmooth variations of experimentally
obtained data and allows for accurate interpolation of such data.

3.1. Response Surface and Self-Organization Concepts

Our approach is based on the widespread application of the response
surface technique with the adaptive use of global and middle-range multipoint
approximation. One of the advantages of the proposed approach is the possibility
of ensuring good approximating capabilities using minimum available information.
This possibility is based on self-organization and evolutionary modeling concepts
[18]. During the approximation, the approximation function structure is being
evolutionarily changed, so that it allows successful approximation of the optimized
functions and constraints having sufficiently complicated topology.

With reference to a particular problem of the creation of an alloy with
desirable properties, there will inevitably arise a problem of constraints that need
to be specified on the objective functions. These constraints are absent in a more
general multiobjective optimization statement. Such objective constraints should be
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set by the user (expert) and could be allowed to vary during the solution process.
For example, a minimum acceptable value for the Young’s modulus of elasticity
could be specified as an inequality constraint. Or a maximum acceptable percentage
for each of the most expensive ingredients in the alloy could be specified as a cost-
objective constraint. In addition, the maximum specific weight of an alloy could be
specified as an inequality constraint.

The problem of the search for Pareto-optimum solutions set in the
multiobjective optimization while varying chemical composition of an alloy would
be an unacceptably labor-intensive process. This is because of an extremely large
number of alloy compositions that would need to be created and because several
of the properties of each of these alloys would have to be evaluated experimentally.
Unfortunately, such problems, as a rule, are difficult to formalize at the initial stage,
because the user does not know initially what values of some objectives could be
reached and how the remaining objectives will vary. The number of experiments
that are necessary for true multiobjective optimization problem solution depends
not only on the dimensionality of the problem (the number of ingredient species in
an alloy) but also depends to a considerable degree on the topologies of the object
functions. Because the user has very little if any a priori knowledge of objective
function space topology, it is very difficult to predict the number of experiments
required in the optimization application proposed here.

3.2. Summary of Indirect Optimization Based on the
Self-Organization (I0SO) Algorithm

Every iteration of I0SO consists of two stages. The first stage is the creation
of an approximation of the objective function(s) (Fig. 1).

Each iteration in this stage represents a decomposition of the initial
approximation function into a set of simple approximation functions so that the
final response function is a multilevel graph. That is, the evolutionary self-organizing
algorithms are based on the modified version of the method of accounting for
the groups of arguments. Such algorithms use the evolutionary procedure of
constructing approximation functions in the form of multilevel graphs (Fig. 2) and
solving the structure-parametric approximation problem in the process.

The second stage is the optimization of this approximation function. This
approach allows for corrective updates of the structure and the parameters of
the response surface approximation. The distinctive feature of this approach is
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Figure 2 Example of the IOSO response surface structure.

an extremely low number of trial points to initialize the algorithm. During each
iteration of [0SO, the optimization of the response function is performed only
within the current search area. This step is followed by an actual experimental
evaluation for the obtained point. During the IOSO operation, the information
concerning the behavior of the objective function in the vicinity of the extremum
is stored, and the response function is made more accurate only for this search
area. Thus, during each iteration, a series of approximation functions (Fig. 3) for
a particular objective is built. These functions differ from each other according to
both structure and definition range. ‘

The subsequent optimization of these approximation functions allows us to
determine a set of vectors of optimized variables. IOSO using Sobol’s algorithm
[24] was used for redistribution of the initial points in the multidimensional
function space. IOSO also includes algorithms of artificial neural networks (ANN)
that use appropriately modified radial-basis functions to enrich the original
data set and build the response surfaces. The modifications consisted in the
selection of ANN parameters at the stage of their training that are based on the

1.5t selection 2-nd selection 3-rd selection
&= fOn ) o = F(8LL B = F(x, %, %x) = F @& B) = £ (5%, %0 %, X, %4, %5, )
g; = f{x.%) rgzz = f(~1l;§:§) = f(xi,xj; xp!xq) 2 =f@::§§) =f(§,xf,xp,xq,xw,x,,xy,:q,) cOC

g:. =[x, %) g: = f(:g‘:-bg:) = flx,,%,5%,,x;) 5:f@f-l’gz)=f(x5"";’xf’xl’x¢’x!’x¢’xb)

Figure 3 IOSO approximation process scheme.
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following two criteria: minimal curvature of response surface and provision of
the best predictive properties for a given subset of test points, Weooo € W,,;. Each

iteration of alloy composition multiobjective optimization technique involves the
following steps.

1. Building and training ANNI for a given set of test points proceeding from the
requirement W,,, = W, ..

2. Conducting multiobjective optimization with the use of ANNI and obtaining a
specified number of Pareto-optimal solutions P,.

3. Determining a subset of test points W, that are maximally close to points P, in
the space of variable parameters.

4. Training ANN2 proceeding from the requirement to provide the best predictive
properties for obtained subset of test points W, € W,

5. Conducting multiobjective optimization with the use of ANN2 and obtaining a
set of Pareto-optimal solutions P,.

In general, the database contains information on experimentally obtained
alloy properties compiled from different sources and obtained under different
experimental conditions. As a result, for alloys with the same chemical
compositions, there can be considerable differences of measured properties. These
differences can be explained as errors due to the particular conditions existing
during the experiments (measurement errors), and by the effect of certain operating
conditions (e.g., thermal condition of alloy making). Unless operating conditions
are quantified numerically, their influence is regarded as an additional chance
factor. In its simplified form, the methodology can be presented as the following
set of actions:

1. Formulation of optimization task (i.e., selection of variable parameters)
definition of optimization objectives and constraints, and setting initial
(preliminary) ranges of variable parameters variations. '

2. Preliminary reduction of the experimental database. At this stage, the points
meeting the optimization task statement are picked up from the database so that
alloys having chemical composition outside the chosen set of variable parameters
are rejected. Alloys for which there are no data for at least one optimization
objective are rejected. In addition, alloys with chemical compositions outside the
set range of variable parameters are also rejected.

3. Final reduction of the experimental database. Because accuracy of the building of
response surfaces substantially depends on uniformity of distribution of variable
parameters in the surveyed area, rejection of experimental data points falling
outside of the universal set is performed. At the end of this stage, a final range
of variable parameters for optimization is set.

4. Execution of multiobjective optimization resulting in a specified number of
Pareto-optimal solutions.

5. Analysis of optimization results.

6. Carrying out an experiment to obtain a set of Pareto-optimal alloy compositions
(or a certain subset) and analysis of the results obtained.
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7. Change of optimization problem statement (number of simultaneous objectives
and constraints, the set and range of variable parameters) and returning to step 2.

8. Modification of database and returning to step 4.

9. Stop.

4. EXAMPLES OF DIRECT DESIGN OF ALLOYS USING
10SO OPTIMIZATION

A preliminary proof of this alloy optimization concept was published recently
by Dulikravich et al. [25] and expanded more recently to a larger data set by Egorov
and Dulikravich [26]. For this particular case, the initial database was procured
containing information on 201 experimentally tested alloys. A preliminary analysis
of data has shown that for certain alloys there is no complete information on alloy
chemical composition. Such alloys were excluded from further analysis. Besides,
some chemical elements (V, Bi, Se, Zr, Sb, Cd) were present in a very small number
of alloys, which makes it impossible to assess their effect from information in
this database. Such alloys were also excluded from further analysis. The remaining
database had 176 alloys. At the next stage, an evaluation of uniformity of
distribution of the percentage values of different elements in the existing range was
made. It turned out that certain alloying elements had concentrations differing very
strongly from the universal set. For example, percentage of sulfur in one of the
alloys exceeding average value by some 10 times. Such alloys were excluded from
further analysis. The remaining database had 158 alloys.

The following parameters were then used as optimization objectives: stress
(PSI-maximize); operating temperature (T-maximize); time to “survive” until
rupture (Hours-maximize). ljuring this research, the solution of a simultaneous
three-objective optimization problem and a series of two-objective problems were
accomplished when one of the considered parameters was constrained.

4.1. Influence of the Number of Alloying Elem'enfs

In this problem, the percentages of the following 17 alloying elements were
taken as independent variables: C, S, P, Cr, Ni, Mn, Si, Cu, Mo, Pb, Co, Cb, W, Sn,
Al, Zn, and Ti. The ranges of these elements were set as follows. First, minimum
and maximum values for the existing set of experimental data (Exp_min;,, Exp_max;,
i =1,17) were defined. Then, new minimum and maximum values for each of
the 17 elements were obtained according to the following simple dependencies:
(Min; = 0.9 - Exp_min,, Max; = 1.1 - Exp_max,, i = 1, 17). The allowable ranges are
given in Table 1. Although the lower range for Cr and Ni content almost
corresponds to AISI 310 scale-resistant stainless steel, the upper range of Cr and Ni
content correspond to superalloys [27]. It should be pointed out that the chemistry
of the two types of alloys is entirely different.

The three-objectives optimization run was then repeated with only the
following nine chemical elements as independent variables: C, Cr, Ni, Mn, Si, Mo,
Cb, W, and Ti. We have followed the same steps during the optimization as when
solving the problem with 17 variables. But, in this case, there were noticeable
differences due to accuracy deterioration of the response surface representation.
Thus, when using fewer alloying elements, while decreasing the number of variables
for the same experimental data set, additional noise was introduced in this data set.
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Table 1 Ranges of variation of 17 independent
variables (chemical elements in the steel alloy)

min max
C 0.063 0.539
S 0.001 0.014
P 0.009 0.031
Cr 17.500 39.800
Ni 19.300 51.600
Mn 0.585 1.670
Si 0.074 2.150
Al 0.001 0.075
Mo 0.000 0.132
Co 0.000 0.319
Cb 0.000 1.390
w 0.000 0.484
Sn 0.000 0.007
Zn 0.001 0.015
Ti 0.000 0.198
Cu 0.016 0.165
Pb 0.001 0.006

4.2. Simultaneous Optimization of Three Objectives for Alloys
Having 17 Chemical Elements

During the first stage, the problem of simultaneously optimizing three
objectives was solved with 100 points of Pareto-optimal solutions. Figure 4 presents
the obtained Pareto-optimal solutions in objectives’ space (PSI-HOURS). Analysis
of this figure allows us to extract an area of admissible combinations of different
optimization objectives. It can be seen that results are distributed in the admissible
part of the objectives’ space quite uniformly. Such a distribution offers a possibility
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for a significant improvement of accuracy of response surfaces on condition that the
experiments will be carried out at the obtained Pareto-optimal points. In principle,
the first iteration of the process of alloy chemical composition optimization by
several objectives could be regarded as completed. Then, in accordance with the
elaborated technique, it is necessary to conduct experiments at the obtained Pareto
optimal points, evaluate accuracy of prediction of values of partial optimization
criteria, and either complete the process or perform another iteration. However,
such a strategy seems very difficult to implement for a researcher who knows his
tasks more accurately. It can be seen that the ranges of variation of optimization
objectives for the obtained Pareto set are very wide. At the same time, if a researcher
can formulate the problem more specifically (e.g., by setting constraints on the
objectives) the volume of experimental work can be substantially reduced.

Figure 5 presents interdependence of the chosen optimization objectives
built on the obtained set of Pareto-optimal solutions. Figure 6 demonstrates
the difference in topology of the multi-objective function space when using
different numbers of alloying elements. Larsen-Mueller diagram (Fig. 7) has
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Figure 5 Time-to-rupture versus strength and temperature versus strength interdependences of
optimization objectives for Pareto set resulting from a three-objectives optimization with 17 chemical
elements (left) and with 9 chemical elements (right).
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Figure 6 Topography of response surfaces of three-objective optimization problems with 17 chemical
elements (left) and with 9 chemical elements (right).

PSI on the vertical axis and the following expression on the horizontal axis
(temperature in Rankine degrees) * log(HOURS + 20). Here, logarithm is with the
basis 10, whereas temperature is in Rankine = temperature in Fahrenheit + 460.
Figure 8 illustrates the general trend in the abilities of the optimizer to create alloys
with superior performance as a function of the number of alloying elements chosen
for optimization.

Analysis of these figures shows that the increase of temperature, for instance,
leads to a decrease of compromise possibilities between PSI and HOURS. Hence,
if a researcher knows exactly in what temperature range the alloy being designed
will be used, it would be more economical that a sequence of two-objective
optimization be solved with an additional constraint for the third objective. Thus,
a more efficient approach to optimizing alloy compositions could be to solve a
sequence of two-objective optimization problems in which PSI and HOURS are
regarded as simultaneous objectives, while imposing the following constraints on
temperature: -

® Problem 2. T > 780C (1600 F), number of Pareto-optimal solutions is 20.
¢ Problem 3. T > 982C (1800 F), number of Pareto-optimal solutions is 20.
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Figure 7 Larsen-Mueller diagram for Pareto sets resulting from a three-objective optimization with 17
chemical elements (left) and with 9 chemical elements (right).
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Figure 8 Influence of the number of optimized alloying elements on the properties of the optimized

superalloy (1:8 elements; 2:9 elements; 3:11 elements; 4:14 elements; 5:17 elements). A similar trend
was observed with the maximum strength.

® Problem 4. T > 1038C(1900 F), number of Pareto-optimal solutions is 20,
® Problem 5. T > 1093C (2000 F), number of Pareto-optimal solutions is 15.
e Problem 6. T > [121C (2050 F), number of Pareto-optimal solutions is 10.

The decrease of the number of simultaneous optimization objectives
(transition from three- to two-objectives problem with constraints on temperature)
leads to a decrease of the number of additional experiments needed, at the
expense of both decreasing the number of Pareto-optimal points and decreasing the
ranges of chemical compositions. Figure 9 presents sets of obtained Pareto-optimal
solutions in objectives space. It can be seen that maximum achievable values of
HOURS and PSI and possibilities of compromise between these parameters largely
depend on temperature. For instance, the increase of minimum temperature from
870°C to 1038°C leads to a decrease of attainable PSI by more than 50%. At the
same time, limiting value of HOURS will not alter with the change of temperature.
Larsen-Mueller diagrams for this set of cases (two-objective optimization for five
temperatures) are shown in Fig. 10.
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Figure 9 Sets of Pareto optimal solutions of five two-objective optimization problems with 17 chemical
elements (left) and with 9 chemical elements (right).
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Figure 10 Larsen-Mueller diagrams for Pareto sets resulting from five two-objectives optimization
problems with 17 chemical elements (left) and with 9 chemical elements (right).

4.3. Experimental Proof-of-Concept

We were unexpectedly faced with a situation where we could not use an
old experimental data base, which we had before because a company that has
been manufacturing our alloys and performing experimental evaluations of the
thermomechanical properties of these alloys had abruptly changed their technology
of producing such materials. That is, the old experimental data that were originally
purchased corresponded to a different technological process. In addition, these
experimental data had very bad distribution, which is why the approximation
function (response surface analytical representation) had poor accuracy. Therefore,
we created a new experimental plan. It had 120 alloy compositions generated by
using Sobol’s algorithm [24] so that they are as uniformly distributed in the function
space as possible, thus creating conditions for very accurate response surface fit. The
chemical elements considered as important were Ni, C, Cr, Co, W, Mo, Al, Ti, B,
Nb, Ce, Zr, Y, whereas the elements given in Table 2 were treated as extraneous
impurities.

Concentration of Nb in all sample alloys was kept constant at 1.1%, whereas
concentrations of B, Ce, Zr, and Y were kept at 0.025%, 0.015%, 0.04%, and 0.01%,
respectively. Concentration of nickel was treated as represented by the amount
remaining until completing 100%. Thus, chemical elements whose concentrations
were optimized were Ni, C, Cr, Co, W, Mo, Al, and Ti. These design variables were
allowed to vary within the limits given in Table 3.

We contracted these 120 steel alloys to be manufactured each having a specific
different concentration of each of the seven alloying elements. Two simultaneous
objectives of the alloy concentration optimization process were maximize stress and

Table 2 Average concentrations (in percent) of the extraneous species

S P Fe Mn Si Pb Bi

0.0037 0.006 0.085 0.013 0.067 0.0005 0.0005
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Table 3 Ranges of concentrations (in percent) of seven chemical
clements to be optimized

C Cr Co w Mo Al Ti
min 0.13 8.0 9.0 9.5 1.2 5.1 2.0
max 0.20 9.5 10.5 11.0 24 6.0 2.9

maximize time until rupture at a fixed temperature of 975°C. The experimental
evaluation of the stress and life until rupture at a fixed temperature were performed
for each of these 120 alloys. Then we solved the optimization problem based on
this experimental data and found 20 Pareto set points. Next, we had these 20
alloys with optimized concentrations manufactured and experimentally tested for
maximum stress and for maximum time-to-rupture at 975°C. Of these 20 newly
found alloys, 7 were found to belong to a Pareto-optimal set (i.e., we found seven
new superalloy compositions so that each of them allows improvements of both
objectives simultaneously). Or, as it can popularly stated, these Parcto set alloys
represent the “out of box” solutions after Just one iteration with 10SO algorithm.

The remaining 13 of 20 new alloys, although not having Pareto set quality,
could still be considered as valuable because they bring some additional information
to the original data set. By adding the newly found 20 alloys to the original 120
alloys, a new data set was created that had 140 points. The optimization problem
was then repeated with all 140 points resulting in chemical concentrations of 20 new
alloys, which were subsequently experimentally tested. This time, 11 of 20 new alloys
were found to have higher maximum strength and higher life expectancy than any of
the remaining 129 alloys (i.e., these 11 newly found alloys represented a new Pareto
set that was even further “out of the box.” This concluded the second iteration with
10SO algorithm. ,

The total number of experimental points that we could afford on this project
was 200 [26]. This means that we could afford to make. only four iterations
with 10SO where every iteration created 20 new alloy compositions that were
consequently experimentally tested and added to the data set (Fig. 11). This
enriching of the data set also lead to the improved accuracy of the representation
of the multi-dimensional response surface (Figs. 12 and 13).

5. THE CONCEPT OF INVERSE DESIGN OF ALLOY COMPOSITIONS

This is a highly innovative formulation for design of alloys that simultaneously
takes into account the needs and concerns of the user of the new alloy, the
manufacturer of the new alloy, and the materials scientist who should be the creator
of the new alloy chemical composition(s). That is, a structural design engineer
who designed a certain machine part that needs to sustain a certain stress at
certain temperature for a certain period of time until it fails can now request from
a materials scientist to provide a precise chemical composition of an alloy that
will sustain this stress level, at this temperature, and last until rupture for this
length of time. This inverse design method has been formulated as a multiobjective
constrained optimization problem and consequently solved [28] by using I0SO
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Figure 11 History of the four iterations with 10SO algorithm when optimizing chemical composition
of a superalloy by simultaneously maximizing maximum stress and time-to-rupture at 975° Celsius.

Each data point was experimentally measured.

algorithm [14-23]. Actually, the inverse design method is capable of determining
not one, but a number of alloys (Pareto front points), each of which will satisfy
the specified properties while having different percentages of each of the alloying
elements (a different chemical composition). This provides the user of the alloy with
invaluable flexibility when ordering such an alloy, because he/she can order the
alloy which is made of the most readily available and the most inexpensive elements

on the market at that point in time.
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Figure 12 Predicted and observed values of two optimization criteria after first iteration.

Several mathematical formulations have been developed for different ways
how to achieve the inverse determination of chemical compositions of alloys
satisfying a set of specified mechanical and cost properties [28]. Performance of these
formulations was then analytically evaluated in an attempt to determine the most
appropriate formulation. The overall most effective formulation was the one given
in Table 4.

In the following example of the inverse design of superalloys, the
concentrations of the following 14 elements were treated as independent variables:
C, S, P, Cr, Ni, Mn, Si, Mo, Co, Cb, W, Sn, Zn, and Ti. The ranges of these
elements were set as in Table 1. When the temperature and the life expectancy are
unconstrained (unspecified), the 10SO optimizer will give a fairly large domain
for possible variations of the concentrations of Cr and Ni. But, as the constraints
on temperature level are introduced and progressively increased, the feasible

108 4 120 4
e

pol
5 104 g
S =
@ B 80+
s R S
5 100 £
D =

40

96
T T T T T " T 4 T T T T T
96 100 104 108 40 80 120
Stgma observed Time observed

Figure 13 Predicted and observed values of two optimization criteria after fourth iteration.
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Table 4 Simultaneous objective functions and constraints for inverse design of alloys

Objectives (minimize)

Operating Operating Time until Low cost Constraints
stress temperature rupture alloy (minimize)
(0 = 0pec )2 (T — SI,ﬂ)' 8- ‘I,“) Ni, Cr, (6 —0,.)<¢€
Nb, Co. (T-T,,)<¢
Cb, W, (0—0,,)<e
Ti

domain for varying Cr and Ni will start to shrink (Fig. 14). A similar trend can be
observed when the life expectancy is specified and progressively increased. Finally,
when temperature level and life expectancy are prescribed simultaneously and
progressively increased simultaneously, the feasible domain for concentrations of
Cr and Ni rapidly reduces (Fig. 15). Numbered iso-contours in all of these figures

Operating temp: )re - ur 1 Hours > 500 Operating temperature - uncontrolied

18 2 22 2 2% 2 30
Cr

Operating temperature - uncantrolied Hours > 1000

Ni 30

28

26"

2 30 18 20 2 24

18 20 22 24 2
Cr Cr

Figure 14 Progressively increasing the specified temperature level results in a
feasibility range for concentrations of Ni and Cr {24].
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Operating temperature > 1750 F Hours > 750 Operating temperature > 1775 F Hours > 1000

2 »‘“&“ ~ 4%

18 20 22 24 26 28 30
Cr

Operating temperature > 1800 F Hows > 1250 Operating temperature > 1825 F Hours > 1500
v

[

Ni 30
28 28
2 2
18 20 22 24 2% 28 3 18 20 22 24 2 28 30
Cr Cr

Figure 15 Simultaneously increasing the specified life expectancy and the specified temperature level

results in an even more pronounced reduction of the feasibility range for concentrations of Ni and
Cr [28]. :

represent the stress level. It should be pointed out that these are the visualizations
of only two (Cr and Ni) of the 14 chemical elements listed above and optimized
to illustrate how the method works. Similar patterns could be obtained when
observing any other pair of alloying elements.

Because this formulation is a de facto multiobjective constrained optimization,
the results should create a number of Pareto set alloy compositions. For example,
if the designer specifies the desired stress level of 230Nmm~— and the desired
temperature of 975°C, the optimizer will offer 50 possible combinations (Pareto
points) of Ni and Cr concentrations where each of them can provide life expectancy
of 5000h. If the life expectancy is specified by the designer to be 6000h for the
same stress and temperature levels, the allowable range of possible combinations of
Ni and Cr concentrations will decrease and the number of the new alloys that can
have this life expectancy will decrease. This trend will become more noticeable as
the specified life expectancy is increased further to 7000 and eventually to 8000 h

(Fig. 16), or the optimizer will find no Pareto points if the specified life expectancy
is too high.
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Figure 16 Allowable ranges of Ni and Cr concentrations for a specified level of stress and temperature
and different life expectancies. Notice the decrease in the number of options as the specified life
expectancy increases.

6. CONCLUSIONS

Two new formulations for the design of superior alloy chemical compositions
have been developed: 1) a direct multiobjective optimization formulation that
creates chemical compositions with extreme properties (maximum strength,
maximum temperature, maximum time-to-rupture) and 2) an inverse design
formulation that creates multiple new alloy concentration each satisfying prescribed
values of desired operating stress, temperature and life expectancy. Both alloy design
methods use an evolutionary optimization algorithm that uses neural networks,
radial basis functions, Sobol’s algorithm, and self-adapting multidimensional
response surface concepts. Evaluations of physical properties of all alloys were
performed by using classical experimental techniques, thus automatically confirming
the validity of the predictions of properties of the optimized alloys. These alloy
design methods are applicable to design of any type of alloys and can easily account
for additional desired features of new alloys like low cost, low weight, availability,
processibility, etc. Conceptually, these alloy design methods could also incorporate
uncertainty of the alloy manufacturing and testing procedures and thermal and
mechanical post treatment of the new alloys.
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