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This article presents a numerical procedure for automatically controlling desired
features of a melt undergoing solidification by applying an external magnetic field
whose time-varying intensity and spatial distribution are obtained by the use of a hybrid
optimization algorithm. The intensities of the magnets along the boundaries of the
container were discretized by using B-splines. The inverse problem is then formulated
to find the magnetic boundary conditions (the coefficients of the B-splines) in such
a way that the gradients of temperature along the gravity direction are minimized at
each instant as the solidification front advances through a moving melt. For this task,
a hybrid optimization code was used that automatically switches among the following
six optimization modules; the Davidon-Fletcher-Powell (DFP) gradient method, a
genetic algorithm (GA), the Nelder-Mead (NM) simplex method, quasi-Newton
algorithm of Pshenichny-Danilin (LM), differential evolution (DE), and sequential
quadratic programming (SQP). Transient Navier-Stokes and Maxwell’s equations were
discretized by using a finite volume method in a generalized curvilinear nonorthogonal
coordinate system. For the phase change problems, an enthalpy formulation was used.
The computer code was validated against analytical and numerical benchmark results
with very good agreements in both cases.
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2 COLAÇO ET AL.

NOMENCLATURE

CP specific heat at constant pressure
Bx magnetic flux component in x-direction
By magnetic flux component in y-direction
g acceleration of the gravity
Gr Grashoff number
f solid fraction
k thermal conductivity
L latent heat of solidification/melting
h enthalpy
Ht Hartmann number
n partition coefficient in Scheil’s Eq. (5)
p pressure
Pr Prandtl number
Ra Rayleigh number
t time
T temperature
u velocity component in x-direction
v velocity component in y-direction
x� y Cartesian coordinates

Greek letters

� thermal diffusivity
� thermal expansion coefficient
� fluid viscosity
�m magnetic permeability
� electric conductivity
� kinematic viscosity

Subscripts

l liquid value
m melting value
s solid value
0 reference value

1. INTRODUCTION

In some metallurgical system, external stirring is applied to have preferred
morphology and reduced solute microsegregation. During a controlled solidification
process from a melt, it is important to understand the process of solid phase
formation. This process cannot be effectively controlled in strong heat transfer,
except if influenced by a global body force. For example, if an external magnetic
field is applied, the melt flow field will respond and the solid/liquid front shape
and its speed could be manipulated nonintrusively [1–6]. To minimize residual
thermal stresses in the solid accrued during solidification, it is desirable to make
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CONTROL OF UNSTEADY SOLIDIFICATION 3

the melt/solid interface as flat as possible. In addition, it is often desirable to
minimize the transport of impurities from walls of the solidification container to
the mushy region and eventually into the accruing solid phase. If the intensity of
thermal convection is minimized in appropriate parts of the melt flow field, then
solidification will become an almost convection-free process.

The first objective of this work is to present some results obtained with
a time-accurate code capable of simulating magnetohydrodynamic (MHD) flows
with phase change. The second objective is to combine this analysis code and
an optimization code to demonstrate unsteady control of the natural convection
effects in a cavity filled with a solidifying melt. By actively controlling the natural
convection effects, it should be possible to produce solids with desired shapes having
lower thermal stresses than those obtained in a presence of very strong thermal
buoyancy forces.

Two test cases are presented. The first involves only natural convection with
a Rayleigh number equal to 105, whereas the second involves phase change in the
presence of a natural convection with a Rayleigh number equal to 105. Applying
an optimized magnetic field obtained by the use of a hybrid optimizer reduced
the natural convection effects. The difference between this and our previous work
[7] is in the numerical method for dealing with the nonlinear MHD model. The
current method is able to use realistic values of physical properties, especially for
the magnetic Prandtl number and is also time-accurate. The method was validated
against transient and steady-state analytic solutions and then used in an unsteady
magnetic field optimization study.

2. MAGNETOHYDRODYNAMIC (MHD) MODEL

The physical problem considered here involves the laminar magneto-
hydrodynamic natural convection of an incompressible Newtonian fluid. The fluid
physical properties are assumed constant within each phase (solid or liquid) and
linearly varying in the mushy region between the two phases. The energy source
term resulting from viscous dissipation is neglected, and buoyancy effects are
approximated by the Boussinesq hypothesis. The modifications to the Navier-Stokes
equations for the MHD fluid flow with heat transfer come from the electromagnetic
force in the fluid where all induced electric field terms have been neglected [3].
Then, the Navier-Stokes and the Maxwell equations can be written for the Cartesian
coordinate system in two dimensions as

�Q

�t
+ �E

�x
+ �F

�y
= S (1)

where

Q = �	 (2a)

E = �u	∗ − 

�	∗∗∗

�x
(2b)

F = �v	∗∗ − 

�	∗∗∗

�y
(2c)
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4 COLAÇO ET AL.

Table 1 Parameters for the Navier-Stokes and Maxwell equations

Conservation of � 	 	∗ 	∗∗ 	∗∗∗ 
 S

Mass � 1 1 1 1 0 0

x-momentum � u u u u � −�P

�x
− By

�m

[
�By

�x
− �Bx

�y

]

y-momentum � v v v v � −�P

�y
− �g�1− �T − T0��+

By

�m

[
�By

�x
− �Bx

�y

]

Energy � h h h T k
CP

��2
m

[
�By

�x
− �Bx

�y

]2

Magnetic flux in
x-direction

1 Bx 0 Bx Bx

1
�m�

�uBy�

�y

Magnetic flux in
y-direction

1 By By 0 By

1
�m�

�vBx�

�x

The values of S, �, 	, 	∗, 	∗∗, 	∗∗∗ and 
 are given in Table 1 for the equations T1

of conservation of mass, x-momentum, y-momentum, energy, magnetic flux in the
x-direction, and magnetic flux in the y-direction.

Note that we used the Boussinesq approximation for the variation of the
density with temperature in the y-momentum conservation equation. Also note that
in the energy conservation equation, the term CPT was replaced by the enthalpy,
h, per unit mass. This is useful for problems dealing with phase change where
we used the enthalpy method [8]. The above equations were transformed from
the physical Cartesian x� y� coordinates to the curvilinear boundary-conforming
computational coordinate system �� �� and solved by the finite volume method. The
SIMPLEC method [9] was used to solve velocity-pressure coupling problem. The
WUDS interpolation scheme [10] was used to obtain the values of u, v, h, Bx and
By as well as their derivatives at the interfaces of each control volume. The resulting
linear system was solved by the GMRES method.

3. PHASE CHANGE MODEL

In this article, we used the enthalpy method [8] to deal with the phase
change problem. In this method, the energy equation appears as a mixed enthalpy-
temperature equation. Thus, we must obtain some relationship between the
temperature and the enthalpy to be used in the energy equation. For a binary alloy,
if h < hsolid, we have

T = h

CPs

(3a)

or, if h > hliquid

T = h+ TsCPl − CPs�− L

CPl

(3b)
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CONTROL OF UNSTEADY SOLIDIFICATION 5

or yet, if hsolid < h < hliquid

T = Ts = Tl = Tmelt (3c)

For a mixture, we have a range of temperatures where the solidification might occur.
Then, if hsolid < h < hliquid,

T = h+ �TsCPl − CPs�− L�1− f�

CPl + fCPs − CPl�
(4)

where the solid fraction f is given by the Scheil’s model [11]

f = 1−
(
Ts − T

Ts − Tl

)1/n−1�

(5)

In the above equation, we set the partition coefficient n = 2, which reduces the
Scheil’s model to the linear interpolation function. Note that if T < Tsolid, f must
be set to unity and, if T > Tliquid, f must be set to zero. The magnetic and thermal
properties were approximated as linear functions within the mushy region (Tsolid <
T < Tliquid) and kept constant within each phase. Thus, in the mushy region

� = f�s + 1− f��l (6)

where � represents the density, thermal conductivity, viscosity, magnetic
permeability and electric conductivity. For the viscosity of the solid phase we used

�s

�l

≥ 106 (7)

and for the specific heat at constant pressure within the mushy region, we used the
thermodynamic property

CP = �h

�T
≈

√(
�h
�x

)2 + (
�h
�y

)2
√(

�T
�x

)2 + (
�T
�y

)2 (8)

Note that if we are dealing with a mixture, the enthalpy is a function of the
temperature, which is a function of the solid fraction that is itself a function of the
temperature. Thus, if hsolid < h < hliquid, we must solve a nonlinear system for T .
From Eqs. (4) and (5) it follows that

T −
h+ �TsCPl − CPs�− L�

[(
Ts−T

Ts−Tl

)1/n−1�
]

CPl +
[
1− (

Ts−T

Ts−Tl

)1/n−1�
]
CPs − CPl�

= 0 (9)

which can be solved for T by the secant method. It should be pointed out
that in this article we have not considered any sink for the momentum due to
viscous dissipation in the mushy region. We have also not considered dynamic grid
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6 COLAÇO ET AL.

clustering with respect to the solid/melt interface to resolve the details of the mushy
region.

4. VALIDATION OF THE MHD SOLIDIFICATION ANALYSIS CODE

The analysis code was validated against available analytical and experimental
benchmark results. For problems without phase change and without magnetic fields,
other validations can be found [12, 13]. Given below are presentations of the
validations for phase change problems and for problems with magnetic fields.

4.1. Pouiseuille-Hartmann Flow

The Pouiseuille-Hartmann flow is a one-dimensional flow of an electrically
conducting, incompressible, viscous fluid between two stationary infinite parallel
plates with a uniform external magnetic field applied orthogonal to the plates. See
the geometry in Fig. 1, where the fluid enters the domain at x = 0 and the uniform F1

magnetic field is applied orthogonal to the walls located at y = 0 and y = 2H.
The analytical solution for the velocity field is given as [14]

uy� = dP

dx

H2

�

[
coshHt�− cosh

(
Ht y

H

)
Ht sinhHt�

]
(10)

where the Hartmann number is defined as:

Ht = B0H0

√
�

�
(11)

Let us consider the following properties for silicon.

� = 2550kgm−2

CP = 1059Jkg−1 K−1

k = 64Wm−1 K−1

� = 7�018× 10−4 kgm−1 s−1

� = 12�3× 105 �−1 m−1

� = 1�4× 10−4 K−1

�m = 1�2566× 10−5 TmA−1

Figure 1 Geometry for the Poiseuille-Hartmann flow.
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CONTROL OF UNSTEADY SOLIDIFICATION 7

Table 2 Hartmann numbers and magnetic
fields for the three Pouiseuille-Hartmann flow

test cases

Test case no. Ht B0T�

1 1�0 2�3887× 10−4

2 5�0 1�1943× 10−3

3 10�0 2�3887× 10−3

By choosing the channel half-width as H0 = 0�1m, we have evaluated the accuracy
of the MHD code against the following three Pouiseuille-Hartmann flow test cases
(Table 2). T2

Figures 2, 3, and 4 show the comparison between the numerically obtained F2–F4
and the analytical results for a non-uniform grid with 80× 80 quadrilateral cells
clustered symmetrically towards the walls. One can note that the analytical and
numerical results have excellent agreement, with an error less than one percent close
to the walls and less than 0.05 percent at the center of the channel.

4.2. Unsteady Solidification/Melting in a Heat Conduction Problem

Let us consider the following one-dimensional unsteady heat conduction
problem with phase change in a semi-infinite medium (Fig. 5), where the coordinate F5

x = 0 is kept at a temperature T0 < Tm and the infinity x → � is kept at Ti > Tm.
The temperatures within each phase Ts and Tl vary with position x and with time t.
The interface between the two phases vary its position with time as a function st�.

Figure 2 Test case no. 1 for the Poiseuille-Hartmann flow.
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8 COLAÇO ET AL.

Figure 3 Test case no. 2 for the Poiseuille-Hartmann flow.

Figure 4 Test case no. 3 for the Poiseuille-Hartmann flow.

The mathematical formulation of this problem for the solid phase is given as

�2Ts

�x2
= 1

�s

�Tsx� t�

�t
in 0 < x < st�� t > 0 (12a)

Tsx� t� = T0 at x = 0� t > 0 (12b)
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CONTROL OF UNSTEADY SOLIDIFICATION 9

Figure 5 Phase change in a semi-infinite medium.

and for the liquid phase as

�2Tl

�x2
= 1

�l

�Tlx� t�

�t
in st� < x < �� t > 0 (13a)

Tlx� t� = Ti as x → �� t > 0 (13b)

Tlx� t� = T0 for t = 0� x > 0 (13c)

The coupling conditions at the interface x = st� are

Tsx� t� = Tlx� t� = Tm at x = st�� t > 0 (14a)

ks
�Ts

�x
− kl

�Tl

�x
= �L

dst�

dt
at x = st�� t > 0 (14b)

The analytical solution is given as [15]

Tsx� t� = Tm − T0�
erf �x/2�st�

1/2�

erf��
+ T0 (15a)

Tlx� t� = Tm − Ti�
erfc�x/2�lt�

1/2�

erf ���s/�l�
1/2�

+ Ti (15b)

where � is given as a transcendental expression by

e−�2

erf��
+ kl

ks

(
�l
�s

)1/2
Tm − Ti

Tm − T0

e−�2�s/�l�

erfc���s/�l�
1/2�

= �L
√
�

CPsTm − T0�
(16)

The instantaneous solid-liquid interface location st� is given by

st� = 2��� t�1/2 (17)

where � is the thermal diffusivity defined as

� = k

�CP

(18)
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10 COLAÇO ET AL.

Table 3 Physical properties of liquid and solid silicon

� = constant = 2550kgm−3 L = 1�803× 106 Jkg−1

kl = 64Wm−1 K−1 CPl = 1059Jkg−1 K−1

ks = 22Wm−1 K−1 CPs = 1038Jkg−1 K−1

The one-dimensional unsteady heat conduction problem with phase change was
approximated as a two-dimensional plate where the top and bottom surfaces
were kept insulated to reduce the problem from the two-dimensional to the
one-dimensional case. The right wall boundary condition, located at x = 3�0m,
was considered to be at the “infinity” and kept at Ti = 1688�0K. The left wall
boundary condition was equal to the initial boundary condition T0 = 1676�0K. The
melting temperature was Tm = 1683�0K. For this problem, we used silicon with the
following properties (Table 3). T3

Figures 6 and 7 show the comparisons between the numerically obtained and F6–F7
the analytical results at two different times, where the temperature is plotted as a
function of the distance x. The point where the curve changes its slope represents
the place where the solid-liquid interface is located. One can see the excellent
agreement between the numerical and the analytic solutions, showing the good
accuracy of the method for transient heat conduction problems with phase change.
It is interesting to note that, as the interface moves toward the right boundary, the
current numerical results start to slightly deviate from the analytical results in the
region close to the right boundary (Fig. 7). This is due to the fact that we have
approximated the infinity with a finite value of x at the right end of the plate.

4.3. Unsteady Solidification/Melting in a Heat Convection Problem

To validate the transient solidification simulation code in a problem involving
natural convection without a magnetic field, we compared the present code with the

Figure 6 Unsteady heat conduction phase change problem (t = 200 s).



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

CONTROL OF UNSTEADY SOLIDIFICATION 11

Figure 7 Unsteady heat conduction phase change problem (t = 800 s).

results published by Bertrand et al. [16]. They presented several methods published
by other researchers for solving the same problem and compared those numerical
solutions with their own solutions. The problem presented by Bertrand et al. was a
square cavity (Fig. 8) filled with a solid material whose initial temperature T0 was F8

set equal to the melting temperature Tm.
The natural convection was initiated by exposing the left wall to a uniform

temperature greater than the melting temperature when the material starts to melt
at the left boundary. The top and bottom walls were kept insulated, and there was
no magnetic field applied (Bx = 0). The physical properties of the molten steel, taken
from the paper by Bertrand et al. [16] are given in Table 4. T4

Figures 9–12 show comparisons between the present numerical results and the F9–F12
numerical results presented by Bertrand et al. [16] for a grid with 90× 90 cells at
t = 100 s, 250 s, 1000 s, and 2500 s. In each figure, the position of the solidification
front is plotted within the cavity, whose dimensions are normalized by the length,
H . In Bertrand’s article, several solutions from different methods were presented
corresponding to each of the curves shown. One can note a good agreement between

Figure 8 Geometry for the heat convection problem.
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12 COLAÇO ET AL.

Table 4 Physical properties for steel [16]

� = 7500kgm−3 L = 6× 104 Jkg−1

� = 4× 10−5 m2 s−1 Tm = 232�C
k = 60WmK−1 �T = 3�C
CP = 200JkgK−1 � = 8�3× 10−4 K−1

� = 8× 10−7 m2 s−1 H = W = 0�10m

the present numerical results and Bertrand’s solutions. Note that the solutions are
all located in a range, and the present results are located within this range.

4.4. MHD Problem with Natural Convection

To validate our computer analysis code for situations in which natural
convection is influenced by the magnetic field, we compared the present results
with numerical results obtained by Ozoe and Okada [17]. In this problem, the flow
is driven by two kinds of body forces: one due to thermal buoyancy in the y-
momentum conservation equation and the other due to the presence of the magnetic
field. The problem considered by Ozoe and Okada was a cubical cavity whose
transverse section is shown in Fig. 8. Ozoe and Okada used the following parameters

AQ1

for silicon: Pr = 0�054, Ra = 106, Ht = 0, 300, and 500 where the Hartmann (Ht)
number was given by Eq. (11) and the Prandtl (Pr), Rayleigh (Ra), and Grashoff (Gr)

Figure 9 Unsteady melting problem (t = 100 s): current results (dashed line) and a set of representative
numerical results from other sources [16].
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CONTROL OF UNSTEADY SOLIDIFICATION 13

Figure 10 Unsteady melting problem (t = 250 s): current results (dashed line) and a set of representative
numerical results from other sources [16].

Figure 11 Unsteady melting problem (t = 1000 s): current results (dashed line) and a set of
representative numerical results from other sources [16].

AQ1

AQ1



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

14 COLAÇO ET AL.

Figure 12 Unsteady melting problem (t = 2500 s): current results (dashed line) and a set of repre-
sentative numerical results from other sources [16].

numbers are defined as

Pr = �

��
(19a)

Ra = Gr Pr (19b)

Gr = g�Th − Tc�W
3

�2
(19c)

The physical properties for silicon are the same as previously defined, except
for viscosity, which, using the above parameters is obtained as � = 0�00326346kg
m−1 s−1. ChoosingW = 0�15m and g = 9�81m s−2, we obtain �T = 6�54351K. Then,
for the various Ht numbers, we obtained different strengths of the uniform
externally imposed magnetic field, Bo, as

Ht = 0 B0 = 0�0T
Ht = 300 B0 = 0�103019T
Ht = 500 B0 = 0�171698T

Figures 13–15 show comparisons between the present results and those F13–F15

obtained by Ozoe and Okada. The figures show the isotherms obtained in the
presence of magnetic field with Hartmann numbers equal to 0, 300, and 500. Note
that, for Ht = 0, the problem reduces to the natural convection problem without
any magnetic field applied. In Ozoe and Okada’s article, the solutions were obtained
with a grid size of 21× 15 cells, whereas the current results were obtained with a grid
size of 60× 60 cells. One can notice that the results have a reasonable agreement.

AQ1
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Figure 13 Isotherms from Ozoe and Okada’s [17] (a) and current (b) results (Ht = 0).

It is also interesting to note that as the Ht number is increased, the natural

AQ1

convection effects are gradually reduced.

5. HYBRID OPTIMIZATION ALGORITHM

The main objective of this work is to demonstrate how a robust optimization
algorithm can be used to determine proper variation of magnetic field components
on the walls of a solidification container so that desired features of the
melt flow and/or the melt/solid interface can be achieved at each instant of
time. One such robust optimizer is the hybrid optimization algorithm [18, 19]
used in this work. It incorporates six popular optimization algorithms: genetic
algorithm (GA), a quasi-Newton method of Pschenichny-Danilin (LM), modified

AQ1

Nelder-Mead simplex method (NM), sequential quadratic programming (SQP),
Davidon-Fletcher-Powell gradient search algorithm (DP), and differential evolution

Figure 14 Isotherms from Ozoe and Okada’s [17] (a) and current (b) results (Ht = 300).
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Figure 15 Isotherms from Ozoe and Okada’ [17] (a) and current (b) results (Ht = 500).

(DE). Each of these algorithms provides a unique approach to optimization with
varying degrees of convergence, reliability, and robustness at different cycles during
the iterative optimization procedure.

AQ1

For example, the number of cost function evaluations per design iteration of
a GA increases only mildly with the number of design variables, while increasing
rapidly with the increased size of the initial population. In addition, the classical
GA can handle constraints on the design variables, but it is not inherently capable
of handling constraint functions. Thus, the brute force application of the standard
GA to MHD optimization is economically unjustifiable.

The most serious drawback of the brute force application of the gradient
search optimization is that the computing costs increase nonlinearly with the
growing number of design variables, thus making these algorithms suitable for
smaller optimization problems. Specifically, in a gradient-search optimization
approach, the flow analysis code must be called at least once for each design
variable during each optimization cycle to compute the gradient of the objective
function if one-sided finite differencing is used for the gradient evaluation. If a more
appropriate central differencing is used for the gradient evaluation, the number of
calls to the flowfield analysis code will immediately double. Furthermore, during
the optimization process with a typical gradient-based optimization algorithm, local
minima can occur and halt the process before achieving an optimal solution.

In this case, the hybrid optimizer that we developed [18, 19] switches
automatically to another method. That is, a set of analytically formulated heuristic
rules and switching criteria were coded into the program to automatically switch
back and forth among the different optimization algorithms as the iterative
minimization process proceeded [18, 19] with the objective of accelerating the entire
process and avoid premature termination in a local minima. Designs that violated
constraints were automatically restored to feasibility via the minimization of the
active global constraint functions. If at any time this constraint minimization failed,
random designs were generated about the current design until a new feasible design
was reached. The population matrix was updated every iteration with new designs
and ranked according to the value of the objective function. The optimization
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problem was completed when the maximum number of iterations or objective
function evaluations were exceeded, or when the optimization program tried all
individual optimization algorithms but failed to produce a nonnegligible decrease in
the objective function.

6. INVERSE PROBLEM OF DETERMINING THE UNKNOWN MAGNETIC
FIELD BOUNDARY CONDITIONS

In this article we deal with the inverse determination of the magnetic boundary
conditions that give some pre-specified flowfield within some region [7, 19, 20].
Figure 16 shows the geometry and the boundary conditions for the test cases F16

considered here. The height and length of the cavity filled with a melt were equal to
0.15m. The top and bottom walls were kept thermally insulated. The left boundary
was kept at a “hot” temperature, whereas the right wall was kept at a “cold”
temperature. For the first test case, there was no phase change, because the “hot”
and “cold” temperatures were above the melting temperature.

The four walls were subjected to unknown magnetic field distributions whose
directions were made orthogonal to each wall. To satisfy the magnetic flux
conservation equation

� • B = 0 (20)

the following periodic conditions were imposed

B1y� = B2y� (21a)

B3x� = B4x� (21b)

The objective was to minimize the natural convection effects by reducing the
gradient of temperature along the y direction, thus trying to obtain a temperature

AQ1

profile similar to those obtained for pure conduction. The objective function to be

Figure 16 Geometry and boundary conditions.
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Figure 17 Streamlines a) and isotherms b) with B = 0.

minimized was then formulated as [7]

F =
√√√√ 1

#cells

#cells∑
i=1

(
�Ti

�yi

)2

(22)

The magnetic field boundary conditions were determined at either four or six points
equally spaced along each of the four boundaries and interpolated by using B-
splines for the other points at those boundaries. The magnetic boundary conditions
at right wall (x = 0�15m) and the top wall (y = 0�15m) of the container were then
obtained by using periodic conditions from Eqs. (21a) and (21b). The physical
properties were the same as previously used for the comparison with the Ozoe and
Okada’s article. For the first test case, the temperature difference Th − Tc was set
equal to 0.654351K, which gives a Rayleigh number of 105.

Figure 17 shows the velocity and temperature profiles predicted for the first F17

test case without any magnetic flux applied and no phase change. Figure 18 F18

Figure 18 Streamlines a) and isotherms b) resulting from B optimized at four points per boundary.
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Figure 19 Optimized magnetic boundary conditions at x = 0 and y = 0 with the estimation of B at
four points per boundary.

shows the optimized velocity and temperature profile using four points on each
boundary for the estimation of the magnetic boundary conditions. One can see
that the gradients of temperature in the y direction are reduced. Figure 19 shows F19

the optimized boundary conditions for x = 0 and y = 0, and Figure 20 shows the F20
convergence history of the process. One can see that the differential evolution (DE)
algorithm did almost all the work.

Figure 21 shows the velocity and temperature profiles that result when six F21

terms are used in the B-spline on each boundary for the discretization of the
magnetic boundary conditions, and these terms are optimized to minimize the
objective function, Eq. (22). It is apparent that using more design variables (B-
spline control points) in the optimization creates better results where the gradients
of temperature in the y direction are further reduced.

Figure 22 shows the optimized boundary condition for x = 0 and y = 0, and F22

Figure 23 shows the convergence history of the process where one can see that the F23
differential evolution (DE) and genetic algorithm (GA) [21] optimization modules
did almost all the work.

Figure 20 Optimization convergence history for the estimation of B at four points per boundary.
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Figure 21 Streamlines (a) and isotherms (b) resulting from B optimized at six points per boundary.

The objective of the second test case was to minimize the curvature of the
isotherms throughout the solidification process and especially at a prespecified time
after the start of the solidification process. The following physical properties for
silicon were used (Table 5) because appropriate values for steel were not available. T5

The temperature difference Th − Tc was set equal to 6.54351K (Th =
1686�04351K, Tc = 1676�5K), and the length of the square container was taken
as 0.069624 m, which gives a Rayleigh number of 105. The solidus and liquidus
temperatures were equal to 1681.0K and 1686.0K, respectively. Thus, a mushy
region exists between the phases. The initial condition was set as T0 = Th. Then, the
solidification process without magnetic field started at the right wall, where T = Tc.
The solidification front propagated toward the left wall accompanied by a strong
recirculation of the remaining melt. Figure 24 shows the streamlines and isotherms F24

for this test case, predicted at 500 s.

Figure 22 Optimized magnetic boundary conditions at x = 0 and y = 0 with the estimation of B at six
points per boundary.
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Figure 23 Optimization convergence history for the estimation of B at six points per boundary.

Table 5 Physical properties of molten and solid silicon

�l = 2550kgm−3 �s = 2330kgm−3

kl = 64Wm−1 K−1 ks = 22Wm−1 K−1

CPl = 1059Jkg−1 K−1 CPs = 1038Jkg−1 K−1

�l = 0�0032634kgm−1 s−1 �s = 1�0× 103 kgm−1 s−1

�l = 12�3× 105 l/m � �s = 4�3× 104 l/m �

� = 8�3× 10−4 K−1 g = 9�81ms−2

�m = 1�2566× 10−5 TmA−1 L = 1�803× 106 Jkg−1

Figure 24 Streamlines (a) and isotherms (b) at 500 s with B = 0.

AQ1
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Figure 25 Streamlines a) and isotherms b) at 500 s resulting from the optimization of B at six points
per boundary.

Figure 25 shows the streamlines and isotherms resulting from optimization of F25

six B-spline points used for the discretization of the magnetic boundary conditions
on each of the four walls so that solid/melt interface is as vertical as possible at
each instant and especially at 500 s after the start of solidification. The boundary
conditions at the other points on the walls were interpolated by using these B-
splines. One can see that the resulting curvature of the isotherms in the melt and the
solid for this MHD solidification test case is smaller than that in Fig. 24.

Figure 26 shows the optimized magnetic field boundary condition for x = 0 F26

and y = 0 at 500 s, indicating that the strength of the externally applied magnetic
field is quite low. Figure 27 shows the convergence history of the optimization F27

process where one can see that the genetic algorithm (GA) [21] module did almost

Figure 26 Optimized magnetic boundary conditions at 500 s with the estimation of B at six points per
boundary.
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Figure 27 Optimization convergence history for the estimation of B at six points per boundary at 500 s.

all the work. The iterative process was forced to stop after 70 iterations due to the
high computational cost involved.

7. CONCLUSIONS

In this article we have presented the results of a time-accurate MHD code that
is capable of dealing with phase change problems. The code was validated against
analytical and numerical (benchmark) results showing excellent agreement and was
applied to test cases involving steady-state and unsteady solidification. The ability
to minimize the natural convection effects in problems with and without phase
change was demonstrated by determining an optimized distribution of magnetic filed
along the boundaries of a container. A hybrid constrained optimization algorithm
involving several evolutionary optimization modules with an automatic switching
among them was used to determine unsteady boundary values of magnetic fields
that were modifying the isotherms pattern to those similar to pure conduction
problems. This de facto automatic control algorithm is directly applicable to
solidification from a melt of arbitrary materials, including ferrous alloys, and is
extendable to three-dimensional geometries.
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