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Aerodynamic data modeling using support vector machines
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Aerodynamic data modeling plays an important role in aerospace and industrial fluid engineer-
ing. Support vector machines (SVMs), as a novel type of learning algorithms based on the
statistical learning theory, can be used for regression problems and have been reported to
perform well with promising results. The work presented here examines the feasibility of
applying SVMs to the aerodynamic modeling field. Mainly, the empirical comparisons between
the SVMs and the commonly used neural network technique are carried out through two
practical data modeling cases — performance-prediction of a new prototype mixer for engine
combustors, and calibration of a five-hole pressure probe. A CFD-based diffuser optimization
design is also involved in the article, in which an SVM is used to construct a response surface
and hereby to make the optimization perform on an easily computable surrogate space. The
obtained simulation results in all the application cases demonstrate that SVMs are the potential
options for the chosen modeling tasks.

Keywords: Aerodynamic data modeling; Support vector machine; Neural networks;
Application
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1. Introduction

Many design and control problems encountered in flow machines and systems in
aerospace and fluid mechanical engineering incorporate the aerodynamic data model-
ing. For example, an aircraft engine should be calibrated against its performance. A
process gas-compressor, turbine or pump should be measured to obtain the perfor-
mance curves, and a flow-field measurement tool or an instrument should be calibrated
in static and dynamic conditions, etc. These aforementioned cases are just a few of the
numerous examples in which aerodynamic data modeling may play an important role.
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Aerodynamic data modeling can be viewed as a problem of the approximation of
input-output function mapping from the available sample data that may be obtained
through wind-tunnel experiments, or more recently, by numerical simulations. There
have been many ways in which scientists and engineers can get an approximating
analytic function from the aerodynamic data. The most-commonly-used approaches
would be polynomial fits and spline functions [1-4]. However, the determination
of the correct terms and coefficient range from the existing data for multivariate
polynomial fitting or spline function is a difficult task. Neural networks (NNs),
and, in particular, multi-layer feed-forward NNs, can be trained to approximate
virtually any smooth, measurable nonlinear input-output relationships. In recent
years, NNs have become popular in the aerodynamic data modeling field, and have
produced promising results: NNs were successfully used as an estimator of jet
engine performance [5]; NNs were applied in aerodynamic optimization design to
construct a response surface for the design space to reduce the computing-time from
the direct CFD analysis [6,7]; NNs were adopted for calibration of multi-hole aero-
dynamic pressure probes [8,9], etc. Nevertheless, some inherent drawbacks, such as
slow training convergence speed, less than general performance, local minima and
over-fitting problems, usually make NNs being restricted in their applications to
practical problems. Hence, for aerodynamic data modeling, it is still worthwhile to
go on to seek the approaches that are superior to the current approaches such as
neural networks.

Support vector machines (SVMs), developed by Vapnik [10], are a novel type of
statistical learning strategy. They are gaining popularity due to many attractive features
and empirical performance [11-13]. SVMs embody the structural risk minimization
(SRM) principle, which has been shown to be superior to the traditional empirical
risk minimization (ERM) principle, employed by conventional neural networks.
SRM minimizes an upper bound of the generalization error, as opposed to ERM
that minimizes the error on the training data. It is this difference that equips SVMs
with greater ability to generalize, and to achieve global minimum, which are just the
goals in statistical learning. At the same time, SVMs can be theoretically analyzed
and easily implemented. Real-world applications often mandate the use of more
complex models and algorithms — such as NNs — that are much harder to analyze
theoretically. SVMs can achieve both. They construct models that are complex
enough: they contain a large class of neural networks, radial basis function (RBF)
networks, and polynomial classifiers as special cases. Yet it is simple enough to be
analyzed mathematically, because it can be shown to correspond to a linear method
in a high-dimensional feature space nonlinearly related to input space. Moreover,
even though a high-dimensional space is treated in an SVM, in practice, it does not
involve any computations in this space. By the use of kernels, all the necessary compu-
tations are performed directly in the input space [13].

This article presents a pioneer and empirical study of using SVMs to model aero-
dynamic data. Mainly, the empirical comparisons are carried out with two practical
modeling application cases to demonstrate how the SVMs perform over the commonly
used NNs, which concern performance-prediction of a prototypic mixer designed for
engine combustors, and calibration of a five-hole pressure probe. The work also
includes a CFD-based diffuser optimization case, in which an SVM is used to construct
a response surface for the design space so as to make the optimization able to perform
on more easily computable surrogate space.
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2. Overview of SVM regression

Originally, SVMs were developed for pattern recognition problems. Recently, they have
been successfully extended to nonlinear regression estimation [14]. In regression formu-
lation, the goal is to estimate an unknown continuous-valued function based on a finite
number set of sample data G = {(x;, d,-)}f=l (x; is input vectors, d; is the desired values).
SVMs approximate the function by a linear regression

/
)= wighi(x) + b (1)
i=1

in a feature space F. Here, {¢i(x)}’1:1, denote a set of nonlinear transformations from
input space x to feature space F, and {wi}ﬁzl, b are coefficients.

Now the question is to determine {w,-}le, b from the sample data by minimization the
regression risk, R.,(f), based on the empirical risk,

i=1

N
Rree(f) = C|:1/NZL(diafi):| +1/20wl? 2

where C is a pre-specified constant determining the trade-off between the training error
and the regression function flatness, L(d,f(x)) is a cost function that measures the
empirical risk. The second term, 1/2||w|°, is used as a measure of function complexity.
In general, the e-insensitive loss function is used as the cost function [11]. For this func-
tion, when the data points are in the range of +¢, they do not contribute to the output
error. The function is defined as

0 otherwise

L, f(x)) = { (d—f() —¢ if |d—f()] = ¢ 5

SVM regression performs linear regression in the high-dimensional feature space using
e-insensitive loss function and, at the same time, tries to reduce model complexity
by minimizing the term, 1/2||w||?, in equation (2). This can be described by introducing
(non-negative) slack variables ¢, {* to measure the deviation of a sample outside the
e-insensitive zone. Thus SVM regression is formulated as the following minimization
problem:

min[l/zuwnzw oG+ z?‘)} )

i=1

wo(x)+b—di<e+¢
s.t. 3 di —w(x;) — b <e+¢F ®)
g‘ia é‘;k 2 0
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Using the Lagrange function method to find the solution of the above problem can lead
to a Quadratic Programming (QP) problem

I I
max ¢la;, o) = D diai—a)—e ) (i +af)
: pas i=1

/ /

—1/2) > (o — ooy — o) K (i, ) (6)
i=1 j=1
1
s. t. Z(a,-—oe?):o, O0<a;<C, O0<af=<C, i=1,...,1 (N

i=1

where o;, of are Lagrange multipliers introduced. K(x;, x;) is called kernel function.
Its value is equal to the inner product of two vectors x; and x; in the feature space
o(x;) and @(x;), ie., K(xi,x;)=¢(x;)- ¢(x;). Any symmetric function satisfying
Mercer’s condition [10] can be used as the kernel function. The commonly used
kernels include the linear kernel, the polynomial kernel, the Gaussian kernel and
spline kernel [12].

Solving the above QP problem of equation (6) with constraints of equation (7), the
Lagrange multipliers «; and o] can be determined. Therefore, the linear regression
equation (1) becomes the following explicit form:

/
S =Y (ai—a)K(x,x)+b st.0<af<C, 0<¢=<C (8)

i=1

So far, the regression to the data can be completed by the SVM method. Based on the
nature of the corresponding QP, in general, only a number of coefficients «;, of will be
assumed as non-zero, and the data points associated with the pair can be referred as
“Support Vectors (SVs)” (from which SVMs get the name).

3. Empirical comparisons of SVMs and NNs with two practical modeling cases

3.1. Tasks and data

3.1.1. Performance-prediction of prototypic mixer. Recently, a novel prototypic mixer
for flameless-oxidation engine combustors was investigated by one of the current
authors [15]. In that work, a set of input—output data that sampled the mixing processes
of the mixer was obtained through CFD numerical simulations. Here some of those
data are taken for making up a modeling task for our application purposes. The
mixer is simply taken as a “box”’, as shown in figure 1, with the given height, length
and width, denoted as H, L and W, respectively. The two cross-section-equal inlet
channels, arranged up and down, are used to conduct the to-be-mixed cold air and
hot air into the mixer chamber. The boundary-contour in the inlet section that sepa-
rates the two inlet air streams is shaped as a periodic and square tooth-indent, which
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Figure 1. Geometry and specifications of the prototypic mixer.

is determined in geometry with the height 4 and the width, w. A parameter, called
Temperature Pattern Factor (TPF), is selected as a criterion to describe the mixer
performance, which can be defined on the exit cross section of the mixer as
TPF = (Tmax — T )/(T> — T}), where Ty is the peak (or maximal) temperature at
the section, and T is the flow-weighted average temperature; the temperatures 75, T»
relate to the cold-air stream (upper) and the hot-air stream (lower), respectively.
Assuming that one’s attention is focused on how the periodic inlet boundary-contour
affects on the mixer performance, the modeling task can then be described as an
approximation of the parameter, TPF, as a function of the two geometric parameters
of the inlet boundary-contour, 4 and w, as

TPF = TPF(h, w) 9)

The height and length of the mixer were kept constant as: H=0.05m and L=0.2m,
while the width W can be determined in dependence on the cyclic status of the inlet
boundary-contour. The temperatures of the cold air and the hot air are chosen as
T,=500K and 7>=1000K. The inlet cold air and hot air velocities are also kept in
constant as V', =150m/s and V> =>50m/s, respectively. The inlet geometric parameters
h and w were selected within certain number of different values: 2=0, 0.015, 0.03, 0.04,
0.05m, and w=0.0025, 0.005, 0.01, 0.015, 0.02, 0.03, and 0.05m. The commercial CFD
code, STAR-CD, was used for the above experimental simulations. The high Reynolds
number k-epsilon turbulence model, discretization strategies, such as UD scheme
for convection terms and CD scheme for diffusive terms of governing equations, the
well-known SIMPLE method for velocity-pressure linkage were applied in the numer-
ical analyses [5]. From the above specifications and simulations, in total 35 experimen-
tal points were obtained. In addition, 12 testing points were also simulated that were
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Figure 2. Training data and testing data for performance-prediction of the prototypic mixer.

prepared to assess the modeling. The training data points and testing data points are
shown in figure 2.

3.1.2. Calibration of multi-hole pressure probe. Multi-hole probes are easiest-to-use
and cost-effective devices for three-component velocity measurements of fluids in
research as well as in industry environments. By measuring each pressure at the ports
of a probe’s tip and through the use of proper calibration methods, the multi-hole
probes can measure the three velocity components, the total and static pressure of a
flow-field at the location of its tip. Their calibrations are suitable for establishing the
mapping relations between the pressure values measured in the multiple ports and
the measured flow-field properties.

A five-hole probe with a conical tip is chosen in this example case. The configuration
of the probe and its coordinate system is shown in figure 3. In the tip, one port sits at
the center of the cone, while the other ports are axisymmetrically arranged in a ring
downstream. Generally, a local velocity vector in the measured flow-field can be fully
determined with four local flow parameters. They are the flow pitch angle, «, the
flow yaw angle, 8, the total-pressure-coefficient 4,, and the static-pressure-coefficient
A, Consequently, to calibrate the probe is to determine the above four variables
(output variables) as functions of the five measured pressures or equivalently and
more usually, two non-dimensional pressure coefficients, B,, Bs (input variables). Let
Ps denote the pressure measured at the central port, and P;, i=1, 2, 3, 4, denote the
pressures at the other four ports. The pressure coefficients, B,, and Bj;, are defined
as: By=(Ps— Py)/P, Bs=(P,— P3)/P', where P'=Ps—025-Y% P, From the
calibration data, it can be found that both the total-pressure-coefficient, 4;, and the
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Figure 3. Configuration of the five-hole pressure probe and its coordinate system.

static-pressure-coefficient, 4;, have more non-linear relations with the measured
port pressures compared with both flow angles, « and §. For simplicity, in this
application, only the output variables, 4,, and A, are considered. The calibration of
the probe is to establish the following function relationships

Ay = A((Ba, Bs), A; = Ay(Ba, Bs) (10)

The probe calibration data was obtained on an air jet calibration facility (i.e. a wind-
tunnel). Varying the « and § in steps of 5° from —30° to +30° respectively, the total
13 x 13=169 data points were obtained that form 169 input output pairs. From
these data points, 101 are chosen as the training data that is used to establish SVMs,
and two groups of testing data are prepared, namely, one with 20 points (Testing
Data 1) and another with 48 points (Testing Data 2), for later-on different testing pur-
poses. This data is shown in figure 4. Since the data is rather diverse in scales in this
case, the values of each variable were normalized to [0, 1] in order to get more efficient
training for SVMs and NNs.

3.2. Experimental results

Three SVMs were established, where one is for performance-prediction of the proto-
typic mixer and the other two for calibration of the total-pressure-coefficient and the
static-pressure-coefficient of the chosen five-hole pressure probe. Meanwhile, the
multi-layered feed-forward NNs are chosen as benchmarks for a comparison. Three
NNs are constructed corresponding to the three established SVMs. Each SVM and
its counterpart NN are trained with the same training data and tested with the same
testing data. Mean square error (MSE) is used to measure the performance of training
and testing processes for SVMs and NNs. The goal errors to be satisfied by the SVMs
and NNs for training are chosen as: for performance-prediction of the prototypic mixer
— 0.0005; for total-pressure-coefficient calibration — 0.00005, and for static-pressure-
coefficient calibration — 0.0045.
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Figure 4. Training data and testing data for calibration of the five-hole pressure probe.

3.2.1. Implementation of SVMs. The training work was performed with a Matlab
toolbox for SVMs freely available in the Internet website http://www.isis.ecs.soton.
ac.uk

In training the SVMs, some options need to be decided a priori. As examples of the
kernel-scope methods the choice of kernel functions is of course, very important to
SVMs. In addition, the performance of SVM training also depends on the two pre-
scribed control parameters, C and ¢. In general, the above options are problem-specific
and can be determined through a trial-and-error process. In our cases, trial-and-error
experiments for these options are done and the results show that when the three-
order spline function is taken as the kernel function, and both C and ¢ as 100 and
0.001, respectively, the best possible results can be produced for any of our modeling
tasks. Consequently, those options were selected in our application.

3.2.2. Founding of NN models. Each NN is specified as two-layered with a single-
neuron-second layer to output the function parameters such as TPF, 4, and 4, and
is trained by the same data used to train the corresponding SVM. The number of the
neurons in the first layer of each NN is determined through the trial-and-error
processes to make it have an optimal topological structure for the selected modeling
task and hereby to have a maximal competitiveness against the counterpart, the
SVM. The following statistical procedure is implemented for each NN to find the opti-
mal number of the neurons. Starting with a small neuron number in the layer, the NN is
trained with the training data till a given goal error was satisfied. It was then used to
predict the testing data, and the relating MSE was recorded. This training-predicting
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coupling operation was repeated for the chosen neuron number with 100 different
initials of NN connection weights. The above steps were further repeated with progres-
sively increasing neuron numbers from small to large. Average errors over the 100 runs
under each given neuron number were used to evaluate the NN structures. From the
experiments, the three NNs get their optimal neuron number in the first layer as fol-
lows. For performance prediction of the prototypic mixer, the NN is with 4 neurons
in the first layer. For the calibration of the pressure probe, the NN for the total-
pressure-coefficient is with 26 neurons in the first layer, while the NN for the static-
pressure-coefficient is with 28 neurons in the layer. For all three NNs, the neurons
in the first layer take the “‘tansig” transfer function, and the neuron in the second
layer takes the simple linear transfer function. The BP algorithm is used for training.
The training and the testing of all the NNs are implemented by using the NN toolbox
in Matlab 6.1.

3.2.3. Results. The SVM trained for performance-prediction of the prototypic mixer
is examined in comparison with the corresponding NN through its testing data, while
the two SVMs trained for calibration of the five-hole pressure probe — through the
Testing Data 1 prepared for this case. For each case, the NN has 100 different predic-
tion outcomes since it is trained with 100 different runs.

Some comparative results are obtained and shown in figures 5, 6 and 7. In each
of these figures, the first subfigure presents the SVM prediction results to the related
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Figure 5. Testing results of the SVM and the NN in the case of performance-prediction of the prototypic
mixer.
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Figure 6. Testing results of the SVM and the NN in the case of calibration of the five-hole pressure
probe — calibration.
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testing data, the second to the fourth subfigures present the NN prediction results to the
same testing data. All the prediction errors are recorded and listed in the figures. From
the results, the following facts can be found:

e For the case — performance-prediction of the prototypic mixer, the SVM performed
quite better than the NN in predicting the testing points. The average error (0.0020)
of 100 NN prediction times is much larger than the SVM prediction error (0.0004).
Moreover, in 100 prediction times, only three times has NN been as accurate or
better than the SVM prediction.

e For the case — calibration of the five-hole pressure probe, the results are more
complicated. In the total-pressure-coefficient calibration, the SVM and the NN
performed very similarly as they are in the case of the prototypic mixer. The SVM
is better than the NN: the average error (0.00007) of 100 NN prediction times is
larger than the SVM prediction error (0.00004), and in 100 prediction times NN
has only 24 times been better or as good as the SVM prediction. On the other
hand, in the static-pressure-coefficient calibration, the SVM cannot perform better
than the NN. The SVM prediction error is 0.0109, a little bit larger than the average
error (0.0081) of 100 NN prediction times. And in 100 prediction times, NN has 83
times been better than or as good as the SVM prediction.

e For all the selected modeling cases, the results from 100 NN different prediction
times are quite random and varying with large ranges. This uncertainty phenomenon
is of course unwelcome in any modeling, but it is an inherent drawback of NN-based
modeling. To further explain this, it is needed to re-mention the principle of NN
training. As is well known, NNs employ the ERM principle. So, training of an NN
is to minimize an empirical risk function (in our cases, a mean square error function)
that is multi-modal with many local minima. In the meantime, the training algo-
rithms commonly used are gradient-based ones (e.g. BP algorithm in our cases),
which easily fall into the local minima. As the results show, with different initials
of the connection weights an NN training can attain different local minima and
hereby get different results.

3.3. An extended observation

As aforementioned, with the learning principle SRM that differs from the ERM
possessed by NN approaches, SVMs should have a better generalization ability
than NNs. Our previous evaluations have been done only from the standpoint of
interpolation, i.e., the predictions are made within the space spanned by the training
data. In this sub-section an extended observation is performed to investigate the extra-
polation ability — generalization ability — of the compared approaches. The case of
calibration of the five-hole pressure probe is only chosen for this purpose. The two
SVMs and two NNs established for both the total-pressure-coefficient and the static-
pressure-coefficient are used to predict the Testing Data 2. These testing points are
located outside the training data space (see figure 4). The prediction results are com-
paratively shown in figures 8 and 9, which prove the deduction on SVMs and NNs,
that is, SVMs have a better generalization ability than NNs. In the total-pressure-
coefficient calibration, the SVM predicts the testing points well with the prediction
error as 0.0009, while all the 100 NN prediction results are worse than the SVM predic-
tion (the NN best prediction error is 0.0054, the worst 0.4243, and the average 0.1184).
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In the static-pressure-coefficient calibration, the SVM does not perform as well as in
the total-pressure-coefficient calibration, but is still quite acceptable. The SVM predicts
the testing points with the prediction error as 0.0360, and NN predicted those points
with errors as: the best 0.0286, the worst 0.9283 and the average 0.2042. In the 100
NN prediction times 4 are better than or as good as the SVM prediction. In addition,
if comparing NN performance in these cases with that for interpolation, it can easily be
found that the prediction ability of the NNs has become much worse with the recorded
errors being much larger and more diverse. Furthermore, from the previous evaluations
it is known that for interpolations the SVM is not superior to the NN in the case
of static-pressure-coefficient calibration. However, for extrapolation problems with
the same compared SVM and NN, the former proves to be better than the latter.
This further indicates that the SVM has a good robustness feature in generalization
performance.

4. Application in a diffuser design

In the CFD-based shape optimizations encountered in fluid and aerospace engineer-
ing, a fatal obstacle may be the time consumed to obtain the objective values. In
general, during the optimizations, a certain number of candidate solutions are
required to evaluate, especially, when the populated optimization methods, such as
evolutionary algorithms, have to be applied to the problems. If a high fidelity
CFD code, like a Navier—Stokes equations-based code, is employed into an optimizer
to directly analyze each solution, the time taken by the optimization process may,
in most of the cases, become too long to be acceptable. One commonly used measure
taken to avoid this problem is to introduce the response surface technique into the
optimization process. Response surface technique has an extensive application to
many engineering optimizations. When the technique is used in the CFD-based
shape optimizations, the response surfaces are usually taken as surrogates of the
actual design space. The original design space is first sampled to get some
experimental points deemed to well represent the original space through the chosen
CFD code. The obtained data is then used to establish some response surfaces so
as to make up the surrogates to the original design space, on which the optimization
can be performed. Obviously, the establishment of the response surfaces is cast to
the construction of a mapping relationship between a set of input-output data.
As demonstrated earlier in this article, SVM will be a suitable candidate to such
problems.

Diffusers are commonly used to convert dynamic pressure into static pressure rise.
The problems of designing a diffuser for maximum pressure recovery or minimum
total pressure loss has been found to be a well-suited touchstone for CFD-based
optimization because of the relatively rapid and robust convergence conditions and
the ease of interpreting optimum design solutions from underlying flow physics.
Much work has been done in diffuser shape optimizations using the response surface
technique. An interesting recent work was reported by Madsen et al. [16]. In this
section, the SVM technique is applied to make up the response surface in a CFD-
based diffuser optimization case. This simple example demonstrates the SVMs’ ability
in this field.



274 H.-Y. Fan et al.

Figure 10. Two-dimensional, symmetric diffuser to be optimized.

4.1. Optimization problem

The diffuser to be optimized has an overall geometry as in [16]. The diffuser (figure 10)
is two-dimensional, planar and symmetric, and defined by the ratio of the inlet and
outlet areas AR and the length/height ratio L/D, where L is the axial length of the
diffuser and D is its inlet throat half-width. The L/D ratio is fixed at 3 and the area
ratio AR at 2.0. Expressed in terms of the inlet half-width D, the horizontal length of
the inlet section is 1 D, whereas the horizontal length of the outlet is 10 D.

The shape of the curved wall-section between the straight inlet and the outlet sections
of the diffuser is to be optimally designed for a good performance of the diffuser. In
order to make the search easier, this wall-section’s contour is parameterized. There
are many methods that can be used to perform the current parameterization.
Because our current application is mainly illustrative, the contour is presented with a
simple fourth-order polynomial function. Moreover, the contour in its two ends is
asked to ensure C'-continuity to connect to the straight wall-sections. The polynomial
can then be determined with one control point, or its two coordinate parameters. For
more simplicity, we specify the control point fixed horizontally at the central position of
the curved wall-section. Accordingly, the contour of the curved wall-section is reduced
being controlled with only a vertical coordinate parameter, that we denoted as y;.
To keep the contour to have an as high as possible monotonicity and the optimization
to have an as large as possible search space, the appropriate value range of the
parameter y; is defined as 0.9 <y;/D <2.1 through a cross-experiment.

The total pressure loss coefficient of the diffuser is taken as the objective to be
minimized. It is defined by ¢, =1 —pf,./pi, where pf and p?, are the inlet and
outlet total pressures. The optimization problems can then become

ming,(y), 0.9 <y /D <2.1 (11)

4.2. Construction of response surface

Let the parameter y, varies in 25 different values uniformly distributed within the range
0.9 <y;/D <2.1. Consequently, 25 different wall-section contours are defined. For each
contour, the corresponding flow-field is analyzed by the CFD method as described in
the following and the function value, the total pressure loss coefficient is calculated.
The flow in our case is incompressible and fully turbulent with a Reynolds
number Rep=4.28 x 10°, based on the inlet half-throat width. The two-
dimensional unstructured flow analysis code [17] is applied which is based on the full
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Figure 11. The experiment data, SVM approximation (response surface) to the search space and the DE

optimum solution and its CFD verification in the diffuser optimization.

Reynolds-averaged Navier—Stokes equations with the original k— w two-equation
turbulence model as a closure form. The computation domain is discretized using an
unstructured mesh. The discretization of the governing equations is done using a
finite volume method. Roe’s flux-difference scheme has been used for inviscid fluxes.
Directional derivatives along edges are used for viscous fluxes. The gradients at the
mesh vertices are calculated using the Least-squares method.

The obtained 25 input—output data pairs are then used to establish a SVM to be the
response surface of the design space, i.e., to approximate the function relationship
between the contour parameter y, to the total pressure loss coefficient ¢,-. In the train-
ing of the SVM, the prescribed control parameters, C and ¢ are taken as 1000 and 0.001,
by trial-and-error, and three-order spline function is taken as the kernel function. The
samples points and the search space approximated by the SVM are shown in figure 11.
From the figure, it can be found that the SVM well regressed the experimental data of
the search space, so can be a good response surface approximating the space.

4.3. Optimization results and discussions

A promising novel evolutionary-algorithm-kind optimization method — differential
evolution (DE) is applied to search the optimum contour of the diffuser. This
method has been empirically demonstrated to be efficient, effective and robust [18].
As with any other evolutionary algorithm, DE works in a population of trial solutions,
and through performing a set of different operations, including mutation, crossover
and selection, among the individuals in the population to evolve the population to
approach the optimal target. There are several variant versions of DE. The one
called “DE/rand/1/bin-version”, which appears to be the most frequently used variant
and is often considered as the ““basic” version of DE [18], is chosen for our purpose.
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Figure 12. The evolving process of the 20 trail solutions in a population in DE optimization.

With the population size taken as 20, DE can search out the optimum contour in
about 15 generations: from the divergent 20 trial solutions in initial population, DE
quickly evolves the population, and at the 15th generation, the population almost
converges to identical individuals (at the point y;=1.7509), and attains the lowest
position (£, = 0.844%) in the response surface landscape. The searched optimum
point is verified by the CFD code described earlier, and the experiment value of the
total pressure loss coefficient for this point is 0.840%, almost identical with the value
on the response surface (see figure 11). The above population evolving processes are
recorded and shown in figure 12. Since our optimization problem is one-dimensional,
it enables us to easily define the position where the optimum is and to conveniently
evaluate the DE searched results. It can conclude that DE indeed finds the global
optimum. The optimum contour is presented in figure 13, where the range of the
search space is also shown. As we expected, the optimum contour should be with
a good monotonicity that can ensure the flow goes “smoothly” through without a
suddenly compressing-diffusing or diffusing compressing process to result in additional
energy loss. Evidently, the contour located in the area near the bounds has a bad mono-
tonicity, and thus has a bad performance.

It is also worthwhile to mention some time-consuming comparison here. In our
current CFD experiment, the computation domain is discretized with about 4 x 10*
cells. It takes more than an hour to complete such an analysis in a general Unix
system. If no response surface technique is taken into studied optimization, and if
it is assumed that DE need the same generations to get the optimum solution, in our
simplified diffuser case, about three hundred CFD analyses should be done, and con-
sequently more than three hundred hours should be needed to complete the optimiza-
tion. With the response surface technique introduced into the optimization, it is only
needed to take time to get the experiment points to construct the surface (in our current
case with 25 samples points only 25 CFD analyses are required). After the surface is
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Figure 13. The curved parameterized contour range and the optimum contour obtained by DE
optimization.

set up, DE can complete the optimization in a very short time (e.g., several seconds to
minutes). The fact that the response surface technique can make a CFD-based
optimization to be able to solve in an acceptable time is proven with our simple case.

5. Conclusions

The application of the SVM approach in aerodynamic data modeling is studied and
presented in this article. In principal, SVMs are empirically with the commonly used
multi-layered feed-forward NNs as benchmarks in two practical modeling cases:
(a) performance-prediction of a prototypic mixer that is designed for engine combus-
tors; and (b) calibration of a five-hole pressure probe that is commonly used in 3-D
flow-field measurements. From the experimental results it can be concluded that
SVMs provide a promising alternative to fulfill the chosen modeling problems. For
the performance-prediction problem, the established SVM performs evidently better
than the NN. For the calibration problem, the SVMs perform better (in the case
of the total-pressure-efficient calibration) or not better (in the case of the static-
pressure-efficient calibration) than their counterparts. However, SVMs clearly demon-
strate a good generalization ability, compared with the NNs in the selected observation
case. The results also showed the very important superiority of SVMs over NNs — the
high certainty. With different training, NNs can get different results. This inherent
drawback of NNs is well eliminated in SVMs. The paper also involves a practical
CFD-based diffuser optimization case in which SVMs can be applied. In the case
that a SVM is used to construct a response surface to approximate the design space,
in this way to avoid directly using a CFD code in the optimization process, thus to
make the optimization to be solved in an acceptable time. Again, the simulation results
demonstrate effective utilization of SVMs in this field.
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