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Introduction we focus on the inverse determination of the junction temperature
distribution on the microchip, typically called a die. The die junc-

It is often difficult and even impossible to place temperaturﬁon temperature is a critical quantity in the design of electronic

probes or heat flux probes on certain parts of a solid body surface. : : : h
This can be either due to its small size, geometric inaccessibiIiP%Ckagmg' The package should be designed so that the junction

. : : g’mperature always stays within a specified range. It is difficult to
or because of exposure to a hostile environment. With an appi@recily measure junction temperature because the die is typically
priate inverse method these unknown boundary values can be ggspietely encased within the electronic package. However, it can
duced from additional information, which should be made availe jnversely determined using only temperature and heat flux
able at a finite number of points within the body or on some othgfeasurements on the outer surface of the package. In the case of
surfaces of the solid body. In the case of steady heat conductiggy| grid array(BGA) packages, the temperatures and heat fluxes
the objective of an inverse boundary condition determinatioghnnot be easily obtained on the bottom due to the small dimen-
problem is to compute the temperatures and heat fluxes on a&jiyns of the air gap. Therefore, we must rely solely on measure-
surfaces or surface elements where such information is unknownts taken from the top and sides of the package.
[1]. The problem of inverse determination of unknown boundary
conditions in two-dimensional steady heat conduction has be . .
solved by a variety of method4—5]. Similarly, a separate inverse E?_‘-M Formulation for Heat Conduction
boundary condition determination problem in linear elastostaticsThe temperature distribution throughout the domain can be
has been solved by different methdds. found by solving the Poisson equation for steady linear heat con-
For inverse problems, the unknown boundary conditions dhiction with a distributed steady heat source functand ther-
parts of the boundary can be determined by overspecifying tAel conductivity coefficientk,, k,, k,
boundary conditiongenforcing both Dirichlet- and Neumann-type P 20 P 90 P 90
boundary conditionson at least some of the remaining portions of _( X_) + _( y_) _( Z_)
the boundary and providing either Dirichlet- or Neumann-type X\ Tox | ooy\ Cady ) dz\ "9z
boundary conditions on the rest of the boundary. It is possibl&pplying the method of weighted residuals(ft over an element
after a series of algebraic manipulations, to transform the origing&lsults in
system of equations into a system that enforces the overspecified
boundary conditions and includes the unknown boundary condi- 2 A O B C)
tions as a part of the unknown solution vector. This formulation is Qev K X2 +ky ay? +k, 2
an adaptation of a method by Martin and Dulikravigh| for
the inverse detection of boundary conditions in steady he@herev is a nonzero weight function. Integrating E@) by parts

--s @

p. s) dQe=0 @)

conduction. once, creates the weak statement for an element
Our objective is to demonstrate the inverse FEM approach for v 90 o 90 v 90
the simultaneous determination of thermal boundary conditions - oo = Ky — +k,— —|dQ°
and interface temperatures for electronic packages. In particular, e\~ OX OX ay dy gz 9z
Manuscript received April 26, 2004; revision received April 28, 2004. Review =f USdQe—f v(g-n)dQe 3)
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Fig. 1 Cross section showing material regions for BGA model
Variation of the temperature and the weight function across an - Ny ON, I\
element withm nodes can be expressed by o T
m
IN;y N, INp,
e — . e__ TI®E€ - —= < ...
0°(xy.2)= 2 Ni(xy,2)07={N}{6°} @ Bl=| 5 % 7y ©)
n Ny Ny Ny
ve(x,y.Z):El Ni(x,y,2)of={N}"{v®} () L 0z oz 9z
{=

the linear system of equations can be written in matrix form as
where the function\; for v® and®® are chosen to be the same.
This is known as a Galerkin finite element approach. The func- [KEHO={Q®} (7
tionsv® and®°€ are substituted into Eq3), leading to a discrete
weak statement. The discrete weak statement is then made stat!§
ary with respect to the weight function coefficients resulting in
a system of linear equations for the element. By first defining the [Kg]:J [B]"[k][B]dQ® (8)
matrix [B], Q°

tﬁere

Fig. 2 Hexahedral mesh for PWB and EMC
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Fig. 3 Closeup view of mesh for solder balls, solder mask, and PWB

global system has been formed, the boundary conditions are ap-
{Qe}=—f SINtdQ+ J As{NjdI'® (9)  plied. For a well-posed analysislirech problem, the boundary
. r conditions must be known on all domain boundaries. For heat
ke 0 O conduction, either the temperatu®g or the heat fluxQs must be
[k]=| 0 k, O (10) specified at each point of the boundary.

For an inverse problem, the unknown boundary conditions on
0 0 k parts of the boundary can be determined by overspecifying the

The local stiffness matrifK¢] and heat flux vecto{Q®} are boundary conditiongenforcing both Dirichlet- and Neumann-type

determined for each element in the domain and then assembledindary conditionson at least some of the remaining portions of

into the global system of linear algebraic equations the boundary and providing either Dirichlet- or Neumann-type
boundary conditions on the rest of it. It is possible, after a series
[KJ{O}={Q} (11) of algebraic manipulations, to transform the original system of

equations into a system that enforces the overspecified boundary

Direct and Inverse Formulations conditions and includes the unknown boundary conditions as part

The above equations for steady heat conduction were di-the unknown solution vector. As an example, consider the lin-
cretized by using a Galerkin finite element method. The systemeigr system for heat conduction on a tetrahedral finite element with
typically large, sparse, symmetric, and positive definite. Once theundary conditions given at nodes 1 and 4,

56350 28775

83,2214+
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Fig. 4 Computed temperature on PWB and EMC
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Fig. 5 Computed temperature on solder balls, solder mask, and PWB

As an example of an inverse problem, one could specify both the

0, Q temperaturé ¢ and the heat fluQg at node 1, flux only at nodes
Ko Kz Kaz Kyl ] 0, _ Qz (12) 2 and 3, and assume the boundary conditions at node 4 as being
Kai Kz Kgz Kaggl | O3 Q3 unknown. The original system of equatiofi®) can be modified

by adding a row and a column corresponding to the additional
equation for the overspecified flux at node 1 and the additional
unknown due to the unknown boundary flux at node 4,

Q)
Ko Ko Kz Kag) 04 Qa

Inverse
........ Forward

; 0.008§
0.002 o 0.002

Fig. 6 Computed inverse and forward temperature on BT substrate bottom
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1 0 0 0 0 Table 1 Material properties for BGA model

0, 05
Koy Koy Koz Koy O 0, Q, Region Material Ky, Ky, k, (W/m °C)
K K K K 0 0;)={Q 13 1 FR4 printed wire boardPWB) 1.0, 1.0, 0.3
sz mes e 6. 5 13 3 copper pads 393.0, 393.0, 393.0
Kap Kao Kuz Ky —1 4 3 solder mask 0.2,0.2,0.2
Q4 Qs 4 polyimide tape 0.3,0.3,0.3
Kiw Kz Kz Ky 0 5 solder balls 250.0, 250.0, 250.0
The resultir)g systems c_)f equations will remain sparse, but wi!l be (73 g:zrgﬂsé?'de triazenéBT) substrate 0.%;50,'01.55',06?25
unsymmetric and possibly rectangular depending on the ratio ofg silicon die 87.0, 87.0, 87.0
the number of known to unknown boundary conditions. 9 epoxy mold compountEMC) 0.71,0.71, 0.71
Regularization
A regularization method is needed when the overspecified Table 2 Boundary conditions for forward problem
boundary conditions contain some amount of error. The Tikhon N dar 0.0 .
regularizatior{ 7] method is the most widely used approach. HO\/\;B y amb h (Wim=*C)
ever, our previous research has shown that higher-order regugmmetry 0.0 0.0
ization methods result in more accurate solutions to inveri_!;_di Sideds O_LPWEf» . 252.g 0 1942118
it op and sides of package . .
bo#gdary con(|j|ft|on prfoblerr[il,B]: d t L Bottom of package 25.0 4.31
e general form of a regularized system is giveri%s Sides of solder balls 0.0 0.0
Ke Q
[AD {G}_[O] (14)

where the traditional Tikhonov regularization is obtained when ”}ﬁemory Elements used in the calculations were hexahedra with
damping matrix[D] is set equal to the identity matrix. SolVing jjineay interpolation functions. The linear system was solved
(14) in a least-squares sense minimizes the following errQlith a sparse QR factorizatidii1]

function: A simplified BGA geometry with nine material domains was
error(@)):H[Kc]{@}_{Q}Hg+||A[D]{@}H§ (15) generated for a tes_t case. TlRey dimensions were 30.0 mm
L L ) x30.0 mm for the printed wire boar®wB), 13.0 mmx13.0 mm
This is the minimization of the residual plus a penalty term. Thgy the package, and 7.2 ma¥.2 mm for the die. The dimensions
form of the damping matrix determines what penalty is used, ajglthe z direction should be discernible from Fig. 1. Though the
the damping parametet weights the penalty for each equationgenerated geometry is not an actual BGA package, we tried to
These weights should be determined according to the measUfgse a model that maintains the characteristic shape and material
ment error associated with the respective equation. The Tikhongymains of a typical BGA electronic package. Specifically, this
approach clearly drives the solution to zero as the damping Rfndel does not include the traces that carry the electrical signals
rameter increases. For this reason, we avoid using the Tikhongyough the PWB and the package to the die. The material regions
regularization method in inverse boundary detection problems.5re shown in Fig. 1, and their properties are listed in Table 1. The
The method used here is essentially a I_.aplacian smoothing i A geometry is symmetric with respect to tkandy axes. In
the unknown temperatures on the boundaries where the boundgf¥ simplified example we assume the boundary conditions have
conditions are unknown. This method could be consideredge same symmetry as well. Therefore, only a quarter of the BGA
“second-order” Tikhonov method. A penalty term can be conmode| was used for computations. A hexahedral mesh was gener-
structed such that curvature of the solution on the unspecifigehq for the quarter geometry and was composed of 27,417 nodes
boundary is minimized along with the residual, and 20,728 elements. The surface mesh for the BGA geometry is

V20 42— min (16) shown in Figs. 2-3.

Equation(16) is discretized using the method of weighted re-
siduals to determine the damping matrix],

ID1O usl3=I[Kc]O w2 7 —— Inverse

In three-dimensional problem&.] is computed by integrating
over surface elements on the unknown boundaries. So the dar
ing matrix can be thought of as an assembly of boundary eleme
that make up the surface of the object where the conditions &
unknown. The stiffness matrix for each boundary element
formed by using a Galerkin weighted-residual method, which e
sures the Laplacian of the solution is minimized over the unknov
boundary surface. The main advantage of this method is its abil
to smooth the solution vector without necessarily driving the con
ponents to zero and away from the true solution.

Numerical Results

The finite element inverse formulation was shown previously |
be both accurate and efficient for several three-dimensional t
problems[8,10]. The method has been implemented in an objec
oriented finite element code written in+C+. The software uses
sparse matrix storage that allows 3D problems to be solved or
personal computer in less than a few minutes. All the inverse
cases presented here were computed in less than three minutesi@n7 Computed inverse and forward temperature on die
2.0 GHz P4 Xeon processor and required less than 120 MiBttom

87,Q9
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Fig. 9 \Variation of average relative error in temperature on BT
substrate bottom

Fig. 8 Computed forward temperature on package top with

measurement errors . ) . o o
We were primary interested in determining the junction tem-

perature on the surface of the silicon die. This was accomplished
economically by modeling only regions 6—9 and then overspeci-
In the examples presented here, the overspecified boundfmng the boundary conditions on the top and sides of the package.
condition measurements were simulated by taking them fromNo boundary conditions were specified on the bottom of the BT
well-posed finite element analysis of the entire BGA model. Faubstrate. In this case, only the mesh for regions 6—9 was required
the well-posed or forward-analysis problem, the boundary condér solving the inverse problem. The reduced grid contained 9800
tions were specified on all boundaries of the mesh. The powsodes and 8092 elements, about three times smaller than the com-
source in the quarter model of the die was set to 0.1875 W aptkte BGA grid.
was uniformly distributed. The forward problem was then solved The inverse problem was then created by overspecifying the top
using convection-type boundary conditions with values given iand sides of the package with the double-precision values of tem-
Table 2. The computed temperature field is shown in Figs. 4—%eratures and fluxes obtained from the forward-analysis case. At

Y
Inverse
------ Forward
X

z
Fig. 10 Computed inverse and forward temperature on BT substrate bottom
with measurement errors and A =1.0X10"*
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Fig. 11 Computed inverse and forward temperature on die bottom with mea-
surement errors and A=1.0X10"*

the same time, no boundary conditions were specified on the bate not recovered, the general distribution is captured correctly.
tom of region 6. Random measurement errors were not usedTihe average relative error in temperatures on the bottom of the BT
this case. The heat source magnitude, its distribution, and all nsabstrate surface was 2.00%. The inverse procedure also predicted
terial properties were assumed to be known. A damping paramegetemperature distribution on the die with less than 2.0% average
of A=1.0x10"%° was used. The computed forward and inverserror as shown in Fig. 11. Again, the inverse and forward solu-
temperature distribution on the bottom of the BT substrate i®ns do not match exactly due to the presence of the measurement
shown in Fig. 6. The average relative error in temperature berrors. However, the errors in the die temperature are of the same
tween the forward analysis and inverse result was less tharder of magnitude as the measurement errors, thereby indicating
0.005%. The inverse procedure also accurately predicted the téhat the regularization method is working successfully.

perature distribution on the bottom of the silicon die as shown in

Fig. 7. Conclusions

The above problem was repeated using overspecified boundar)A formulation for the inverse determination of unknown steady

conditions with random measurement errors added. Random l%hndary conditions in heat conduction for three-dimensional

rors in 'ghe known boyndary te.mper.atures and fluxes were Y€ litidomain problems has been demonstrated. The formulation
ated using the following equatior4]:

has been successfully applied to the inverse detection of the die

O=0,.+ J=20%2InR (18) junction temperature distribution for a BGA electronic package
with nine material domains. The method computed the tempera-
Q=Qu.=V—20%InR (19) ture distribution in the die and package with high accuracy when

no measurement errors were present in the overspecified boundary

is the standard deviation. Equatiof8) and (19) were used to conditions. The method required regularization when measure-

generate errors in both the known boundary fluxes and tempe?&@m errors were added to ;he boundary Coﬁd'“f’”s- However, it
tures obtained from the forward solution. was demonstrated that a high-order regularization method suc-

In a final test case, a value of=0.01 was used with Eq$18) cessfully prevented the amplification of the measurement errors.

and (19) to generate random errors. This resulted in an averagéelatlvely accurate die junction temperatures \:)vere computed even
measurement error of 1.27% in the overspecified temperatures gaVerage measurement errors exceeding 1%.

1.24% for the overspecified fluxes. The overspecified tempera-

tures with errors are shown in Fig. 8. The inverse problem wascknowledgment

solved for various values of the damping parameteiFigure 9 e 4 thors are grateful for the partial support provided for this

shows that the relative temperature error on the unknown boundzc~ 1 from the Grant No. NSF DMS-0073698 administered
ary is less than 3.0% for 12010 ><A <1.0x10 3. The results through the Computational Mathematics program.

show that the regularization successfully prevents the amplifica-
tion of the measurement errors, provided the appropriate dampi
parameter is used. The computed forward and inverse temperam%emendature

distribution on the bottom of the BT substrate for=1.0x 10" * I' = boundary surface
is shown in Fig. 10. The smoothing effect of the regularization can A = damping parameter
be clearly seen. Although the fine details of the temperature field Q° = element volume

whereR is a uniform random number between 0.0 and 1.0 @nd
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o = standard deviation
® = temperature
®.mp = ambient fluid temperature
[D] = damping matrix
h = heat convection coefficient
Ky, Ky, k, = Fourier coefficients of heat conductionxny, z

n = surface unit normal vector

g = heat flux

gs = normal heat flux

R = uniform random number between 0 and 1
S = heat source

X, Y, z = Cartesian body axes
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