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Determination of Temperatures
and Heat Fluxes on Surfaces and
Interfaces of Multidomain
Three-Dimensional Electronic
Components
A finite element method (FEM) formulation for the prediction of unknown steady bo
ary conditions in heat conduction for multidomain three-dimensional (3D) solid objec
presented. The FEM formulation is capable of determining temperatures and heat
on the boundaries where such quantities are unknown, provided such quantities ar
ficiently overspecified on other boundaries. An inverse finite element program has
previously developed and successfully tested on 3D simple geometries. The finite e
code uses an efficient sparse matrix storage scheme that allows treatment of realis
problems on personal computer. The finite element formulation also allows for
straightforward treatment of geometries composed of many different materials. Th
verse FEM formulation was applied to the prediction of die-junction temperature di
bution in a simple ball grid array electronic package. Examples are presented with s
lated measurements, which include random measurement errors. Regularization
applied to control numerical error when large measurement errors were added to
overspecified boundary conditions.@DOI: 10.1115/1.1827261#
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Introduction
It is often difficult and even impossible to place temperatu

probes or heat flux probes on certain parts of a solid body surf
This can be either due to its small size, geometric inaccessib
or because of exposure to a hostile environment. With an ap
priate inverse method these unknown boundary values can be
duced from additional information, which should be made av
able at a finite number of points within the body or on some ot
surfaces of the solid body. In the case of steady heat conduc
the objective of an inverse boundary condition determinat
problem is to compute the temperatures and heat fluxes on
surfaces or surface elements where such information is unkn
@1#. The problem of inverse determination of unknown bound
conditions in two-dimensional steady heat conduction has b
solved by a variety of methods@1–5#. Similarly, a separate invers
boundary condition determination problem in linear elastosta
has been solved by different methods@6#.

For inverse problems, the unknown boundary conditions
parts of the boundary can be determined by overspecifying
boundary conditions~enforcing both Dirichlet- and Neumann-typ
boundary conditions! on at least some of the remaining portions
the boundary and providing either Dirichlet- or Neumann-ty
boundary conditions on the rest of the boundary. It is possi
after a series of algebraic manipulations, to transform the orig
system of equations into a system that enforces the overspec
boundary conditions and includes the unknown boundary co
tions as a part of the unknown solution vector. This formulation
an adaptation of a method by Martin and Dulikravich@4# for
the inverse detection of boundary conditions in steady h
conduction.

Our objective is to demonstrate the inverse FEM approach
the simultaneous determination of thermal boundary conditi
and interface temperatures for electronic packages. In partic
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we focus on the inverse determination of the junction tempera
distribution on the microchip, typically called a die. The die jun
tion temperature is a critical quantity in the design of electro
packaging. The package should be designed so that the jun
temperature always stays within a specified range. It is difficul
directly measure junction temperature because the die is typic
completely encased within the electronic package. However, it
be inversely determined using only temperature and heat
measurements on the outer surface of the package. In the ca
ball grid array~BGA! packages, the temperatures and heat flu
cannot be easily obtained on the bottom due to the small dim
sions of the air gap. Therefore, we must rely solely on meas
ments taken from the top and sides of the package.

FEM Formulation for Heat Conduction
The temperature distribution throughout the domain can

found by solving the Poisson equation for steady linear heat c
duction with a distributed steady heat source functionS and ther-
mal conductivity coefficientskx , ky , kz
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Applying the method of weighted residuals to~1! over an element
results in
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wherev is a nonzero weight function. Integrating Eq.~2! by parts
once, creates the weak statement for an element
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Fig. 1 Cross section showing material regions for BGA model
e
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Variation of the temperature and the weight function across
element withm nodes can be expressed by

Qe~x,y,z!5(
i 51

m

Ni~x,y,z!Q i
e5$N%T$Qe% (4)

ve~x,y,z!5(
i 51

m

Ni~x,y,z!v i
e5$N%T$ve% (5)

where the functionsNi for ve andQe are chosen to be the sam
This is known as a Galerkin finite element approach. The fu
tions ve andQe are substituted into Eq.~3!, leading to a discrete
weak statement. The discrete weak statement is then made sta
ary with respect to the weight function coefficientsv i , resulting in
a system of linear equations for the element. By first defining
matrix @B#,
MBER 2004
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the linear system of equations can be written in matrix form a

@Kc
e#$Qe%5$Qe% (7)

where

@Kc
e#5E

Ve
@B#T@k#@B#dVe (8)
Fig. 2 Hexahedral mesh for PWB and EMC
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Fig. 3 Closeup view of mesh for solder balls, solder mask, and PWB
ap-

eat

on
the
e
of
pe
ries
of

dary
part
lin-
with
$Qe%52E
Ve

S$N%dV1E
Ge

qs$N%dGe (9)

@k#5F kx 0 0

0 ky 0

0 0 kz

G (10)

The local stiffness matrix@Kc
e# and heat flux vector$Qe% are

determined for each element in the domain and then assem
into the global system of linear algebraic equations

@Kc#$Q%5$Q% (11)

Direct and Inverse Formulations
The above equations for steady heat conduction were

cretized by using a Galerkin finite element method. The system
typically large, sparse, symmetric, and positive definite. Once
ackaging
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global system has been formed, the boundary conditions are
plied. For a well-posed analysis~direct! problem, the boundary
conditions must be known on all domain boundaries. For h
conduction, either the temperatureQs or the heat fluxQs must be
specified at each point of the boundary.

For an inverse problem, the unknown boundary conditions
parts of the boundary can be determined by overspecifying
boundary conditions~enforcing both Dirichlet- and Neumann-typ
boundary conditions! on at least some of the remaining portions
the boundary and providing either Dirichlet- or Neumann-ty
boundary conditions on the rest of it. It is possible, after a se
of algebraic manipulations, to transform the original system
equations into a system that enforces the overspecified boun
conditions and includes the unknown boundary conditions as
of the unknown solution vector. As an example, consider the
ear system for heat conduction on a tetrahedral finite element
boundary conditions given at nodes 1 and 4,
Fig. 4 Computed temperature on PWB and EMC
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Fig. 5 Computed temperature on solder balls, solder mask, and PWB
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As an example of an inverse problem, one could specify both
temperatureQs and the heat fluxQs at node 1, flux only at nodes
2 and 3, and assume the boundary conditions at node 4 as b
unknown. The original system of equations~12! can be modified
by adding a row and a column corresponding to the additio
equation for the overspecified flux at node 1 and the additio
unknown due to the unknown boundary flux at node 4,
Fig. 6 Computed inverse and forward temperature on BT substrate bottom
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The resulting systems of equations will remain sparse, but wil
unsymmetric and possibly rectangular depending on the rati
the number of known to unknown boundary conditions.

Regularization
A regularization method is needed when the overspeci

boundary conditions contain some amount of error. The Tikho
regularization@7# method is the most widely used approach. Ho
ever, our previous research has shown that higher-order reg
ization methods result in more accurate solutions to inve
boundary condition problems@1,8#.

The general form of a regularized system is given as@9#

F Kc

LD G$Q%5 HQ
0 J (14)

where the traditional Tikhonov regularization is obtained when
damping matrix@D# is set equal to the identity matrix. Solvin
~14! in a least-squares sense minimizes the following er
function:

error~Q!5i@Kc#$Q%2$Q%i2
21iL@D#$Q%i2

2 (15)

This is the minimization of the residual plus a penalty term. T
form of the damping matrix determines what penalty is used,
the damping parameterL weights the penalty for each equatio
These weights should be determined according to the meas
ment error associated with the respective equation. The Tikho
approach clearly drives the solution to zero as the damping
rameter increases. For this reason, we avoid using the Tikho
regularization method in inverse boundary detection problems

The method used here is essentially a Laplacian smoothin
the unknown temperatures on the boundaries where the boun
conditions are unknown. This method could be considere
‘‘second-order’’ Tikhonov method. A penalty term can be co
structed such that curvature of the solution on the unspec
boundary is minimized along with the residual,

i¹2Qubi2
2→min (16)

Equation~16! is discretized using the method of weighted r
siduals to determine the damping matrix@D#,

i@D#Qubi2
25i@Kc#Qubi2

2 (17)

In three-dimensional problems,@Kc# is computed by integrating
over surface elements on the unknown boundaries. So the da
ing matrix can be thought of as an assembly of boundary elem
that make up the surface of the object where the conditions
unknown. The stiffness matrix for each boundary element
formed by using a Galerkin weighted-residual method, which
sures the Laplacian of the solution is minimized over the unkno
boundary surface. The main advantage of this method is its ab
to smooth the solution vector without necessarily driving the co
ponents to zero and away from the true solution.

Numerical Results
The finite element inverse formulation was shown previously

be both accurate and efficient for several three-dimensional
problems@8,10#. The method has been implemented in an obje
oriented finite element code written in C11. The software uses
sparse matrix storage that allows 3D problems to be solved
personal computer in less than a few minutes. All the inve
cases presented here were computed in less than three minu
2.0 GHz P4 Xeon processor and required less than 120
Journal of Electronic Packaging
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memory. Elements used in the calculations were hexahedra
trilinear interpolation functions. The linear system was solv
with a sparse QR factorization@11#.

A simplified BGA geometry with nine material domains wa
generated for a test case. Thex-y dimensions were 30.0 mm
330.0 mm for the printed wire board~PWB!, 13.0 mm313.0 mm
for the package, and 7.2 mm37.2 mm for the die. The dimension
in the z direction should be discernible from Fig. 1. Though th
generated geometry is not an actual BGA package, we tried
make a model that maintains the characteristic shape and mat
domains of a typical BGA electronic package. Specifically, th
model does not include the traces that carry the electrical sig
through the PWB and the package to the die. The material reg
are shown in Fig. 1, and their properties are listed in Table 1. T
BGA geometry is symmetric with respect to thex andy axes. In
this simplified example we assume the boundary conditions h
the same symmetry as well. Therefore, only a quarter of the B
model was used for computations. A hexahedral mesh was ge
ated for the quarter geometry and was composed of 27,417 no
and 20,728 elements. The surface mesh for the BGA geometr
shown in Figs. 2–3.

Fig. 7 Computed inverse and forward temperature on die
bottom

Table 2 Boundary conditions for forward problem

Boundary Qamb (°C) h (W/m2 °C)

Symmetry 0.0 0.0
All sides of PWB 25.0 19.71
Top and sides of package 25.0 43.18
Bottom of package 25.0 4.31
Sides of solder balls 0.0 0.0

Table 1 Material properties for BGA model

Region Material kx , ky , kz (W/m °C)

1 FR4 printed wire board~PWB! 1.0, 1.0, 0.3
2 copper pads 393.0, 393.0, 393.
3 solder mask 0.2, 0.2, 0.2
4 polyimide tape 0.3, 0.3, 0.3
5 solder balls 250.0, 250.0, 250.0
6 bismaleimide triazene~BT! substrate 1.0, 1.0, 0.3
7 die attach 0.25, 0.25, 0.25
8 silicon die 87.0, 87.0, 87.0
9 epoxy mold compound~EMC! 0.71, 0.71, 0.71
DECEMBER 2004, Vol. 126 Õ 461
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In the examples presented here, the overspecified boun
condition measurements were simulated by taking them from
well-posed finite element analysis of the entire BGA model. F
the well-posed or forward-analysis problem, the boundary con
tions were specified on all boundaries of the mesh. The po
source in the quarter model of the die was set to 0.1875 W
was uniformly distributed. The forward problem was then solv
using convection-type boundary conditions with values given
Table 2. The computed temperature field is shown in Figs. 4–

Fig. 8 Computed forward temperature on package top with
measurement errors
462 Õ Vol. 126, DECEMBER 2004
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We were primary interested in determining the junction te
perature on the surface of the silicon die. This was accomplis
economically by modeling only regions 6–9 and then overspe
fying the boundary conditions on the top and sides of the packa
No boundary conditions were specified on the bottom of the
substrate. In this case, only the mesh for regions 6–9 was requ
for solving the inverse problem. The reduced grid contained 9
nodes and 8092 elements, about three times smaller than the
plete BGA grid.

The inverse problem was then created by overspecifying the
and sides of the package with the double-precision values of t
peratures and fluxes obtained from the forward-analysis case

Fig. 9 Variation of average relative error in temperature on BT
substrate bottom
Fig. 10 Computed inverse and forward temperature on BT substrate bottom
with measurement errors and LÄ1.0Ã10À4
Transactions of the ASME
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Fig. 11 Computed inverse and forward temperature on die bottom with mea-
surement errors and LÄ1.0Ã10À4
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the same time, no boundary conditions were specified on the
tom of region 6. Random measurement errors were not use
this case. The heat source magnitude, its distribution, and all
terial properties were assumed to be known. A damping param
of L51.0310230 was used. The computed forward and inver
temperature distribution on the bottom of the BT substrate
shown in Fig. 6. The average relative error in temperature
tween the forward analysis and inverse result was less
0.005%. The inverse procedure also accurately predicted the
perature distribution on the bottom of the silicon die as shown
Fig. 7.

The above problem was repeated using overspecified boun
conditions with random measurement errors added. Random
rors in the known boundary temperatures and fluxes were ge
ated using the following equations@4#:

Q5Qbc6A22s̄2 ln R (18)

Q5Qbc6A22s̄2 ln R (19)

whereR is a uniform random number between 0.0 and 1.0 ans̄
is the standard deviation. Equations~18! and ~19! were used to
generate errors in both the known boundary fluxes and temp
tures obtained from the forward solution.

In a final test case, a value ofs̄50.01 was used with Eqs.~18!
and ~19! to generate random errors. This resulted in an aver
measurement error of 1.27% in the overspecified temperatures
1.24% for the overspecified fluxes. The overspecified temp
tures with errors are shown in Fig. 8. The inverse problem w
solved for various values of the damping parameterL. Figure 9
shows that the relative temperature error on the unknown bou
ary is less than 3.0% for 1.031025,L,1.031023. The results
show that the regularization successfully prevents the amplifi
tion of the measurement errors, provided the appropriate dam
parameter is used. The computed forward and inverse temper
distribution on the bottom of the BT substrate forL51.031024

is shown in Fig. 10. The smoothing effect of the regularization c
be clearly seen. Although the fine details of the temperature fi
ackaging
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are not recovered, the general distribution is captured corre
The average relative error in temperatures on the bottom of the
substrate surface was 2.00%. The inverse procedure also pred
a temperature distribution on the die with less than 2.0% aver
error as shown in Fig. 11. Again, the inverse and forward so
tions do not match exactly due to the presence of the measure
errors. However, the errors in the die temperature are of the s
order of magnitude as the measurement errors, thereby indica
that the regularization method is working successfully.

Conclusions
A formulation for the inverse determination of unknown stea

boundary conditions in heat conduction for three-dimensio
multidomain problems has been demonstrated. The formula
has been successfully applied to the inverse detection of the
junction temperature distribution for a BGA electronic packa
with nine material domains. The method computed the temp
ture distribution in the die and package with high accuracy wh
no measurement errors were present in the overspecified boun
conditions. The method required regularization when meas
ment errors were added to the boundary conditions. Howeve
was demonstrated that a high-order regularization method
cessfully prevented the amplification of the measurement err
Relatively accurate die junction temperatures were computed e
for average measurement errors exceeding 1%.
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Nomenclature

G 5 boundary surface
L 5 damping parameter

Ve 5 element volume
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s̄ 5 standard deviation
Q 5 temperature

Qamb 5 ambient fluid temperature
@D# 5 damping matrix

h 5 heat convection coefficient
kx , ky , kz 5 Fourier coefficients of heat conduction inx, y, z

nW 5 surface unit normal vector
qW 5 heat flux

qs 5 normal heat flux
R 5 uniform random number between 0 and 1
S 5 heat source

x, y, z 5 Cartesian body axes
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