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ABSTRACT 

This paper presents a numerical procedure to reduce and possibly control the natural 

convection effects in a cavity filled with a molten material by applying an external electric field 

whose intensity and spatial distributions are obtained by the use of a hybrid optimizer.  

In the case of steady electro-hydrodynamics (EHD), the flow-field of electrically charged 

particles in a solidifying melt is influenced by an externally applied electric field while the 

existence of any magnetic field is neglected. Solidification front shape, distribution of the 

charged particles in the accrued solid, and the amount of accrued solid phase in such processes 

can be influenced by an appropriate distribution and orientation of the electric field.  

The transient Navier-Stokes and Maxwell equations were discretized using the finite volume 

method in a generalized curvilinear non-orthogonal coordinate system. For the phase change 

problems, we used the enthalpy method. Variation of intensities of electric potentials on the 

electrodes along the boundaries of the cavity were described using B-splines. The inverse 

problem was then formulated to find the electric boundary conditions (the coefficients of the B-

splines) in such a way that the gradients of temperature along the horizontal direction are 

minimized. For this task we used a hybrid optimization algorithm which incorporates automatic 

switching among several of the most popular optimization modules; the Davidon-Fletcher-

Powell (DFP) gradient method, a genetic algorithm (GA), the Nelder-Mead (NM) simplex 

method, quasi-Newton algorithm of Pshenichny-Danilin (LM), differential evolution (DE), and 

sequential quadratic programming (SQP). 

The optimization results have shown that it is possible to control the natural convection 

phenomena by using an externally applied electric field. This conceptually new approach to 

manufacturing could be used in creation of layered and functionally graded material objects.  
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NOMENCLATURE 

 
b electric mobility 

CP specific heat at constant pressure 

De electric diffusion coefficient 

E electric field vector 

Ex electric field component in x-direction 

Ey electric field component in y-direction 

g acceleration of the gravity 

f solid fraction 

J electric current density vector 

k partition coefficient 

K thermal conductivity 

L latent heat of solidification/melting 

h enthalpy 

P pressure 

qe local free electric charge per unit volume 

Ra Rayleigh number 

t time 

T temperature 

u velocity component in x-direction 

v velocity component in y-direction 

x, y Cartesian coordinates 
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Greek letters 

α thermal diffusivity 

β thermal expansion coefficient 

ε0 vacuum dielectric constant or electric permittivity 

ϕ electric potential 

µ fluid viscosity 

σ electric conductivity 

 

Subscripts 

h hot surface 

c cold surface 

l liquid value 

m melting value 

s solid value 

0 reference value 

 

INTRODUCTION 

During solidification from a melt, if the control of melt motion is performed exclusively via 

an externally applied variable temperature field, it will take quite a long time for the thermal 

front to propagate throughout the melt eventually causing local melt density variations and 

altering the thermal buoyancy forces. It has been well known that an externally applied steady 

magnetic or electric field can, almost instantaneously, influence the flow-field vorticity and 
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change the flow pattern in an electrically conducting fluid [1]. Due to the complexity of the 

combined electro-magneto-hydro-dynamic (EMHD) mathematical model [2], the EMHD has 

traditionally been treated as a separate magneto-hydro-dynamic (MHD) sub-model [3] or a 

separate electro-magneto-hydro-dynamic (EHD) sub-model [3]. 

A steady state version of EHD solidification analysis without any optimization was studied 

and published already [4]. However, in the current work we developed a computer code that is 

capable of simulating transient EHD flows with phase change. The objective of this work is to 

combine this electrohydrodynamic analysis and an optimization study [5] in order to minimize 

the natural convection effects in a cavity filled with a molten material. By minimizing the natural 

convection effects, it is possible to produce materials with lower thermal stresses and lower 

amount of impurities than those obtained in the presence of very strong buoyancy forces.  

We treated electrodes on the walls of the container as having continuously varying electric 

field potential. An appropriate variation of the electric potential along the wall electrodes was 

then determined by using a hybrid optimization algorithm with the objective of minimizing a 

certain measure (objective function or cost function) quantifying the intensity of local melt flow-

field.  

Potential applicability of this concept is very broad in the general field of manufacturing new 

functionally graded non-isotropic materials and objects with preferred and vastly different 

capabilities to deform and conduct electricity and heat in different directions. Since the entire 

simulation algorithm is time-dependent, the basic concept could be reformulated in the future as 

an optimal control problem where the intensity variation of the electric field along the boundaries 

of the solidification container can be also varied in time. This way, desired additives or dopants 

could be injected and deposited at the desired locations in the advancing solidification front thus 
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creating a truly functionally graded material with a priori specified spatial variation of physical 

properties and possibly a prescribed variation of microstructure [6].  

This entire concept is applicable to any molten material that has reasonable electric 

conductivity, either inherent or because it contains at least a small amount of metal, salts or 

electrically charged particles. One such material is gallium arsenide. It is an important material in 

electronics industry [7,8]. Other obvious applications could involve controlled solidification of 

aluminum melts, molten steel superalloys, or electropolymers. Notice that the EHD principle 

discussed in this paper offers advantages of lower weight and simpler application in an industrial 

setting than its MHD counterpart [9-13]. Notice also that this new general manufacturing concept 

does not create only enhanced electromagnetic stirring of the melt [14]. Instead, it offers a 

possibility of smart manufacturing of solidification products provided by optimally controlled 

segmented wall electrodes. 

Two test cases are presented in this proof-of-the-concept paper. The first involves only 

natural convection. The second involves phase change in the presence of a natural convection. 

Applying an optimized electric field obtained by the use of a hybrid optimizer reduced the 

natural convection effects. 

 

DIRECT PROBLEM 

The physical problem considered here involves the laminar electrohydrodynamic natural 

convection of an incompressible Newtonian fluid. The fluid physical properties are assumed 

constant within each phase (solid or liquid) and linearly varying in the mushy region between the 

two phases. The energy source term resulting from viscous dissipation is neglected and buoyancy 

effects are approximated by the Boussinesq hypothesis. Then the Maxwell and Navier-Stokes 
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equations for a quasi-static electric field system can be written, for the Cartesian coordinate 

system as [1] 

 

( ) eq=⋅∇ E0ε  (1.a) 

0=×∇ E  (1.b) 

0=⋅∇+
∂
∂ J

t
qe  (1.c) 

0=⋅∇ v  (2.a) 

( )[ ] ( )[ ] Evvgv
e

T qPTT
Dt
D

+∇+∇⋅∇+∇−−−−= µβρρ 01  (2.b) 

[ ] EJ ⋅+∇⋅∇= TK
Dt
DTCPρ  (2.c) 

 

Under the action of the electrical field, the charge carriers of mobility b migrate with a 

velocity bE, E being the field modified by the space-charge density qe. If v is the fluid velocity, 

then the total current is [1] 

 

( vEJ += bqe ) (3) 

 

if the diffusion current is neglected. The latter has the form -De∇qe if De is the diffusion 

coefficient. If we deal with electric fields in the 104 to 105 volts cm-1 range, this will be very 

small, except when gradients occur over lengths of the order less than 10-6 cm [1].  

Since the electric field is irrotational, according to equation (1.b), it follows that 

 

ϕ−∇=E  (4) 
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where ϕ is the electric potential. Thus, from equation (1.a), we have 

 

0

2

ε
ϕ eq

−=∇  (5) 

 

The complete system of Navier-Stokes and Maxwell equations can be written then as 

 

S
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Q
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∂
∂

+
∂
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+
∂
∂  (6) 

 

where 

 

λφ=Q  (7.a) 

 

( )
x

EuE x ∂
∂

Γ−+=
**** φφζλ  (7.b) 

 

( )
y

EvF y ∂
∂

Γ−+=
***** φφζλ  (7.c) 

 

The values of S, λ, ζ, φ, φ*, φ**,φ*** and Γ are given in Table 1 for the equations of 

conservation of mass, x-momentum, y-momentum, energy, electric potential and electric charged 

particles distribution. 
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Table 1. Parameters for the Navier-Stokes and Maxwell equations 

Conservation of λ ζ φ φ* φ** φ*** Γ S 

Mass ρ 0 1 1 1 1 0 0 

x-momentum ρ 0 u u u u µ xe Eq
x
P
+

∂
∂

−  

y-momentum ρ 0 v v v v µ ( )[ ] ye EqTTg
y
P

+−−−
∂
∂

− 01 βρ

Energy ρ 0 h h h T K  

( )[

⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−+++

y
q

E
x
q

ED

vEuEEEbC

e
y

e
xe

yxyxP
22

 

Electric potential 0 0 0 0 0 ϕ 1 
0ε
eq

−  

Electric charged particles 

distribution 
1 b qe qe qe qe De 0 

 

Note that we used the Boussinesq approximation for the variation of the density with 

temperature in the y-momentum conservation equation. Also note that in the energy conservation 

equation, the term CPT was replaced by the enthalpy, h, per unit mass. This is useful for 

problems dealing with phase change where we used the enthalpy method [15]. Admittedly, the 

actual physics of the binary mixture solidification is more complicated and this physics could be 

more adequately modeled by using more advanced and complete models [16-18]. However, the 

objective here was not to develop a more advanced mathematical model of solidification. 

Instead, our focus was on demonstrating feasibility of a novel concept of controlling solidifying 

melt flows via externally applied electric fields. Refined and more complete mathematical 

models [16-18] could be implemented relatively easily once the basic concept has been 

demonstrated.  
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The above equations were transformed from the physical to the body-fitted coordinate system 

(ξ,η) and solved by the finite volume method. The SIMPLEC Method [19] was used to solve the 

velocity-pressure coupling problem. The WUDS interpolation scheme [20] was used to obtain 

the values of u, v, h, ϕ and qe as well as their derivatives at the interfaces of each control volume. 

The resulting linear system was solved by the GMRES method [21]. 

 

PHASE-CHANGE MODEL 

In this paper we used the enthalpy method [15] to deal with the phase change problem. In this 

method, the energy equation appears as a mixed enthalpy-temperature equation. Thus, we must 

obtain some relationship between the temperature and the enthalpy to be used in the energy 

equation. 

For the case of a binary alloy, if h < hsolid, we have:  

 

PsC
hT =  (8.a) 

 

or, if h > hliquid: 

 

( )
Pl

PsPls

C
LCCThT −−+

=  (8.b) 

 

or yet, if hsolid < h < hliquid:

 

meltls TTTT ===  (8.c) 
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For the mixture, we have a range of temperatures where solidification might occur. Then, if 

hsolid < h < hliquid,  

 

( )[ ]( )
( )PlPsPl

PsPls

CCfC
fLCCThT

−+
−−−+

=
1  (9) 

 

where the solid fraction f is given by the Scheil’s model [6]: 

 

( )1/1

1
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=
k

ls

s

TT
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In the above equation, we set the partition coefficient k = 2, which reduces the Scheil’s 

model to the linear interpolation function. Note that if T < Tsolid, f must be set to unity and, if T > 

Tliquid, f must be set to zero. 

The electric and thermal properties were approximated as linear functions within the mushy 

region (Tsolid < T < Tliquid) and kept constant within each phase. Thus, in the mushy region 

 

( ) ls ff ψψψ −+= 1  (11) 

 

where ψ represents the density, thermal conductivity, viscosity, electric mobility and electric 

conductivity. For the viscosity of the solid phase we used 

 

510≥
l

s

µ
µ  (12) 
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and for the specific heat at constant pressure within the mushy region, we used the 

thermodynamic property 
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Note that, if we are dealing with a mixture, the enthalpy is a function of the temperature, 

which is a function of the solid fraction, which is itself a function of the temperature. Thus, if 

hsolid < h < hliquid, we must solve a non-linear system for T. From Eqs. (9) and (10) we have: 
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which can be solved, for example, by the secant method. 

 

HYBRID OPTIMIZATION APPROACH 

The hybrid optimization algorithm [5, 11-13, 22] utilized in this work incorporates some of 

the most popular optimization algorithms: genetic algorithm, a quasi-Newton method, modified 

Nelder-Mead simplex method, sequential quadratic programming, Davidon-Fletcher-Powell 

gradient search algorithm and differential evolution. Each technique provides a unique approach 
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to optimization with varying degrees of convergence, reliability and robustness at different 

cycles during the iterative optimization procedure. A set of analytically formulated rules and 

switching criteria were coded into the program to automatically switch back and forth among the 

different optimization algorithms as the iterative minimization process proceeded [5]. 

The evolutionary hybrid algorithm handles the existence of equality and inequality constraint 

functions in three ways: Rosen's projection method, feasible searching, and random design 

generation. Rosen's projection method provided search directions that guided descent-directions 

tangent to active constraint boundaries. In the feasible search, designs that violated constraints 

were automatically restored to feasibility via the minimization of the active global constraint 

functions. If at any time this constraint minimization failed, random designs were generated 

about the current design until a new feasible design was reached.  

Gradients of the objective and constraint functions with respect to the design variables, also 

called design sensitivities, were calculated using finite differencing formulas. The population 

matrix was updated every iteration with new designs and ranked according to the value of the 

objective function. During the optimization process, local minima can occur and halt the process 

before achieving an optimal solution. In this case, the optimizer switches to another method. The 

user can also stop the iterative process, switch manually to another method and restart the 

optimizer from the previous iteration. 

The population matrix was updated every iteration with new designs and ranked according to 

the value of the objective function. The optimization problem was completed when the 

maximum number of iterations or objective function evaluations were exceeded, or when the 

optimization program tried all individual optimization algorithms and failed to produce a non-

negligible decrease in the objective function (which was set at 10-4). Since the value of the global 
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minimum and how many local minimums exist are not known a priori, the first criterion was the 

primary qualification of convergence, indicating that no other minimum could be found. 

 

INVERSE PROBLEM OF DETERMINING THE UNKNOWN ELECTRIC 

FIELD BOUNDARY CONDITIONS 

In this paper we deal with the inverse determination of the electric boundary conditions that 

create some pre-specified flow-field within some region [11-13, 22]. Figure 1 shows the 

geometry and the boundary conditions for the configuration considered here.  

 

 

 

 

 

 

 

 

Insulated Insulated 

Th 

Tc 

g=9.81 m/s2

Ey 

Ex 

x

y

Figure 1. Geometry and boundary conditions. 

 

The height and length of the cavity were equal to 33.33 mm and 66.67 mm, respectively. The 

left and right walls were kept thermally insulated. The bottom boundary was kept at a “hot” 

temperature while the top wall was kept at a “cold” temperature. A slightly triangular 

temperature profile was applied to the bottom wall in order to create a preferential direction for 

the fluid flow. For the test cases with Ra = 1.9x105 the temperature at the center of the bottom 
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wall was 0.9 oC above its value at the corners, and for the test cases with Ra = 1.9x104 the 

temperature at the center of the bottom wall was 0.09 oC above its value at the corners. 

The left and bottom walls were subjected to unknown electric potential boundary conditions 

and the electric charged particles were supposed to enter the cavity from the locations where the 

electric potential was applied. The objective was to minimize [12] the natural convection effects 

by reducing the gradient of temperature along the x direction, thus trying to obtain a temperature 

profile similar to those obtained for pure conduction. The objective function to be minimized is 

then formulated as [12] 

 

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
cells

i i

i

x
T

cells
F

#

1

2

#
1  (22) 

 

The electric boundary conditions were inversely determined at six points equally spaced for 

the boundary where the electric field was applied and parameterized using B-splines [23] for the 

other points of such boundary. 

In this paper we considered natural convection of Gallium Arsenide whose physical 

properties are summarized in Table 2. 

The temperature difference Th-Tc was set equal to 10 K, which gives a Rayleigh number of 

1.9x105, where Ra is defined as 

 

( )
K

LTTgC
Ra chP

ν
βρ 3−

=  (23) 

 

and L = 33.33 mm  
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Table 2. Physical properties for Gallium Arsenide 

Property Value Reference 

ρl 5710 kg m-3 7 

ρs 5196 kg m-3 8 

CPl 434 J kg-1 K-1 7 

CPs 416 J kg-1 K-1 8 

Kl 17.8 W m-1 K-1 7 

Ks 7 W m-1 K-1 7 

bl 1 x 10-8 m2 V-1 24 

bs 1 x 10-14 m2 V-1 4 

Del 2.5 x 10-10 m2 s-1 25 

Des 2.5 x 10-16 m2 s-1 25 

βl 1.87 x 10-4 K-1 7 

βs 1.87 x 10-4 K-1 assumed 

σl 8 x 105 W-1 m-1 7 

σs 3 x 104 W-1 m-1 7 

ε0 8.854 x 10-12 kg m s-2 V-2 25 

L 726,000 J kg-1 7 

µl 2.79 x 10-3 kg m-1 s-1 7 

µs 2.79 x 102 kg m-1 s-1 assumed 

Tl 1511.005 K 4 
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Ts 1511 K 7 

 

For the first test case, there was no phase change, since the “hot” and “cold” temperatures 

were above the melting temperature (Th = 1525.995 K; Tc = 1515.995 K). Figures 2-4 show 

constant speed contours and constant temperature contours predicted for the first test case 

without any electric flux applied and no phase change for three different grid sizes.  

 

 

(a) 

 

(b) 

Figure 2. Streamlines (a) and isotherms (b) with Ra = 1.9x105 and E = 0 (Ex = Ey = 0) for 

a grid with 20x20 cells. 

 

 

(a) 

 

(b) 

Figure 3. Streamlines (a) and isotherms (b) with Ra = 1.9x105 and E = 0 (Ex = Ey = 0) for 

a grid with 40x40 cells. 
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(a) 

 

(b) 

Figure 4. Streamlines (a) and isotherms (b) with Ra = 1.9x105 and E = 0 (Ex = Ey = 0) for 

a grid with 80x80 cells. 

 

The computational times required to run the test case above with the three different grid sizes 

were 8 minutes, 43 minutes and 694 minutes on a Pentium IV 2.4 GHz machine for the 20x20, 

40x40 and 80x80 grid sizes, respectively. Since a typical optimization job will require thousands 

of objective function evaluations, we chose the grid with 20x20 cells, so that it would be possible 

to run such optimization within a feasible computational time on a single processor personal 

computer. Thus, although the final results will not be fully converged, the concept that it is 

possible to control the natural convection phenomena by using externally applied electric fields 

could be demonstrated. 

We tried to optimize the electric potential between the top and bottom walls, but no 

significant reduction of the objective function given by equation (22) was noticed. Then, we 

focused the optimization task on the electric potential between the right and left walls. In this 

process of optimization we fixed the maximum allowed value for the electric potential at 1000 

volts, since higher values produced a very unstable flow-field. Figure 5 shows the optimized 

constant speed contours and temperature profiles using six points on the left boundary for the 

parameterization of the electric boundary condition. One can see that the gradients of 
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temperature in the x direction are reduced close to the top and bottom walls. It is interesting to 

note that the temperature profile appears shifted to the left, when compared to Figure 2.  

 

 

(a) 

 

(b) 

Figure 5. Optimized streamlines (a) and isotherms (b) with Ra = 1.9x105 and estimation 

of E at six points at x = 0. 
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Figure 6. Electric boundary conditions at x = 0 with Ra = 1.9x105 and estimation of E at 

six points. 
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Figure 7. Convergence history for Ra = 1.9x105 and estimation of E at six points at x = 0. 

 

Figure 6 shows the optimized boundary conditions for x = 0 and Figure 7 shows the 

convergence history of the process where one can see that the Nelder-Mead (NM) module did 

almost all the work. 

As a second test case, we tried to minimize the curvature of the isotherms in a solidifying 

process after a pre-specified time from the start of the solidifying process. Then, the eq. (22) was 

applied to the region between the solid and liquid phases. The temperature difference Th-Tc was 

set equal to 10 K (Th = 1515.995 K, Tc = 1505.995 K) and the length of the cavity was taken as 

the same as the previous test case. The solidus and liquidus temperatures were equal to 1511.0 K 

and 1511.005 K, respectively. Thus, a very thin mushy region exists between the phases.  

Figures 8-9 show the constant speed contours and isotherms for this test case, predicted at 

300 seconds (which is already the steady state solution) for two different grid sizes. The initial 

condition was set as T0 = Th. Then, the solidifying process starts at the top wall, where T = Tc.  
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(a) 

 

(b) 

Figure 8. Solidification case: Streamlines (a) and isotherms (b) with Ra = 1.9x105 and E 

= 0 for a grid with 20x20 cells. 

 

 

(a) 

 

(b) 

Figure 9. Solidification case: Streamlines (a) and isotherms (b) with Ra = 1.9x105 and E 

= 0 for a grid with 40x40 cells. 

 

The computational times required to run the test case above with the two different grid sizes 

were 15 minutes and 116 minutes on a Pentium IV 2.4 GHz machine for the 20x20 and 40x40 

grid sizes, respectively. Thus, for the same reason discussed above, we chose the 20x20 grid size 

to prove the concept proposed in this paper, even though the numerical results on this grid are 

not fully converged. 

Figure 10 shows the optimized constant speed contours and isotherms using six points for the 

left boundary for the estimation of the electric boundary conditions. The boundary conditions at 
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the other points on such boundary were interpolated using B-splines. One can see that the 

temperature profile appears “inverted” when compared to Figure 6. However, the flow-field 

starts to become highly unstable. 

 

 

(a) 

 

(b) 

Figure 10. Solidification case: Optimized streamlines (a) and isotherms (b) with Ra = 

1.9x105 and estimation of E at six points at x = 0. 
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Figure 11. Solidification case: Electric boundary conditions at x = 0 with Ra = 1.9x105 

and estimation of E at six points. 
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Figure 12. Solidification case: Convergence history for Ra = 1.9x105 and estimation 

of E at six points at x = 0. 

 

Figure 11 shows the optimized boundary condition for x = 0 and Figure 12 shows the 

convergence history of the optimization process where one can see that the Nelder-Mead (NM) 

module did almost all the work. The iterative process was forced to stop after 22 iterations due to 

the high computational cost involved when using a single processor personal computer. The 

computing time is significantly reduced and does not represent an issue when using inexpensive 

distributed parallel computers that are becoming readily available.  

Due to the stability problems in the previous results, we applied the previous methodology to 

a test case with a lower Rayleigh number. Figures 13-15 shows the results obtained for three 

different grid sizes, without phase-change, for a Rayleigh number equal to 1.9x104. In this case, 

the “hot” and “cold” temperatures were kept above the melting temperature (Th = 1521.5 K; Tc = 

1520.5 K). Note that the isotherms have a curvature weaker than those showed in Figures 2-4, 

for Ra = 1.9x105. 
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(a) 

 

(b) 

Figure 13. Streamlines (a) and isotherms (b) with Ra = 1.9x104 and E = 0 (Ex = Ey =0) for 

a grid with 20x20 cells. 

 

 

(a) 

 

(b) 

Figure 14. Streamlines (a) and isotherms (b) with Ra = 1.9x104 and E = 0 (Ex = Ey =0) for 

a grid with 40x40 cells. 

 

 

(a) 

 

(b) 

Figure 15. Streamlines (a) and isotherms (b) with Ra = 1.9x104 and E = 0 (Ex = Ey =0) for 

a grid with 80x80 cells. 
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The computational times required to run the test-case above with the three different grid sizes 

were 9 minutes, 47 minutes and 892 minutes on a Pentium IV 2.4 GHz machine for the 20x20, 

40x40 and 80x80 grid sizes, respectively. We again chose the 20x20 grid size, even if the 

numerical results on it are not fully converged, in order to minimize the computational time 

required by the optimization task. 

Figure 16 shows the results obtained with an optimized electric potential in the x-direction, 

where one can see that the isotherms start to become horizontal. In fact, due to the body forces 

induced by the electric potential, the temperature profile is similar to those obtained if the gravity 

vector were acting in the horizontal direction. Figure 17 shows the optimized electric potential 

and figure 18 shows the convergence history, where the DFP and GA modules did all the work. 

 

 

(a) 

 

(b) 

Figure 16. Optimized streamlines (a) and isotherms (b) with Ra = 1.9x104 and estimation 

of E at six points at x = 0. 
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Figure 17. Electric boundary conditions at x = 0 with Ra = 1.9x104 and estimation of E at 

six points. 
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Figure 18. Convergence history for Ra = 1.9x104 and estimation of E at six points at x = 

0. 

 

For this test case with a lower Rayleigh number, we also tried to reduce the natural 

convection effects in the presence of phase-change. Figure 19 shows the results obtained for a 

Rayleigh number equal to 1.9x104 without any electric field applied for a 20x20 grid size, where 
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the computational time was equal to 8 minutes on a Pentium IV 2.4 GHz machine. In this case, 

the “hot” and “cold” temperatures were equal to 1510.5 K and 1511.5 K, respectively. Note that 

the isotherms have a curvature weaker than those in Figure 8-9, for Ra = 1.9x105. 

Figure 20 shows the results obtained with an optimized electric potential acting in the 

horizontal direction. Note that the isotherms are smoother than those in Figure 19 for a case 

without any electric field applied. It is interesting to note that the velocity profile is very 

unstable, even for this case with a low Rayleigh number. 

 

 

(a) 

 

(b) 

Figure 19. Solidification case: Streamlines (a) and isotherms (b) with Ra = 1.9x104 and E 

= 0 for a grid with 20x20 cells. 

 

 

(a) 

 

(b) 

Figure 20. Solidification case: Optimized streamlines (a) and isotherms (b) with Ra = 

1.9x104 and estimation of E at six points at x = 0. 
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Figure 21 shows the optimized electric potential and figure 22 shows the convergence history 

for the hybrid optimizer. Note that the differential evolution (DE) module did almost all the work 

for this test case. 
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Figure 21. Solidification case: Electric boundary conditions at x = 0 with Ra = 1.9x104 

and estimation of E at six points. 
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Figure 22. Solidification case: Convergence history for Ra = 1.9x104 and estimation 

of E at six points at x = 0. 

 

CONCLUSIONS 

In this paper we showed the results of a time-accurate EHD code that is capable of dealing 

with phase change problems. The ability to minimize the natural convection effects in problems 

with and without phase change was demonstrated by utilizing an optimized distribution of 

electric field along the boundaries of a solidification container for the purpose of controlling the 

solidification process. A hybrid constrained optimization algorithm was used in reducing such 

natural convection effects. 

However, when space-varying electric potentials were applied, the fluid-flow started to 

become highly unstable. For cases where the electric potential was constant along certain wall, 

such instability did not occur. Further investigations concerning the stability of this type of fluid 

flow are necessary. Also, it is necessary to repeat the analysis presented in this paper by using 

more sophisticated mathematical models of solidification and by using a more refined grid. 

Actually, the instabilities presented in the velocity profiles could be due to the lack of 

convergence because of the very coarse grid used in these computations. However, the concept 

that it is possible to control the fluid flow by the means of an externally applied electric field has 

been adequately demonstrated. 
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