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ABSTRACT

When growing large single crystals from a melt, it is desirable to minimize ther-
mally induced convection effects so that solidification is achieved predominantly
by thermal conduction. It is expected that under such conditions any impurities
that originate from the walls of the crucible will be less likely to migrate into the
mushy region and consequently deposit in the crystal. It is also desirable to
achieve a distribution of the dopant in the crystal that is as uniform as possible. A
finite volume method and a least-squares spectral finite element method were used
to develop accurate computer codes for prediction of solidification from a melt
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under the influence of externally applied magnetic fields. A hybrid constrained
optimization algorithm and a semi-stochastic self-adapting response surface opti-
mizer were then used with these solidification analysis codes to determine the
distributions of the magnets that will minimize the convective flow throughout
the melt or in desired regions of the melt only.

INTRODUCTION

The objective of this article is to demonstrate the feasibility of determining
unknown boundary values of an applied magnetic field that will create user-specified
features of the melt flow-field and the melt/solid interface. This article presents a
proof-of-concept effort and it does not present the most advanced MHD analysis
involving solidification. In this study, all physical properties (density, heat conduc-
tivity, heat capacity, electric conductivity, etc.) were treated as constants instead
of as functions of temperature. The effects of magnetization were not included. This
study does not involve optimization of thermal boundary conditions in MHD
solidification.!"!

The latent heat released in the mushy region of a solidifying melt, where
Thiquidus > T > Tsofiaus, is assumed to be proportional to the local volumetric liquid/
(liquid + solid) ratio.!>¥

vV T_Tsoius " A
PR e Y 0

Ve+ V, 7—'quuidus — 4solidus

Here, the exponent n is typically 0.2 <n <5, while f=1 for T> Tjiquidaus and /=0
for T < Tyoiqus- In all test cases, the non-dimensional temperature is given as

_ T — Tyotidus

0
Th - Tc

@

Thus, 6 =0.0 corresponds to interface between the solid phase and the mushy region.
For relatively small changes of density with temperature, it is justifiable to assume
linear variation of density as a function of the temperature.! In the liquid, the
density is

oy = p,[1 N (i(ﬁ;{)—”l) - 9,4)] = o1 — a0 6)] 3)

with a similar expression for the solid phase. Therefore, the liquid-solid mixture
density and modified heat capacity can be defined as

Pmix = fpe + (1 — f)ps 4
(90,
e = e 2 1 (1 — ), XS ©

AQ2
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where an enthalpy method™ was used to formulate the equivalent specific heat
coefficient in the solid phase.
1 oL

eq _ . _ .- 9=

c, Cy Sop 90 (6)
Here, the specific heat coefficient accounts for the latent heat release in the mushy
region. The non-dimensional numbers used in magneto-hydrodynamics (MHD)
modeling are as follows:

Reynolds hydrodynamic Prandtl hydrodynamic Eckert number

2
R, = Lk, Pr = HyrCr E. = Y (Ta—c)
¢ Moyvr R Kr ¢ AT,
Grash of number Prandtl magnetic Hartmann number
2 3 172 -
¥ rATre prrfhr (7d
Gy = B AT Pt H (L) 0
My, Pr vr
Stefan number Froude number Rayleigh number
Sy = ¢, AT, Fo= v,z, R, = pfot,c,g,A T,Z?. (7g—)
L, gl Krldvr

Using these parameters, the non-dimensional formulation of the Navier-Stokes
subsystem of the MHD equations for phase-changing mixtures of two liquids has
been formulated.® In this formulation, the solid phase is treated as the second
liquid with extremely high viscosity. Assuming that both phases have the same local
velocity, the non-dimensional form of mass conservation is obvious.

V.y=0 ®)

Each phase could have been modeled with its own velocity, which would yield a
more complicated expression for multi-component mass conservation.’®! The non-
dimensional version of linear momentum conservation for two-phase MHD flows
with thermal buoyancy, and magnetic force is

ay ~ ~
pmix'a;t_ +fplv ) (ﬂ +P££) + (1 "f)PsV . (ﬂ +[)_‘-£)

_ 2273 ¥ Gr HZT
=f1V- (Vy+ (Vo)) | + 5 petef g + 55 1e(V x H) x H
R PaRC

R,
vs " G H?
+(1 —f)[V- [%‘—(VH(VD ):I +RT12{psas0§+ﬁﬂs(v x H) x _Ii} ©9)

where the non-dimensional hydrodynamic, hydrostatic, and magnetic pressures were
combined to give

. H? - H’
Pe=£+£+"——T_2M8_I-_I_H and p€=£_+_§£_+ T
R e

Zr L, HOH 10
oe 2 PR = ps P PLRIMETE (10)
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Here, ¢ is the non-dimensional gravity potential defined as g = —Vyp. Then, the

non-dimensional form of energy conservation for incompressible phase-changing
MHD flows including Joule heating can be written as!®

a0
cmix 5 1PV - (€00) + (1 = /)psV - (76Y)

1 | H2E,
_f[mV~(KgV9)+;;P'ZnR2 (VxH)-(V XH)]
1 H2E,
+(1 ~f)[RePRv-(KSv9)+;sP%1R3(Vx_li)-(VxH)] (11)

The classical modeling of MHD assumes that there are no free electric charges in
the fluid.>) With these assumptions Maxwell’s system for steady electro-magnetics
of a moving media becomes

V.B=0 (12)
V.J=0 (14)

Ohm’s law relates the induced electric current to the magnetic intensity vector in a
moving media.

J=ovxB (15)

If electric conductivity and magnetic permeability are assumed to be constant within

each phase, then the following non-dimensionalized magnetic field transport equa-

tion for the phase-changing MHD flow can be obtained from Egs. (12) to (15).

It needs to be solved intermittently!® with Eqgs. (8) through (11).
oH _Jow) + (= fows) o

—=-—Vx@xH)=

16
ot P.R, (16)

The modified magnetic transport equations (16), the continuity equation (8), the
modified linear momentum balance equations (9), and the modified energy balance
equation (11) were integrated numerically using a finite volume method for
structured clustered grids written in terms of non-orthogonal boundary-conforming
coordinates.””! Artificial density formulation was used to remove the singularity from
the Navier-Stokes system, and the artificial time integration was performed using a
four-stage Runge-Kutta algorithm.

EXAMPLES OF COMPUTED MHD FLOWS
WITH SOLIDIFICATION

First, let us consider the problem of steady state solidification in two square-
shaped containers without any magnetic field. Each container had the following



+ [12.8.2004-7:54pm] (1-24) (Page No. 5}
K/Journals/inpro/MDI/LMMP/LMMP18(4)/200031887.3d ials and ing P; {LMMP}

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

200031887_LMMP19_04_R1_081204

Optimization of Intensities and Orientations 5

Table 1. Physical properties of molten and solid silicon.!

e =2550 kg/m? 2y =2330kg/m>

cpt =1059J/kgK ¢ps=1038J/kg K
ke=64W/mK k,=22W/mK

T,=1685K T,=1681K
oe=123x10°1/Qm 0,=43x10*1/Qm

e =T7.018 x 10 kg/ms w=7.022x10"*kgm/A?s?
L=1.803x 10°)/kg a=14x10"*1/K

Table 2. Parameters for two test cases.

Case 1 (small container) Case 2 (large container)
[,=00lm [,=0.02m

Re= 1000 Re = 1000

B,=01T B.=0.1T

v, =2.7522 x 1072 m/s ve=1.3761 x 102 m/s
Pr=1.1613 x 1072 Pr=1.1613 x 10~
Gr=1.8132 x 10° Gr=1.4506 x 10°

Ra =2.1056 x 10° Ra=1.6845 x 10*
Fr=28.7870 x 102 Fr=3.1067 x 1072
Ec=7.1524 x 1078 Ec=1.7881 x 10~%

Ht =4.1864 x 10" Ht =8.3729 x 10!

thermal boundary conditions: left wall at T, right wall at T}, and top and bottom
walls thermally insulated. Gravity was assumed to act vertically downwards. Physical
properties of molten and solid silicon (Table 1) were used in these two example
test cases.

The physical properties of the liquid phase from Table 1 were adopted as the
reference properties. For AT, =T,—T,.=10K, and Re= 1000, the resulting non-
dimensional parameters are given in Table 2 for two different sizes of solidification
containers, it should be noted out that these test cases used the physical properties
for silicon with one exception. The magnetic Prandtl number that was used was three
orders of magnitude larger than its physical value. This was done because the
realistic extremely small values of P, caused the explicit numerical integration
algorithm used in the MHD analysis to diverge.

Figures 1 and 2 present the results for both test cases without magnetic field
applied (Ht=0.0) using two different grid sizes.

In both test cases, the results for the coarser grid (50 x 50 grid cells) are
very similar to the results with a refined grid (80 x 80 grid cells). The coarser grid
was used for the MHD solidification simulations during the optimization process.
Figure 3 shows the convergence history for containers of both sizes when using a grid
size of 50 x 50 grid cells.

T1

T2

F1F2

F3
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(a) 50 x 50 grid cells (b) 80 x 80 grid cells

Figure 1. Temperature field and streamlines for smaller container using two grid sizes
(Ht=0.0).

(a) 50 x 50 grid cells (b) 80 x 80 grid cells

Figure 2. Temperature field and streamlines for larger container using two grid sizes
(Ht=0.0).
OPTIMIZATION OBJECTIVES AND ALGORITHMS

A variety of optimization algorithms have been developed and used for
problems from many different disciplines. Various optimization algorithms have
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—— Number of frozen cells e Number of frazen cells

Residual

Residual

1000 — —-3.00 800—

Number of frazen cells
Residual
Number of frozen celis
-
(=3
o
|

200

0 ——— -5.50 0 — 7 -5.20
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
Iteration fteration
(a) Smaller container (b) Larger container

Figure 3. Convergence history for solidification in both containers (Ht=0; grid 50 x 50
cells).

been known to provide different rates of convergence depending on the size and
shape of the mathematical design space, the nature of the constraints, and where they
are during the optimization process. This is why we created a hybrid constrained
optimization computer program!'? that incorporates several of the most popular
optimization modules: the Davidon-Fletcher-Powell (DFP) gradient search method,
a genetic algorithm (GA), the Nelder-Mead (NM) simplex method, quasi-Newton
algorithm of Pshenichny-Danilin (LM), differential evolution (DE), and sequential
quadratic programming (SQP). The original package did not have the DE, SQP, and
LM methods. A set of analytic rules were coded into the program to automatically
switch among the different optimization algorithms to avoid local minima and
to accelerate the overall convergence. Different versions of this hybrid optimization
package have been successfully applied during the optimization of various multi-
disciplinary problems.!"") Another conceptually different optimizer, known as TOSO,
was also used in this work. It is based on semi-stochastic methods and self-adaptive
response surface methodology.!'""'? Different numerical analysis methods (finite
volume and finite element methods) and different optimization algorithms (a hybrid
optimizer and a I0SO optimizer) were used to demonstrate and compare their
respective accuracies, robustness, and versatility.

MINIMIZATION OF THE NATURAL CONVECTION
USING MHD AND A HYBRID OPTIMIZER

It is well known that application of a magnetic field to a solidifying flow-
field of an electrically conducting fluid will create additional body forces that are
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capable of significantly altering the flow-field and heat transfer.!'>'®! It has also been
demonstrated that it is possible to optimize the boundary values of the magnetic field
with the objective of achieving certain desired features of the flow-field." '8! Let us
now try to optimize the magnetic field applied on each of the four walls of the square
container of test case 1 (smaller container) described in the previous section. The
objective is to minimize the effects of the thermally induced natural convection
in case of solidification from a sidewall. To satisfy magnetic flux conservation
(Eq. 12), we consider the simple case of periodic boundary conditions.

Bi1(0,y) = By(1,y) (17)

Bi(x,0) = By(x, 1) (18)

The unknown boundary values of the magnetic field were parameterized as
follows:

M
B(xi) = ) PiCilxk) (19)
i=]

where P; is unknown parameter and the function C; (x;) is given as

Cilxi) = cos[(i _ 1)gxk] fori=1,3,5,... (20)

Cila) = cos[igxk] fori=2,4,6,... Q1)

The objective function for this optimization problem was to minimize the sum of all
vertical temperature gradient magnitudes in the entire liquid region that should
minimize thermally induced buoyancy flow-field in the melt. Thus, our problem is to
minimize the objective function, F, defined as

Lo 12
1 #liquid cells T 2
_ a 22
F l:#liquid cells ; (ay) @2)

In all test cases, the initial guess for the parameters was zero, while the number
of optimization population members was equal to three times the number of
parameters. The hybrid optimizer started with the DE method in all test cases and
the initial population was randomly generated around the initial guess.

Figures 4a and b show the results for the test case 1 without an applied magnetic
field and with an optimized magnetic field applied. One can see that the buoyancy
effects are reduced. In this test case, three parameters were used for B(0, y) and
three parameters were used for Bs(x,0). Figure 5 shows the optimized boundary
conditions, where one can see that the magnetic field is constant at the boundaries
y=0.0 and y=1.0.

AQ3

F4

FS5
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Figure 4. Isotherms and streamlines without: (a) and with (b) an optimized applied magnetic
field (test case 1: smaller container).

7.0E-1 7.2E-1 -
6.8E-1
6.0E-1
8 8
= 4 < 6.4E-14
@ &
5.0E-1 1
6.0E-1
4,0E-1 P p————— 5.6E-1 e r———T——
00 02 04 06 08 10 00 02 04 06 08 10
y X

Figure 5. Optimized magnetic field boundary conditions (test case I: smaller container).

Figure 6 shows the convergence history for the hybrid optimizer in this case
where the DE and NM optimization modules were automatically used most often.

Figure 7 shows the results for test case 2 (a larger container) without an applied
magnetic field and with an optimized magnetic field applied. One can see that the
buoyancy effects are reduced, but not eliminated. Again, three parameters were used
for By(0,y) and three parameters for B;(x,0), while periodic boundary conditions
were enforced on the opposite boundaries. Figure 8 shows the optimized boundary
conditions, where, again, the variation of the magnetic field along the boundaries
x=0.0 and x=1.0 is greater than at the boundaries y =0.0 and y=1.0.

F6

F7

F8



200031887_LMMP19_04_R1_081204

+ (12.8.2004-7-54pm) [1-24] [Page No. 10}
K/, pro/MDI/LMMP/LMMP19( 17.3d ials and ing Processes (LMMP)
10
424 + sap
425 o DFP
426 L . GA
427 6.4E -2 A NM
428 ' o LM
v DE
429 ]
430 6.2E-2 —
431 -
432 6.0E-2 —
433 S
g 4
434 2
435 8 5.6e.2 — <mmm
436 4

S. Dulikravich et al.

’-— 3000

2000

— 1000

# of obj. func. eval.



438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

- 56E-2—4

5.4E-2

Iteration number

Figure 6. Convergence history for the hybrid optimizer (test case I: smaller container).

a) b)

Figure 7. Isotherms and streamlines without: (a) and with (b) an optimized applied magnetic
field (test case 2: larger container).

Figure 9 shows the convergence history for the hybrid optimizer in this test
case where only the DE, GA, and NM optimization modules were automatically
applied.

Figures 10 through 12 show the results for test case 2, but using six parameters
for B,(0, y) and six parameters for B;(x, 0), instead of the three parameters used

F9

F10-F12
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Figure 8. Optimized magnetic field boundary conditions (test case 2: larger container).
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Figure 9. Convergence history for the hybrid optimizer (test case 2: larger container).

before. One can sec that the natural convection effects are further reduced in this
case. It is interesting to note that the variation of the applied magnetic field is greater
at the boundaries y=0.0 and y=1.0.

Figure 12 shows the convergence history, where, again, we applied the DE and
GA modules. In fact, the GA module did the entire job in this test case.
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Figure 10. Isotherms and streamlines without and with an optimized applied magnetic field
(test case 2 with six parameters).
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Figure 11. Optimized magnetic field boundary conditions (test case 2 with six parameters).

MHD SOLIDIFICATION OPTIMIZATION USING LSFEM AND
10SO OPTIMIZER

Other possibly more robust and accurate numerical integration methods were
explored!"*!* to allow for physical values of the magnetic Prandtl number and for
significantly higher values of viscosity in the solid region. Consequently, we will
present a combination of MHD with solidification where the numerical analysis was
performed with a least squares spectral finite element method (LSFEM),!'>!® and
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Figure 12. Convergence history for the hybrid optimizer (test case 2 with six sensors).

the optimization was performed using a self-adaptive response surface-based semi-
stochastic algorithm!'!2 called 10SO. Here, the objective of the optimization is to
minimize the velocity magnitude of the melt flow near the solid-liquid interface. The
optimizer searches for this by changing the orientation and distribution of the
sidewall magnets as well as the strength of the applied external uniform vertical
magnetic field. The objective function was expressed as the following equation:

Niia
F= Z u? + v? 23)
i=1
Here, Nqyuiq is the total number of grid points located between y>0.04m and
» <0.08 m—that is, only in the flow-field region adjacent to the solid/melt interface.
The only constraints considered in this problem were the bounds on the magnitudes
of the design variables. In this problem, we considered a container with relatively
weak magnets embedded in the sidewalls. The magnetic flux density strength and
distribution was parameterized using a B-spline with control variables located at
7 points along the wall (»=0.0, 0.02, 0.04, 0.06, 0.08, 0.1 m). These design variables
controlled the magnitude, direction, and distribution of the magnetic field.

Two cases were run. For case 1, each control point was allowed to vary from
0.07 Tesla to —0.07 Tesla. In case 2, each control point was allowed to vary from 0.5
Tesla to —0.5 Tesla. This distribution was applied to the right wall. The distribution
on the left wall was taken to be of equal magnitude, but opposite sign to that of the
right wall. Therefore, the resulting magnetic field was always symmetrical with
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respect to the y-axis. A vertical magnetic field was also applied so that it could be
generated using an electromagnet located on the top and bottom of the container.,
The optimized magnetic potential produced a uniform vertical field strength varying
between 0.0 Tesla to 0.15 Tesla in case | and between 0.0 Tesla and 0.5 Tesla in
case 2. For this example, the total number of design variables was seven.

The optimization procedure was applied to the solidification of a silicon melt in a
square container with sides of 0.1 m. A uniform temperature of 1676.0 K was applied
to the top wall so that solidification occurred on the top wall of the container.
A parabolic temperature profile was applied to the hot bottom of the container
to simulate nonuniform heating of the melt. The temperature at the center of the
bottom wall was 1688.0K, and the temperature at the bottom corners was set to
1686.0 K. The sidewalls were thermally insulated. A no-slip condition for velocity
was enforced on all walls of the container. The magnetic flux density determined
from the B-spline parameterization was specified directly on the sidewalls.
A constant magnetic potential was specified on the top and bottom of the container.
The potentials were determined by calculating the potential required to produce a
uniform vertical field of a specified strength. A relatively coarse quadrilateral
computational grid with 17 x 17 =289 elements with a p-level of P =3 was used with
the LSFEM code (Fig. 13).

The p-version of LSFEM was used to compute all results reported here. The
order of the approximation function was increased, or enriched, until the desired
level of convergence was obtained. In this case, the size of the grid was fixed and the
order of the approximation was increased uniformly across the grid. For problems
with smooth solutions, the p-version of the LSFEM converged to the exact solution
at an exponential rate as the number of unknowns was increased by the uniform
enrichment of the element approximation functions.

0.1
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Figure 13. Computational grid for FEM analysis.
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In cases where the mushy region was only one grid cell wide, the effective heat
capacity including the latent heat relcase was computed using an enthalpy
method.[!>17]

dH |VH|
=
=77 ST (29)

Using this treatment in the mush region allowed much larger values of the viscosity
to be specified in the solid phase. Specifically, LSFEM/MHD solidification with
the enthalpy method used seven orders of magnitude higher viscosity in the solid
phase than in the liquid phase. Figures 14 and 15 show velocity field and streamlines

Figure 14. Velocity magnitudes with no applied magnetic field—FEM analysis.

Figure 15. Streamlines with no applied magnetic field—FEM analysis.
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computed without the application of a magnetic field. Correct physical value of
the magnetic Prandtl number was used in all simulations based on LSFEM/MHD.

The I0SO algorithm was used to optimize the applied magnetic field to this
problem.!!>!" The optimization code was executed on a commodity component-
based parallel computer with Pentium II processors (400 MHz speed). Twenty
processors were used, and the total execution time was about 16 h. The initial guess
given to the optimizer was that all design variables were set to zero. In other words,
the initial guess was a flow-field without any applied magnetic field. In that case the
normalized value of the objective function is 1.0.

LSFEM: Case 1

In this case, the sidewall magnetic field strengths were very weak. They varied
between 0.07T and 0.07 T. A maximum strength for uniform vertical field varied
between 0.0 T and 0.15T. After 12 iterations, the IOSO-based optimizer achieved its
best objective function value of 0.292. In comparison, the objective function for a
simple case of no sidewall magnets and a maximum strength uniform vertical field of
0.15T achieved a value of 0.771. The optimized magnetic field reduced the average
velocity in the melt region between y =0.04 m and y =0.08 m by more than a factor
of three. Figures 16 and 17 demonstrate that the magnetic field effectively damped
the flow field circulation, removing the pair of secondary vortices present in the case
with no applied magnetic field. Figure 18 shows the optimized magnetic field lines
of flux density.

In the lower half of the sidewall, the magnets were at maximum strength of
0.07T. Above that, the polarity changed and the strength of the sidewall magnet was
reduced to 0.04 T at the top of the container (Fig. 19). For the top and bottom walls,

Figure 16. Velocity magnitudes with optimized applied magnetic field (case 1).
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Figure 17. Streamlines with optimized applied magnetic field (case 1).
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Figure 18. Lines of magnetic flux for the optimized applied magnetic field (case 1).

the optimizer chose a magnetic potential that would produce a uniform vertical field
of 0.025T. This is interesting since the optimizer had the choice of producing up to
0.15T but yet converged to a much smaller value. This indicates that by damping the
melt circulation, the shape of the magnetic field was as important as its strong
vertical component. Figure 20 compares the temperature distribution between flow
with no magnetic field and flow with optimized magnetic field. The optimized field
clearly smoothes the temperature contours due to the reduced convection.

F20
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Figure 22. Streamlines with optimized applied magnetic field (case 2).

between 0.0 T and 0.5T. Thus, case 2 differed from case 1 by allowing for wider
ranges of boundary values for the applied magnetic field. After 14 iterations, the
IOSO-based optimizer achieved a best objective function of value 0.111. In this case,
the optimized magnetic field reduced the average velocity in the melt region between
y=0.04m and y=0.08 m by more than a factor of 9 (Figs. 21 and 22). Figure 23
shows the magnetic field lines of flux density that correspond to the optimized
magnetic field boundary conditions (Fig. 24). All of the wall magnets were at maxi-
mum strength of 0.5T. On the top and bottom walls, the optimizer converged to
a magnetic potential that would produce a uniform vertical field of 0.5T. These
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Figure 23. Lines of magnetic flux for the optimized applied magnetic field (case 2).
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of B, along the right wall for the optimized applied magnetic field

optimized magnetic field boundary conditions have effectively damped out the flow
field circulation, removing the pair of secondary vortices that were present with no
applied magnetic field. Figure 25 compares the temperature distribution in the solid
and liquid phases. The optimized field clearly changes the temperature contours
due to the reduced convection and the suppression of the secondary vortices. The
optimized thermal field was very close to the temperature distribution that would be
obtained by pure heat conduction.
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Figure 25. Comparison of isotherms with optimized applied magnetic field and with no
applied magnetic field (case 2).

SUMMARY

The feasibility of a new concept for controlling solidification processes during
manufacturing of defect-free crystals by the optimization of the distributions and
orientations of magnets along the boundaries of a solidification container has been
demonstrated. The simultaneous analysis of the magneto-hydro-dynamics of the
melt flow-field and the accrued solid was performed using two very different
numerical algorithms: a finite volume algorithm, and a least-squares finite element
algorithm. LSFEM method was able to reduce the average melt circulation velocity
by a factor of 9, effectively generating a thermal field very close to a distribution that
would be produced by pure heat conduction. This method was also more robust
because it allowed for physical values of the magnetic Prandtl number and for
extremely high value of viscosity in the solid region. Two methods for treating
the mushy region were also exercised: an equivalent specific heat formulation and
an enthalpy method. The enthalpy method appears to be more robust. The param-
eterized boundary values of the magnetic field were optimized by two entirely
different optimization algorithms: a hybrid constrained optimization algorithm and
a novel self-adaptive response surface semi-stochastic optimization algorithm.
The IOSO optimizer required substantially smaller number of MHD solidification
analysis. This minimization was achieved by optimizing a finite number of param-
eters describing analytically the distribution and the orientations of the boundary
values of the magnetic field. For cases where solidification begins at the top wall and
at a sidewall, the methodology was shown to reduce the intensity of the melt velocity
by creating new shapes of the melt/solid interface in prespecified parts of the flow-
field. Formulations of other objective functions and multi-objective optimization
involving simultaneous optimization of magnetic and thermal boundary conditions
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should be possible. Future work should focus on experimental verification of these
numerical results since this concept could be extended to controlled manufacturing
of three-dimensional functionally graded material objects.
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NOMENCLATURE

Magnetic flux density, kg A2

Specific heat at constant pressure, Jkg™' K~}
Acceleration due to gravity, ms™2

Enthalpy per unit volume, Jm™}

Magnetic field intensity, Am™'

Electric current density, A m™>

Latent heat of phase change per unit mass, m?s~2
Total magnetization per unit volume, Am~!
Pressure, kgm™!s™2

Absolute temperature, K

Fluid velocity, ms™

I
It
~
S
|
<

I

R A T L R

Greek Symbols

Volumetric thermal expansion coefficient, K™
Thermal conductivity coefficient, kgms > K™
Electric conductivity coefficient, kg™' m™3s> A2
Fluid density, kgm™>

Magnetic permeability coefficient, kgm A =252
Shear coefficient of viscosity, kgm™'s™!
Non-dimensional temperature (Eq. 1)
Non-dimensional temperature (Eq. 2)

<

TR RTD QX R

Subscripts

s Solid phase

/ Liquid phase

mix Liquid—solid mixture (mushy zone)

r Reference value

liquidus Corresponding to liquidus temperature
solidus Corresponding to solidus temperature
h Hot surface of the container

c Cold surface of the container
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