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Abstract

This work deals with the use of the conjugate gradient method in conjunction with an adjoint problem formulation
for the simultaneous estimation of the spatially varying diffusion coefficient and of the source term distribution
in a one-dimensional nonlinear diffusion problem. In the present approach, no a priori assumption is required
regarding the functional form of the unknowns. This work can be physically associated with the detection of
material non-homogeneities, such as inclusions, obstacles or cracks, in heat conduction, groundwater flow and
tomography problems. Three versions of the conjugate gradient method are compared for the solution of the present
inverse problem, by using simulated measurements containing random errors in the inverse analysis. Different
functional forms, including those containing sharp corners and discontinuities, are used to generate the simulated
measurements and to address the accuracy of the present solution approach.
© 2004 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Despite being considered in the past as not of physical interest because of their ill-posed character,
inverse problems play nowadays an important role in the solution of a number of practical problems. The
use of inverse methods represent a new research direction, where the results obtained from numerical
simulations and from experiments are not simply compared a posteriori, but a close synergism exists
between experimental and theoretical researchers during the course of the study, in order to obtain the
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Nomenclature

D(x) spatially dependent diffusion coefficient
dkD(x) anddkµ(x) directions of descent forD(x) andµ(x), respectively
M number of sensors
S[D(x), µ(x)] objective functional
t time
tf final time
U(x, t) estimated field variable
x spatial variable
Ym(t) transient measurement obtained with sensorm (m = 1, . . . ,M)

Greek symbols
βk
D andβk

µ search step sizes forD(x) andµ(x), respectively
γk
D, γk

µ, ψk
D andψk

µ conjugation coefficients
�D(x) and�µ(x) variations inD(x) andµ(x), respectively
�UD(x, t) and�Uµ(x, t) sensitivity functions forD(x) andµ(x), respectively
λ(x, t) Lagrange multiplier
µ(x) spatial distribution of the source term
σ standard deviation of the measurements
∇S gradient components for the functional

Subscript
m refers to the number of sensors (m = 1, . . . ,M)

Superscripts
k iteration number
qD andqµ iteration number where a restarting strategy is applied in the iterative

procedure forD(x) andµ(x), respectively
∗ dimensional quantities

maximum of information regarding the physical problem under consideration[1]. Most of the methods
for the solutions of inverse problems, which are currently in common use, were formalized in the last
four decades in terms of their capabilities to treat ill-posed unstable problems. The basis of such formal
methods resides on the idea of reformulating an inverse problem in terms of an approximate well-posed
problem, by utilizing some kind of regularization (stabilization) technique (see, e.g., references[1–31]).

In this work we examine the use of different versions of the conjugate gradient method together with an
adjoint problem formulation[2,3,7,8,11,15,16,32]for the purpose of simultaneous estimation of spatially
dependent diffusion coefficients and source terms in a nonlinear diffusion problem. The inverse problem
considered in this work is solved by using a function estimation approach[1–4], where no information is
a priori available regarding the forms of the unknown functions, except for the functional space that they
belong to. It is assumed that the unknowns belong to the Hilbert space of square integrable functions in
the spatial domain of interest[2,3,6].
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The solution of inverse problems by using the conjugate gradient method with adjoint problem for
function estimation consists of the following basic steps[2,3]: (i) direct problem formulation, (ii) inverse
problem formulation, (iii) sensitivity problems formulation, (iv) adjoint problem formulation, (v) gra-
dient equations, (vi) iterative solution procedure, (vii) iterative procedure stopping criterion, and (viii)
computational algorithm. Highlights of such steps are presented below, as applied to the inverse problem
of interest. For further details on such steps, the reader should consult references[2,3].

2. Direct problem

In this work we consider problems governed by the following nonlinear diffusion equation:

C∗(r∗)
∂U∗(r∗, t∗)

∂t∗
= ∇ · [D∗(r∗)∇U∗] + µ∗(r∗)U∗ (1)

wherer∗ denotes de vector of coordinates and the superscript∗ denotes dimensional quantities.
Eq. (1)can be used for the modeling of several physical phenomena, such as heat conduction[1–10],

groundwater flow[5,11–15]and optical tomography[16–23]. The physical significance of the different
quantities appearing inEq. (1)is summarized inTable 1for each of these physical problems.

We focus our attention on a one-dimensional version ofEq. (1)written in dimensionless form as

∂U

∂t
= ∂

∂x

(
D(x)

∂U

∂x

)
+ µ(x)U in 0 < x < 1 for t > 0 (2.a)

that is subject to the following boundary and initial conditions:

∂U

∂x
= 0 atx = 0 for t > 0 (2.b)

D(x)
∂U

∂x
= 1 atx = 1 for t > 0 (2.c)

U = 0 for t = 0 in 0< x < 1 (2.d)

Notice that in thedirect problem the diffusion coefficient functionD(x) and the source term distribution
functionµ(x) are regarded as known quantities, so that a direct (analysis) problem is concerned with the
computation ofU(x, t).

Table 1
Physical significance of the quantities appearing inEq. (1)

Physical problem U∗(r∗, t∗) C∗(r∗) D∗(r∗) µ∗(r∗)

Heat conduction Temperature Volumetric heat capacity Thermal conductivity Spatial distribution of
source term

Groundwater flow Piezometric head Storage coefficient Transmissivity Spatial distribution of
source term

Optical tomographya Fluence rate – Diffusion coefficient Absorption distribution

a For optical tomography problemsC∗(r∗) = 1, the diffusion coefficient is given byD∗(r∗) = c∗/(3[µ∗
a(r

∗) + µ′∗
s (r

∗)]) and
µ∗(r∗) = −c∗µ∗

a(r
∗), wherec∗ is the speed of light in the medium,µ∗

a(r
∗) is the absorption coefficient andµ′∗

s (r
∗) is the reduced

scattering coefficient[16].
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3. Inverse problem

For theinverse problem of interest here, the functionsD(x) andµ(x) are regarded as unknown. Such
functions will be simultaneously estimated by using measurements ofU(x, t) taken at appropriate locations
in the medium or on its boundaries. Such measurements may contain random errors that are assumed
to be uncorrelated, additive, normally distributed, with zero mean and with a known constant standard
deviation.

Practical applications of this inverse problem include the identification of non-homogeneities in the
medium, such as inclusions, obstacles or cracks, determination of thermal diffusion coefficients and
distribution of heat sources, groundwater flow and tomography physical problems, in which bothD(x)
andµ(x) vary [1–31].

For the simultaneous estimation of the functionsD(x) andµ(x) we make use of a minimization procedure
involving the following objective functional:

S[D(x), µ(x)] = 1
2

∫ tf

t=0

M∑
m=1

{U[xm, t;D(x), µ(x)] − Ym(t)}2 dt (3)

whereYm(t) are the transient measurements ofU(x, t) taken at the positionsxm (m = 1, . . . ,M). The
estimated dependent variableU[xm, t; D(x), µ(x)] is obtained from the solution of the direct problem
(Eqs. (2.a)–(2.d)) at the measurement positionsxm (m = 1, . . . ,M) with estimates forD(x) andµ(x).

The conjugate gradient method with an adjoint problem is used for the minimization of the objective
functional (Eq. (3)). Such minimization procedure requires the solution of auxiliary problems, known as
sensitivity and adjoint problems.

4. Sensitivity problems

Thesensitivity function, solution of the sensitivity problem, is defined as the directional derivative of
U(x, t) in the direction of the perturbation of the unknown function[2,3]. Since the present problem
involves two unknown functions, two sensitivity problems are required for the estimation procedure,
resulting from perturbations inD(x) andµ(x).

The sensitivity problem forUD(x, t) is obtained by assuming that the dependent variableU(x, t) is
perturbed byε�UD(x, t) when the diffusion coefficientD(x) is perturbed byε�D(x). Here,ε is a real
number. The sensitivity problem forUD(x, t) is then obtained by applying the following limiting process:

lim
ε→0

Lε(Dε) − L(D)

ε
= 0 (4)

whereLε(Dε) andL(D) are the direct problem formulations written in operator form for perturbed and
unperturbed quantities, respectively. The application of the limiting process given byEq. (4)results in
the following sensitivity problem:

∂�UD

∂t
= ∂

∂x

(
D(x)

∂�UD

∂x
+ �D(x)

∂U

∂x

)
+ µ(x)�UD in 0 < x < 1 for t > 0 (5.a)

∂�UD

∂x
= 0 atx = 0 for t > 0 (5.b)
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�D(x)
∂U

∂x
+ D(x)

∂�UD

∂x
= 0 atx = 1 for t > 0 (5.c)

�UD = 0 in 0 ≤ x ≤ 1 for t = 0 (5.d)

A limiting process analogous to that given byEq. (4), obtained from the perturbationε�µ(x), results in
the following sensitivity problem for�Uµ(x, t):

∂�Uµ

∂t
= ∂

∂x

(
D(x)

∂�Uµ

∂x

)
+ µ(x)�Uµ + �µ(x)U in 0 < x < 1 for t > 0 (6.a)

∂�Uµ

∂x
= 0 atx = 0 andx = 1 for t > 0 (6.b,c)

�Uµ = 0 in 0 ≤ x ≤ 1 for t = 0 (6.d)

5. Adjoint problem

A Lagrange multiplierλ(x, t) is utilized in the minimization of the functional (Eq. (3)) because the
estimated dependent variableU[xm, t; D(x),µ(x)] appearing in such functional needs to satisfy a constraint,
which is the solution of the direct problem. Such Lagrange multiplier, needed for the computation of the
gradient equations (as will be apparent below), is obtained through the solution of problems adjoint to
the sensitivity problems, given byEqs. (5.a)–(6.d) [2,3]. Despite the fact that the present inverse problem
involves the estimation of two unknown functions, thus resulting in two sensitivity problems as discussed
above, one single problem, adjoint to problems (5.a)–(6.d), is obtained.

In order to derive the adjoint problem, the governing equation of the direct problem (Eq. (2.a)) is
multiplied by the Lagrange multiplierλ(x, t), integrated in the space and time domains of interest and
added to the original functional (Eq. (3)). The following extended functional is obtained:

S[D(x), µ(x)] = 1

2

∫ 1

x=0

∫ tf

t=0

M∑
m=1

[U − Y ]2δ(x − xm)dt dx

+
∫ 1

x=0

∫ tf

t=0

[
∂U

∂t
− ∂

∂x

(
D(x)

∂U

∂x

)
− µ(x)U

]
λ(x, t)dt dx (7)

whereδ is the Dirac delta function.
Directional derivatives ofS[D(x), µ(x)] in the directions of perturbations inD(x) andµ(x) are respec-

tively defined by

�SD[D,µ] = lim
ε→0

S[Dε,µ] − S[D,µ]

ε
(8.a)

�Sµ[D,µ] = lim
ε→0

S[D,µε] − S[D,µ]

ε
(8.b)

whereS[Dε,µ] andS[D,µε] denote the extended functional (Eq. (7)) written for perturbedD(x) andµ(x),
respectively.
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After performing some lengthy but straightforward manipulations[2,3] and letting the directional
derivatives ofS[D(x),µ(x)] go to zero, which is a necessary condition for the minimization of the extended
functional (Eq. (7)), the following adjoint problem for the Lagrange multiplierλ(x, t) is obtained:

−∂λ

∂t
− ∂

∂x

(
D(x)

∂λ

∂x

)
− µ(x)λ +

M∑
m=1

[U − Y ]δ(x − xm) = 0 in 0< x < 1 for t > 0 (9.a)

∂λ

∂x
= 0 atx = 0 andx = 1 for t > 0 (9.b,c)

λ = 0 in 0 ≤ x ≤ 1 for t = tf (9.d)

6. Gradient equations

During the limiting processes used to obtain the adjoint problem, applied to the directional derivatives
of S[D(x), µ(x)] in the directions of perturbations inD(x) andµ(x), the following integral terms are
respectively obtained:

�SD[D,µ] =
∫ 1

x=0

∫ tf

t=0
�D(x)

∂U

∂x

∂λ

∂x
dt dx (10.a)

�Sµ[D,µ] = −
∫ 1

x=0

∫ tf

t=0
�µ(x)λ(x, t)U(x, t)dt dx (10.b)

By invoking the hypotheses thatD(x) andµ(x) belong to the Hilbert space of square integrable functions
in the domain 0< x < 1, it is possible to write[2,3]

�SD[D,µ] =
∫ 1

x=0
∇S[D(x)]�D(x)dx (11.a)

�Sµ[D,µ] =
∫ 1

x=0
∇S[µ(x)]�µ(x)dx (11.b)

Hence, by comparingEqs. (10.a), (10.b) and (11.a), (11.b)we obtain the gradient components ofS[D,µ]
with respect toD(x) andµ(x), respectively, as

∇S[D(x)] =
∫ tf

t=0

∂U

∂x

∂λ

∂x
dt (12.a)

∇S[µ(x)] = −
∫ tf

t=0
λ(x, t)U(x, t)dt (12.b)

An analysis ofEqs. (9.b,c) and (12.a)reveals that the gradient component with respect toD(x) is null at
x = 0 andx = 1. As a result, the initial guess used forD(x) is never changed by the iterative procedure
of the conjugate gradient method at such points, which can create instabilities in the inverse problem
solution in their neighborhoods.
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7. Iterative procedure

For the simultaneous estimation ofD(x) andµ(x), the iterative procedure of the conjugate gradient
method is written respectively as[2,3]

Dk+1(x) = Dk(x) + βk
Dd

k
D(x) (13.a)

µk+1(x) = µk(x) + βk
µd

k
µ(x) (13.b)

wheredkD(x) anddkµ(x) are the directions of descent forD(x) andµ(x), respectively;βk
D andβk

µ are the
search step sizes forD(x) andµ(x), respectively;k is the number of iterations.

For the iterative procedure for each unknown function, the direction of descent is obtained as a linear
combination of the gradient direction with directions of descent of previous iterations. The directions of
descent for the conjugate gradient method forD(x) andµ(x) can be written respectively as

dkD(x) = −∇S[Dk(x)] + γk
Dd

k−1
D (x) + ψk

Dd
qD
D (x) (14.a)

dkµ(x) = −∇S[µk(x)] + γk
µd

k−1
µ (x) + ψk

µd
qµ
µ (x) (14.b)

whereγk
D, γk

µ,ψk
D andψk

µ are the conjugation coefficients. The superscriptsqD andqµ in Eqs. (14.a) and
(14.b)represent the iteration numbers where a restarting strategy is applied to the iterative procedure for
the estimation ofD(x) andµ(x), respectively[32].

Different versions of the conjugate gradient method can be found in the literature, depending on how
the conjugation coefficients are computed. The conjugation coefficients for Powell-Beale’s version of the
conjugate gradient method are given by[8,32]

γk
D =

∫ 1
x=0{∇S[Dk(x)] − ∇S[Dk−1(x)]}∇S[Dk(x)] dx∫ 1
x=0{∇S[Dk(x)] − ∇S[Dk−1(x)]}dk−1

D (x)dx
(15.a)

γk
µ =

∫ 1
x=0{∇S[µk(x)] − ∇S[µk−1(x)]}∇S[µk(x)] dx∫ 1
x=0{∇S[µk(x)] − ∇S[µk−1(x)]}dk−1

µ (x)dx
(15.b)

ψk
D =

∫ 1
x=0{∇S[DqD+1(x)] − ∇S[DqD(x)]}∇S[Dk(x)] dx∫ 1

x=0{∇S[DqD+1(x)] − ∇S[DqD(x)]}dqD
D (x)dx

(15.c)

ψk
µ =

∫ 1
x=0{∇S[µqµ+1(x)] − ∇S[µqµ(x)]}∇S[µk(x)] dx∫ 1

x=0{∇S[µqµ+1(x)] − ∇S[µqµ(x)]}dqµµ (x)dx
(15.d)

whereγk
D = γk

µ = ψk
D = ψk

µ = 0 for k = 0.
Powell-Beale’s version of the conjugate gradient method is restarted by making the conjugation coef-

ficientψk
D = 0 (orψk

µ = 0) if gradients at successive iterations are too far from being orthogonal (which
is a measure of the nonlinearity of the problem) or if the direction of descent is not sufficiently downhill.
For further details, the reader is referred to Refs.[8,32].



416 F.A. Rodrigues et al. / Mathematics and Computers in Simulation 66 (2004) 409–424

For Fletcher-Reeves’ version of the conjugate gradient method, the conjugation coefficients are com-
puted as[2,3,8,32]

γk
D =

∫ 1
x=0{∇S[Dk(x)]}2 dx∫ 1

x=0{∇S[Dk−1(x)]}2 dx
, γk

µ =
∫ 1
x=0{∇S[µk(x)]}2 dx∫ 1

x=0{∇S[µk−1(x)]}2 dx
(16.a,b)

For Polak-Ribiere’s version of the conjugate gradient method, the conjugation coefficients are computed
as[2,3,8,32]

γk
D =

∫ 1
x=0∇S[Dk(x)]{∇S[Dk(x)] − ∇S[Dk−1(x)]} dx∫ 1

x=0{∇S[Dk−1(x)]}2 dx
(17.a)

γk
µ =

∫ 1
x=0∇S[µk(x)]{∇S[µk(x)] − ∇S[µk−1(x)]} dx∫ 1

x=0{∇S[µk−1(x)]}2 dx
(17.b)

In Fletcher-Reeves’ and Polak-Ribiere’s versions of the conjugate gradient methodγk
D = γk

µ = 0 for
k = 0. Furthermore, in these two versions of the conjugate gradient methodψk

D = ψk
µ = 0 for anyk, so

that a restarting strategy is not taken into account as in Powell-Beale’s version.
The search step sizesβk

D and βk
µ appearing in the expressions of the iterative procedures for the

estimation ofD(x) andµ(x) (Eqs. (13.a) and (13.b), respectively) are obtained by minimizing the objective
functional at each iteration along the specified directions of descent. If the objective functional given by
Eq. (3)is linearized with respect toβk

D andβk
µ, closed form expressions can be obtained for such quantities

as follows[2,3]:

βk
D = F1A22 − F2A12

A11A22 − A2
12

, βk
µ = F2A11 − F1A12

A11A22 − A2
12

(18.a,b)

where

A11 =
∫ tf

t=0

M∑
m=1

[�Uk
D(xm, t)]

2 dt (19.a)

A22 =
∫ tf

t=0

M∑
m=1

[�Uk
µ(xm, t)]

2 dt (19.b)

A12 =
∫ tf

t=0

M∑
m=1

�Uk
D(xm, t)�Uk

µ(xm, t)dt (19.c)

F1 =
∫ tf

t=0

M∑
m=1

[Yk
m − Uk(xm, t)][�Uk

D(xm, t)] dt (19.d)

F2 =
∫ tf

t=0

M∑
m=1

[Yk
m − Uk(xm, t)][�Uk

µ(xm, t)] dt (19.e)



F.A. Rodrigues et al. / Mathematics and Computers in Simulation 66 (2004) 409–424 417

In Eqs. (19.a)–(19.e), �Uk
D(x, t) and�Uk

µ(x, t) are the solutions of the sensitivity problems given by
Eqs. (5.a)–(5.d) and (6.a)–(6.d), respectively, obtained by setting�Dk(x) = dkD(x) and�µk(x) = dkµ(x).

8. Stopping criterion

The use of the conjugate gradient method for the simultaneous estimation ofD(x) andµ(x) can be
suitably arranged in a systematic and straightforward computational procedure, which is omitted here
for the sake of brevity, but can be readily found in Ref.[3]. The conjugate gradient method of function
estimation belongs to the class ofiterative regularization methods [2]. In such class of methods, the
stopping criterion for the computational procedure is used as a regularization parameter, so that sufficiently
accurate and smooth solutions are obtained for the unknown functions. Although different approaches
can be used for the specification of the tolerance for the stopping criterion, we illustrate in this work the
use of thediscrepancy principle [2].

With the use of the discrepancy principle, the iterative procedure of the conjugate gradient method is
stopped when the difference between measured and estimated variables is of the order of the standard
deviation,σ, of the measurements, that is, when

|U(xm, t;D,µ) − Ym(t)| ≈ σ (20)

Therefore, the iterative procedure is stopped when

S[D(x), µ(x)] < ϕ (21)

where the tolerance,ϕ, is obtained by substitutingEq. (20)into the definition of the functional given by
Eq. (3), that is

ϕ = 1
2Mσ2tf (22)

9. Results and discussions

The accuracy of the present solution approach was examined by using simulated transient measurements
containing random errors in the inverse analysis. Different functional forms, including those containing
sharp corners and discontinuities that are the most difficult to be recovered by the inverse analysis, were
used to generate the simulated measurements. The functions were supposed to vary from a base value
(Dc orµc) to a maximum value (D0 orµ0) within a specified range (εD or εµ), as illustrated inFig. 1.

Fig. 1. Functions used to generate the simulated measurements.
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Fig. 2. Estimation of D(x) for known µ(x) obtained with errorless measurements of two non-intrusive sensors.

For the test cases examined, the direct, sensitivity and adjoint problems were numerically solved using
finite volumes. The numerical solution of the direct problem was validated with a test case with a known
analytical solution. The discrepancy between numerical and analytical solutions of the direct problem
was less than 1%, by using 80 equal volumes and a time step of 0.0072 for the discretization. This number
of volumes and time steps were used for all test cases considered in this work.

The test cases examined below in dimensionless form are physically associated with a heat conduction
problem in a homogeneous steel bar of length 0.050 m. The diffusion coefficient and the spatial distribution
of the source term are supposed to vary from D(x) = 54 W/m K and µ(x) = 105 W/m3 K, which result
in dimensionless base values of Dc = 1 and µc = 5 (see Fig. 1), respectively. The base values for the
diffusion coefficient and source term distribution are associated with solid–solid phase transformations
in steels. The final time is assumed to be 60 s, resulting in a dimensionless value of tf = 0.36, and 50
measurements are supposed available per sensor.

Before addressing the simultaneous estimation of D(x) and µ(x), let us consider special cases involv-
ing the estimation of either of such functions, by considering the other function as exactly known. Fig. 2
presents the exact and estimated diffusion coefficients obtained with the use of errorless transient measure-
ments of two temperature sensors, for a triangular variation with εD = 0.5 and D0 = 2Dc, by assuming
µ(x) = 5. It should be pointed out that, qualitatively, the results are not affected by the functional form
of µ(x) if µ(x) is assumed as exactly known. The sensors were located at each of the boundaries and
the initial guess for the iterative procedure of the conjugate gradient method was taken as D(x) = 0.9.
The results presented in Fig. 2 were obtained with Powell-Beale’ s version of the conjugate gradient
method. We note in this figure that reasonably accurate results were obtained with the measurements of
non-intrusive sensors located at the boundaries. Although the peak value of the function could not be
exactly recovered, the locations of the discontinuities in the first derivative of D(x) were resolved, despite
the fact that the initial guess for D(x) at the boundaries is not changed by the iterative procedure of the
conjugate gradient method. The estimated function D(x) is in much better agreement with the exact one
when the number of sensors is increased as illustrated in Fig. 3, which was obtained with the errorless
measurements of 10 temperature sensors evenly located inside the medium.

On the other hand, difficulties were encountered for the estimation of µ(x), even when the function for
D(x) was regarded as known, as illustrated in Fig. 4 for a triangular variation with εµ = 0.5 andµ0 = 2µc.
The results shown in this figure were obtained with errorless measurements of two non-intrusive sensors,
by using Powell-Beale’ s version of the conjugate gradient method. The initial guess for the conjugate
gradient method was taken as µ(x) = 4.5, and the function D(x) = 1 was specified. However, as for
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Fig. 3. Estimation of D(x) for known µ(x) obtained with errorless measurements of 10 sensors equally spaced in the medium.

Fig. 4. Estimation of µ(x) for known D(x) obtained with errorless measurements of two non-intrusive sensors.

the estimation of D(x) when µ(x) was treated as known, the function specified for D(x) did not affect the
results. The estimated function is in quite poor agreement with the exact one (Fig. 4). Qualitatively such
results were not affected by increasing the number of sensors, as shown in Fig. 5, which was obtained
with the errorless measurements of 10 sensors evenly located in the medium. Such is the case because
the measurements are much less affected by changes in µ(x) than in D(x), because of the low magnitude
of the sensitivity function �Uµ(x, t).

We now examine the case of simultaneous estimation of D(x) andµ(x). Fig. 6 shows the results obtained
with the measurements of two non-intrusive sensors, for a step variation of D(x) (εD = 0.5 andD0 = 2Dc)
and for constantµ(x) (µ0 = µc). The results presented in Fig. 6 were obtained with Powell-Beale’ s version

Fig. 5. Estimation of µ(x) for known D(x) obtained with errorless measurements of 10 sensors equally spaced in the medium.
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Fig. 6. Simultaneous estimation of µ(x) and D(x) obtained with measurements of two non-intrusive sensors with standard
deviation σ = 0.01Ymax: results obtained for a step variation of D(x) (εD = 0.5 and D0 = 2Dc) and for constant µ(x) (µ0 = µc).

of the conjugate gradient method. The simulated measurements in this case contained random errors with
standard deviation σ = 0.01Ymax, where Ymax is the maximum absolute value of the measured variable.
The initial guesses used for the iterative procedure of the conjugate gradient method wereD(x) = 0.9 and
µ(x) = 4.5. We note in Fig. 6 that quite accurate results were obtained for such strict test case, involving
a discontinuous variation for D(x) and only non-intrusive measurements. Although some blurring is
observed near the discontinuity of D(x) at x = 0.25, the locations of the discontinuities and the maximum
value of the function are quite accurately estimated. Furthermore, the estimated function forµ(x) oscillates
about its constant exact value with an amplitude smaller than the original distance of the initial guess to
the exact function. The accuracy of the estimated functions improve when measurements of more sensors
are used in the inverse analysis, as illustrated in Fig. 7, which was obtained with measurements containing
random errors (σ = 0.01Ymax) of 10 sensors evenly located inside the medium.

Fig. 8 presents the results obtained for a second-degree polynomial variation for D(x) (εD = 1 and
D0 = 2Dc) and for constant µ(x) (µ0 = µc). The results presented in Fig. 8 were obtained with
measurements containing random errors (σ = 0.01Ymax) of 10 sensors evenly located inside the medium,
by using Powell-Beale’ s version of the conjugate gradient method. A comparison of Figs. 7 and 8 shows

Fig. 7. Simultaneous estimation of µ(x) and D(x) obtained with measurements of 10 sensors equally spaced in the medium with
standard deviation σ = 0.01Ymax: results obtained for a step variation of D(x) (εD = 0.5 and D0 = 2Dc) and for constant µ(x)
(µ0 = µc).
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Fig. 8. Simultaneous estimation of µ(x) and D(x) obtained with measurements of 10 sensors equally spaced in the medium with
standard deviation σ = 0.01Ymax: results obtained for a second-degree polynomial variation for D(x) (εD = 1 and D0 = 2Dc)
and for constant µ(x) (µ0 = µc).

that the accuracy of estimated functions generally improves for continuous and smooth variations of the
unknown diffusion coefficient.

Fig. 9 illustrates the results obtained for the simultaneous estimation of D(x) and µ(x), for a constant
exact functional form for D(x) (D0 = Dc) and a triangular variation forµ(x) (εµ = 0.5 andµ0 = 2µc). The
results presented in Fig. 9 were obtained with measurements containing random errors (σ = 0.01Ymax) of
10 sensors evenly located inside the medium, by using Powell-Beale’ s version of the conjugate gradient
method. Differently from the results shown above in Figs. 7 and 8, we note in Fig. 9 that the present
solution approach fails to estimate the peak value of the exact triangular function for µ(x). The locations
of the discontinuities in the first derivative of the exact function, which characterize the change of µ(x)
from its base value, could not be accurately estimated. Furthermore, the function estimated for D(x) is
characterized by large oscillations. We note that, generally, results analogous to those presented in Fig. 9
were obtained whenever the exact function for µ(x) was not constant. Similar behavior was observed
by Hielscher et al. [16] with the use of Polak-Ribiere’ s version of the conjugate gradient method in an

Fig. 9. Simultaneous estimation of µ(x) and D(x) obtained with measurements of 10 sensors equally spaced in the medium with
standard deviation σ = 0.01Ymax: results obtained for constant D(x) (D0 = Dc) and a triangular variation for µ(x) (εµ = 0.5
and µ0 = 2µc).
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Fig. 10. Comparison of different versions of the conjugate gradient method for the simultaneous estimation of µ(x) and D(x):
results obtained for constant D(x) (D0 = Dc) and a triangular variation for µ(x) (εµ = 0.5 and µ0 = 2µc).

optical tomography problem. This is due to the lower sensitivity of the measured variable with respect to
µ(x) as compared to the sensitivity with respect to D(x).

Fig. 10 presents the reduction of the objective functional with respect to the number of iterations,
obtained with Powell-Beale’ s, Polak-Ribiere’ s and Fletcher-Reeves’ versions of the conjugate gradient.
The results presented in Fig. 10 correspond to the test case shown in Fig. 9, involving a constant functional
form for D(x) (D0 = Dc) and a triangular variation for µ(x) (εµ = 0.5 and µ0 = 2µc). Fig. 10 shows that
the prescribed tolerance for the iterative procedure of the conjugate gradient method was reached only
with Powell-Beale’ s version; the other two versions did not effectively reduce the objective functional and
the iterative procedure was stopped when the specified maximum number of iterations (100) was reached.
The results presented in Fig. 10 are representative of those obtained with the other test cases examined
in this paper, that is, Powell-Beale’ s version of the conjugate gradient method resulted in the largest
rate of reduction of the objective functional, so that the tolerance prescribed for the stopping criterion
was reached in the smallest number of iterations. However, for some test cases the use of Polak-Ribiere’ s
version of the conjugate gradient method resulted in reduction rates for the functional comparable to those
obtained with Powell-Beale’ s version, but unexpected oscillations were observed on the values of the
functional. Similar results were reported in Ref. [8], where these three versions of the conjugate gradient
method were applied to the estimation of timewise- and spacewise-dependent heat transfer coefficients
at the surface of a three-dimensional body.
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10. Conclusions

In this article, a function estimation approach based on the conjugate gradient method was applied
for the simultaneous estimation of the spatially dependent diffusion coefficient and of the source term
distribution, in a one-dimensional nonlinear diffusion problem.

The accuracy of the proposed solution approach was addressed by using simulated transient measure-
ments containing random errors. For the test cases examined, involving heat conduction in a homogeneous
steel bar, acceptable results could be obtained with the measurements of two non-intrusive sensors, even
for a step variation of the diffusion coefficient, when the source term distribution was constant. On the
other hand, the present solution approach was not able to accurately recover the unknown functions for
other functional forms of the source term distribution.

A comparison of three versions of the conjugate gradient method was performed, as applied to the
solution of the inverse problem under consideration. For the test cases examined in this paper, the use of
Powell-Beale’ s version of the conjugate gradient method resulted in the largest rates of reduction of the
objective functional. Generally, Polak-Ribiere’ s and Fletcher-Reeves’ versions of the conjugate gradient
method did not effectively reduce the objective functional.
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