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Abstract

A computer-automated shape optimization methodology has been developed for the purpose of providing internal cooling systems

designers the ability to optimize the internal cooling configuration, geometry and heat transfer enhancements for greater cooling efficiency

and more durable turbine airfoils. The methodology presents the theory and practical programming requirements for coupling existing

computer design and analysis tools together into a new and powerful design system. The goal of this paper is to demonstrate the

computational advantages of using implicit sensitivity with the boundary element method (BEM) within this system over other more brute

force methods. For this research, BEM algorithms for nonlinear heat conduction and thermo-elasticity were developed and coupled to an

unstructured finite volume CFD code for the hot gas flow and a quasi-one-dimensional thermo-fluid system for the analysis of the internal

coolant network. These computational tools were controlled by a constrained hybrid optimization algorithm to provide aerodynamic, thermal

and internal fluid flow analyses on modified designs. The coolant supply total pressure, turbine inlet temperature, coolant wall thickness,

thickness of ribs, rib positions, rib orientations, pin fin diameters and trip strip heights were incorporated into the set of optimization design

variables. In order to improve performance, sensitivity gradients of the objective and constraint functions with respect to the geometric and

heat transfer enhancement design variables were obtained using implicit differentiation of the boundary element system of equations. A

three-to-one improvement in the optimization convergence rate and greater gradient accuracy were obtained for the two-dimensional thermal

optimization problems. An order of magnitude larger computing time reduction was realized for three-dimensional thermal optimizations at

the expense of additional memory, and another order of magnitude is expected for thermo-elastic optimization problems. Examples include

studies of the accuracy of the design sensitivities with respect to forward and central finite differences, and validation of the optimization

process using a symmetric cooled configuration.

q 2003 Published by Elsevier Science Ltd.
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1. Introduction

The partial derivatives of the field variables (tempera-

tures, temperature gradients, deformation, stress, etc.) and

boundary values (heat fluxes, heat transfer coefficients,

tractions, etc.) with respect to the set of design variables are

very useful when performing a parametric study of a

particular design. These partial derivatives are called design

sensitivity coefficients. The implementation of gradient-

based numerical optimization algorithms for inverse

thermal shape design and optimization require these partial

derivatives as part of their operation [1,2].

In general, there are four methods that can be used to

determine sensitivity coefficients: (i) analytical differen-

tiation, (ii) numerical differentiation of the solution by finite

differences, (iii) direct implicit differentiation of the

governing equations, and (iv) the adjoint variable method.

In the arena of modern applied numerical methods, analytic

differentiation of the governing equations is generally very

difficult. The fourth method has been referred to as the

adjoint variable method or the continuum approach. It uses

variational concepts such as the material derivative [3]. By

defining an adjoint problem, the sensitivity coefficients are

found in terms of the primary and adjoint variables, thus

requiring only the solution of one adjoint system to obtain
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the gradient with respect to every design variable. Although

it has been proven successful with finite elements, the BEM

version of the adjoint variable method was less satisfactory

because the approximate adjoint tractions (or fluxes) could

not be specified uniquely. The adjoint variable method

requires a very complicated formulation of the optimization

problem that needs to be developed uniquely for each

objective function. Due to this fact, as well as its overall

decreased accuracy versus discretized differentiation, only

the second and third methods, finite differencing and

implicit differentiation, will be discussed here.

The second method, finite differencing, is the simplest,

most common and most computationally expensive strategy

of obtaining sensitivity coefficients. It requires the brute

force solution of the governing system discretized by the

BEM once for every design variable when using first-order

forward differencing formula.

›F

›Vi

¼
FðVi þ DViÞ2 FðViÞ

DVi

ð1Þ

If second-order accuracy is desired, the governing system

must be evaluated twice per every design variable for

central differencing. The finite differencing method for

sensitivity calculations can be prohibitively expensive,

especially when the design study or optimization concerns

complex three-dimensional problems.

The third method involves the implicit differentiation of

the equations at the system level [4]. Considerable effort has

been applied to these techniques and they have been used

extensively for the efficient implementation of shape

optimization of large-scale structures. Implicit differen-

tiation offers a practical design sensitivity calculation

because the factorization of coefficient matrices needs to

be performed only once and stored. In addition, they have

been found to be more accurate than finite differences [5,6].

Kane and Saigal [7] obtained their sensitivity coefficients by

the implicit differentiation of the coefficient matrices

formed by the boundary integral equations of two-dimen-

sional sub-structural problems. This method has been

extended to three-dimensional elasticity problems [8].

2. Heat conduction using the BEM

The BEM is used to find the heat conduction field inside

internally cooled turbine blades with a thermal barrier

coating. The conduction of heat within the solid turbine

blade was modeled by the following steady-state non-linear

partial differential equation:

7·ðkmðTÞ7TÞ ¼ 0 ð2Þ

Here, kmðTÞ is the temperature-dependent coefficient of

thermal conductivity in the mth domain, and T is the

temperature. This equation was subject to boundary

conditions of T ¼ �T on G1; q ¼ �q on G2, and 2kq ¼

hðT 2 TambÞ on G3; where q ¼ dT=dn; n is the direction

normal to the boundary G, h is the heat transfer coefficient

and Tamb is the ambient or bulk temperature. The

computational domain was divided into a finite number of

sub-domains where the material properties within each sub-

domain varied continuously, homogeneously and isotropi-

cally. The steady-state heat conduction Eq. (1) was

numerically evaluated with the Boundary Element Method

(BEM) [9], which is written in boundary integral form as

follows:

cðxÞTðxÞ þ
ð
G

qpðx; jÞTðjÞdG ¼
ð
G

upðx; jÞqðjÞdG ð2aÞ

Here, up is the fundamental solution, qp ¼ ›up=›n; x is the

coordinate of the source point, and dG is the boundary

contour following coordinate.

The boundaries were discretized with NBE linear

isoparametric boundary elements connected at their end-

points between NBN boundary nodes. Typically, a two-

dimensional section of a cooled turbine blade was

discretized with approximately 300 boundary elements,

enough to capture the details of the internal cooling scheme,

rib fillets, pin fins and impingement holes. The three-

dimensional boundary element meshes were quite large,

having about 1500 boundary elements, although not as

refined as compared to the two-dimensional cases. The

boundary elements were numerically integrated using

Gaussian quadrature, and a self-adaptive cubic coordinate

transformation was used for the singular and near singular

boundary elements [10]. For three-dimensional problems,

the integration of singular boundary elements was accom-

plished by transforming each quadrilateral into two triangles

with the singular pole at one vertex [11]. The resulting

system of equations was expressed in matrix form with {T}

and {Q} being the vectors of nodal temperatures and fluxes

as follows:

½H�{T} ¼ ½G�{Q} ð3Þ

The results of the two-dimensional and three-dimensional

BEM were compared to other analysis programs, such as

ANSYS, and to experimental data for convectively cooled

turbine blades and very good agreement was demonstrated

[12]. The BEM required a large amount of computer storage

for realistic turbine airfoils because the entire coefficient

matrices [H] and [G], as well as the inverted solution

matrix, were stored. Without the use of implicit differen-

tiation, BEM heat conduction required about 300 MB, and

this amount was doubled when implicit differentiation was

used.

3. Conjugate heat transfer

The turbulent thermo-viscous aerodynamic flow field in

the turbine cascade was coupled to the heat conduction in

the adjacent solid material of the blade by using an

iterative application of compatibility boundary conditions
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[13]. The conjugate heat transfer analysis was started with

a CFD analysis of the turbine cascade using an

unstructured compressible turbulent Navier–Stokes solver

[14] and given an initial guess to the outer airfoil wall

temperature, To: Once converged, the flow-field analysis

code computed turbulent heat fluxes, Qo; that were

applied as heat flux boundary conditions directly to the

BEM heat conduction analysis code. These heat fluxes

were relaxed with a relaxation factor of 0.5, starting from

the adiabatic condition. After converging on the non-

linear boundary conditions of the coolant passages, new

outer (hot) wall temperatures were computed by the BEM.

Since this wall temperature variation was, in general,

different from the wall temperatures specified to the hot

gas flow-field analysis code, the new variation was

applied as a boundary condition again to the CFD code.

The new CFD solution then returns heat fluxes that were

again different from the ones that were used initially.

This process was repeated several times until the

heat fluxes converged. Thereafter, heat transfer coeffi-

cients on the outer turbine airfoil boundary, ho; were

computed from the converged hot surface temperatures

and fluxes and the corresponding turbine inlet tempera-

ture, ho ¼ Qo=ðTo 2 TinletÞ:

The heat transfer on the walls of the coolant passages

was coupled to a system of equations that modeled the

quasi-one-dimensional flow in the coolant network with

centrifugal pumping. In that program, the finite element

method was used for a system of fluid elements (segments)

and solved for the unknown total pressure, total tempera-

ture and flow rate in the coolant flow passages. The

Newton–Raphson iteration method was used to converge

the system of equations. Forced convection correlations for

walls with ribbed turbulators, banks of pin fins and

impingement jets were used to obtain heat transfer

coefficients and friction factors. The integrated heat flux

through the coolant wall boundary elements were applied

as boundary conditions to the thermal-fluid system of the

internal coolant flow. Since the coolant walls heat up the

coolant air, the bulk temperatures of the coolant air are

heat flux-dependent, which subsequently change the heat

conduction in the metal. Therefore, the thermal-fluid

system was included in the conjugate heat transfer loop.

This iteration was found to be necessary for an accurate

prediction of the temperature in the metal. The conjugate

procedure required only a small number of iterations (3–9)

between the three programs.

4. Implicit differentiation for thermal design sensitivity

coefficients

The system of boundary integral equations was differ-

entiated with respect to the vector of design variables, Vi; as

follows:

›cðxÞ

›Vi

TðxÞ þ cðxÞ
›TðxÞ

›Vi

þ
ð
G

›qpðx; jÞ

›Vi

TðjÞdG

þ
ð
G

qpðx; jÞ
›TðjÞ

›Vi

dGþ
ð
G

qpðx; jÞTðjÞ
› dG

›Vi

¼
ð
G

›upðx; jÞ

›Vi

qðjÞdGþ
ð
G

upðx; jÞ
›qðjÞ

›Vi

dG

þ
ð
G

upðx; jÞqðjÞ
› dG

›Vi

ð4Þ

The derivatives of the boundary conditions were found in

the same way, namely:

Dirichlet :
› �T

›Vi

¼ 0 ð5Þ

Neumann :
›�q

›Vi

¼ 0 ð6Þ

Robin :

2k
›q

›Vi

2
›kðTÞ

›T

›T

›Vi

q

¼
›h

›Vi

ðT 2 TambÞ þ h
›T

›Vi

2
›Tamb

›Vi

� � ð7Þ

After discretization but before the application of boundary

conditions, the linear algebraic system can be expressed in

the following form:

½›H=›V�{T} þ ½H�{›T=›V}

¼ ½›G=›V�{Q} þ ½G�{›Q=›V} ð8Þ

There are two possible ways of determining the differ-

entiated coefficient matrices, [C], [G], and [H]. In most

BEM implicit differentiation methodologies, the derivatives

of the fundamental solution that appear in the preceding

equation are calculated implicitly from the spatial derivative

in the ~x and ~j coordinate systems [8], namely:

›up

›Vi

¼
›up

›xm

›xm

›Vi

2
›jm

›Vi

� �
ð9Þ

Unfortunately, these integrands result in singular

fundamental solutions of the order 1=r and 1=r2 in two-

dimensional problems, and 1=r2 and 1=r3 in three-dimen-

sional problems, resulting in the need for hyper-singular

integration. The rigid body assumption can be used to

compute some weakly singular integrals that occur when the

source and field points coincide but, in general, special

methods are needed. Hyper-singular integration techniques

are somewhat complex, requiring Laurent series expansions

of the hyper-singular integrand about the singular point and

a transformation to a local polar coordinate system in three-

dimensional problems [15,16]. Although hyper-singular

integration is complex and time-consuming, the savings is
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realized because the numerical integration of the differ-

entiated fundamental solutions needs to be performed only

twice for two-dimensional problems and three times for

three-dimensional problems. Finite differencing of the

boundary contours or surfaces, ›xm=›Vi; would still be

necessary if the design variables could not be expressed as

closed form functions of the boundary contour or surface.

Implicit differentiation of the fundamental solution has

been avoided for a slightly more expensive method of finite

differencing the coefficient matrices [dC/dV], [dH/dV] and

[dG/dV], namely:

›H

›Vi

� �
¼

½HðVi þ DViÞ�2 ½HðViÞ�

DVi

ð10Þ

The boundary needs to be integrated once for every design

variable perturbation. Its only advantage over implicit

differentiation is that it was very easy to program,

particularly because it did not require the implementation

of hyper-singular integration. Since most CPU time is

involved in the factorization of the coefficient matrix [A],

rather than during the integration over the boundary, this

method still provided a substantial reduction in compu-

tational time at the expense of the memory required to store

two sets of BEM coefficient matrices. The linear system of

equations can then be solved for the unknown derivatives

of temperature and flux ›T =›Vi and ›q=›Vi: The inversion of

the coefficient matrix [A] has not changed from the heat

conduction analysis of the original design and is given by:

½A�21 ›X

›Vi

� �
¼ 2½C0�{T} 2 ½H0�{T} þ ½G0�{Q} þ

›F

›Vi

� �
ð11Þ

5. Gradients of the thermal objective functions

The gradient of each of the three thermal objective

functions has been computed given the thermal sensitivity

coefficients of ›T=›Vi and ›q=›Vi: These quantities are then

used in the differentiated objective function. The gradient of

the integrated temperature objective appears as follows,

including the differentiation of the boundary Jacobian, l ~hl;
with respect to the design variable vector, Vi:

›FðViÞ

›V
¼
ð
G

2ðT 2 �TÞ
›T

›Vi

2
› �T

›Vi

� �
dG

þ
ð
G
ðT 2 �TÞ2

›l ~hl
›Vi

dj ð12Þ

When the mean temperature is used rather than the target

temperature, the implicitly differentiated mean temperature

has its own sensitivity

› �T

›Vi

¼

ð
G

›T

›Vi

dGþ
ð
G

T
›l ~hl
›Vi

djð
G

dG

2 �T

ð
G

›l ~hl
›Vi

djð
G

dG

ð13Þ

The gradient of the net heat flux objective has also been

derived for temperature-dependent thermal conductivity.

The implicit differentiation requires the use of BEM design

sensitivities of the flux as well as of the temperature when

the thermal conductivity is temperature-dependent.

›FðViÞ

›Vi

¼ 2
ð
G0

›Q

›Vi

dG

¼
ð
G0

k
›ð›T=›nÞ

›Vi

dGþ
ð
G0

dk

dT

›T

›Vi

›T

›n
dG

þ
ð
G0

k
›T

›n

›l ~hl
›Vi

dj ð14Þ

6. Gradients of the thermal constraint functions

Greater potential savings of computational resources can

be achieved with the use of implicit differentiation for the

computation of gradients of the constraint functions. For

thermally-constrained shape optimization problem, the

temperature field needs to be computed in order to

determine the maximum temperature. Therefore, a BEM

solution of the non-linear heat conduction equation is

required for every constraint function analysis, just as for

the thermal objective function analysis. When the con-

straints are active or violated, the gradient of the constraint

function with respect to the design variables is needed in

order to project the searching directions. These gradient

calculations are needed more often for the gradient-based

constraint restoration sub-optimization procedure that

restores infeasible designs back to the feasible region.

A finite differencing gradient computation can be costly,

requiring at least one heat conduction analysis per design

variable. But implicit differentiation of the constraint

function can yield substantial savings because of the ability

to re-use the previous inversion of the BEM coefficient

matrix, [A]21. The implicitly differentiated inequality and

equality constraint function has the following form:

›hðViÞ

›Vi

¼
1

�Tmax

›T

›Vi

����
Tmax

ð15Þ

7. Comparison of finite differencing to implicit
differentiation

In order to improve performance, sensitivity gradients

of the objective and constraint functions with respect to

EABE 1509—9/4/2003—15:01—PREM—67624— MODEL 5

T.J. Martin, G.S. Dulikravich / Engineering Analysis with Boundary Elements xx (0000) xxx–xxx4

ARTICLE IN PRESS

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448



UNCORRECTED P
ROOF

the geometric and boundary condition design variables were

obtained using implicit differentiation of the boundary

element system of equations. The accuracy of the design

sensitivity was studied with respect to forward and central

finite differences over a range of differencing stepsizes. We

have found that there is a trade-off between truncation errors

and round-off errors that is dependent upon the type of

design variable. Truncation errors are larger with bigger

differencing stepsizes, but round-off errors are larger with

smaller step sizes.

Gradients of the uniform temperature objective function

(Eq. (12)), and maximum temperature constraint function

(Eq. (15)), were determined on the initial guess of the

Rankine oval constrained conjugate optimization problem.

The gradients were obtained over a range of finite

differencing stepsizes. These stepsizes were given with

respect to the base stepsizes presented in Table 1. These

base stepsizes were those that were manually chosen and

used in the previous Rankine oval optimization example.

The Rankine oval chord was 0.2 m. Table 1 also lists the

design variable bounds, Vmin and Vmax, and the gradient is

non-dimensionalized by ðVmin –VmaxÞ: The trade-off

between truncation and round-off error is apparent in

Fig. 1. Notice that the derivative of the uniform temperature

objective function is accurate over a wide range of

differencing stepsizes. As the stepsize becomes bigger, the

truncation error dominates. The implicit derivative is as

accurate as the central-difference derivative.

Geometry parametric variables have larger round-off

errors than do the beta-spline vertices or the boundary

condition variables (Fig. 2). The derivative of the thermal

objective function with respect to the strut centerline

coordinate has round-off errors that are dominant in

stepsizes below 1021 of the base perturbation. The central

differenced derivative coincides with the implicit derivative

between 1021 and 101, while the forward explicit differ-

enced derivative is invalid below the base stepsize. Similar

behavior was apparent for the strut thickness variable shown

in Fig. 3.

The boundary condition design variables were less

sensitive to round-off errors than the geometry parameters,

but the implicit derivatives tended to have a slight bias

caused by the non-linearity of the boundary condition.

The examples of these types of derivatives with respect to

the wall roughness, coolant mass flow rate, and turbine inlet

temperature design variables are demonstrated in Figs. 4–6,

respectively.

The implicit BEM system was linearized and solved non-

iteratively for the derivatives of temperature and heat flux,

but the bulk coolant temperatures were actually a non-linear

function of the heat flux. The bias is especially evident in the

turbine inlet temperature because the heat flux is a strong

function of that variable. The implicit system was solved for

the heat flux derivatives using a guess to the heat flux in the

quasi-one-dimensional coolant network solver. That

guessed heat flux was taken from the conjugate solution

of the unperturbed coolant configuration. Incorporating the

heat flux non-linearity in the implicit BEM system could

probably alleviate the bias.

Table 1

Perturbation step sizes used for comparing design sensitivities using

explicit finite differencing and implicit differentiation for the symmetric

airfoil case

Design variable Base stepsize Design variable range

b-Spline vertex 0.001 £ chord 0.1–5.0 mm

Strut centerline coordinate 0.001 £ chord Dependent (^5 mm)

Strut thickness 0.001 £ chord Dependent (0–5 mm)

Wall roughness 0.001 mm 0.0–0.05 £ cavity height

Coolant mass flow rate 0.0001 kg/s 0.005–0.05 kg/s

Turbine inlet temperature 1 K 1000–2000 K

Fig. 1. Finite differenced and implicitly differentiated uniform temperature

objective function with respect to beta spline vertices.

Fig. 2. Finite differenced and implicitly differentiated uniform temperature

objective function with respect to strut coordinates.
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finite differenced and implicit differentiated design sensi-

tivities is shown in Fig. 7. In this example, a symmetric

internally cooled airfoil was optimized in order to produce a

more uniform temperature field in the metal with the

maximum temperature constrained [1]. Each circle or

square depicts one unconstrained optimization cycle. In

order to determine if the converged solution was optimal,

the optimization was started from several different initial

guess designs, and the final design was deemed optimal

(from the perspective of the objective that was set to it)

because each optimization achieved the same final result.

These results have shown that two-dimensional con-

strained optimization problems can be solved in one-third of

the computing time when using implicit differentiation over

explicit finite differencing to obtain design sensitivities.

Estimates of three-dimensional thermally constrained

problems have demonstrated a ten-fold advantage in the

computing time. Preliminary estimates of the thermo-

elastically constrained problem have indicated the savings

in the computing time to be about thirty-fold.

8. Thermo-elasticity

This research effort continued with the integration of a

static thermo-elastic solver using the BEM. The resulting

thermal loads in the turbine blade predicted by the aero-

thermal program were submitted to the thermo-elastic

solver for a development of the deformation and stress

fields in the turbine blade. This inter-disciplinary coupling

Fig. 3. Finite differenced and implicitly differentiated uniform temperature

objective function with respect to strut thickness.

Fig. 4. Finite differenced and implicitly differentiated maximum tempera-

ture constraint with respect to coolant passage wall roughness.

Fig. 5. Finite differenced and implicit differentiated maximum temperature

constraint function with respect to coolant flow rate.

Fig. 6. Finite differenced and implicit differentiated maximum temperature

constraint function with respect to turbine inlet temperature.
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the limits and improve performance of the internal cooling

scheme.

The governing partial differential equations of elasto-

statics assume that there is a linear relationship between the

stress and the strain response. It also neglects any changes in

the orientation of the body due to displacements. The two-

dimensional state of stress at a point is defined using a

second order symmetric stress tensor sij: These stress

components must satisfy the following equilibrium

equations throughout the interior of the solid body,

›sij

›xj

þ bk ¼ 0 ð16Þ

where bk are the net body forces per unit volume necessary

to keep the body in equilibrium. Equilibrium on the

boundary requires that pk ¼ skjnj; where nk is the unit

outward normal vector to the surface G: The state of strain at

a point within a solid object is denoted by the second order

symmetric strain tensor, ekj: The states of stress and strain

for an isotropic solid body are related through the stress–

strain relations, also known as Hooke’s Law, which depend

on the material behavior. Thermo-elastic effects, which

involve dilatation or contraction due to changes in

temperature, can be included as initial stresses, s0
ij: The

initial stresses for a thermally isotropic material can be

added to the stress–strain relation, that is,

sij ¼ ldij

›uk

›xk

þ m
›ui

›xj

þ
›uj

›xi

 !
2 lbðT 2 T0Þdij ð17Þ

Here, uk is the vector displacement field, dij is the Kronecker

delta symbol, m is the shear modulus, l is Lame’s constant,

b is the thermal expansion coefficient, T is the temperature,

and T0 is the reference temperature.

The BEM has been found to be an effective solution

strategy of the Navier–Cauchy equation and thermo-elasticity

[17]. The initial stress term can be used to deal with thermal

expansion and other non-linear effects such as plasticity [18].

The result is the boundary/domain integral equation for static

thermo-elasticity problems with body forces. In this equation,

the initial stress field and body forces remain as domain

integrals, and we obtain:

c‘kð~xÞukð~xÞþ
ð
G

pp
‘kuk dG

¼
ð
G

up
‘kpk dGþ

ð
V

up
‘kbk dV2

ð
V
ep‘jklbðT 2T0Þdjk dV

ð18Þ

In order to avoid the need for an internal mesh, and to preserve

the boundary-only nature of the BEM, the domain integrals

can be transformed into boundary (surface) integrals. The first

implementation of the use of the divergence theorem to

transform body-loading effects into boundary integrals was

presented by Cruse [19]. Rizzo and Shippy [17] presented a

similar approach for thermo-elastic problems that could be

easily adapted to gravitational and centrifugal loading by

expressing the body forces as a differential of a scalar potential

function 7c¼ ~V£ ð ~V£ ~RÞ: The potential function satisfies

the following harmonic relationship with C0 a constant

defined by 72c¼C0:

The body force integral was integrated by parts and the

divergence theorem was applied to transform one domain

integral to a boundary integral [18]. After applying the

definition of the Galerkin vector, the following expression

was obtained for the body force integral:ð
V

up
‘kbk dV ¼

ð
G

Up
n‘c dGþ

1 2 2n

2ð1 2 nÞ

ð
G

Up
‘

›c

›n
dG

�

2
ð
G

Pp
‘c dG2C0

ð
G

Gp
n‘ dG

�
ð19Þ

The thermo-elastic effects can be presented in a similar

fashion. The initial stress term is equivalent to adding a

body force equal to ð2g›ðT 2 T0Þ=›xkÞ: The Galerkin

fundamental solution is differentiated three times. The

resulting thermo-elastic kernels are identical the body force

boundary kernels, namely:ð
V
ep‘jklbðT 2 T0Þdjk dV

¼
ð1 2 2nÞg

2ð1 2 nÞ

ð
G

Pp
‘ðT 2 T0ÞdG2

ð
G

Up
‘

›T

›n
dG

� �
ð20Þ

where n is the Poisson’s ratio. After the application of

boundary element discretization and numerical integration

of the integrands, the BEM system of equations for thermo-

elasticity can be written in matrix form as follows:

½HE�{U} ¼½GE�{P} þ ½Dn�{C}

þ
1 2 2n

2ð1 2 nÞ
½Gg�

›C

›n
2 gQ

� ��

2 Hh

� �
{C2 gðT 2 T0Þ} 2 ½En�C0

�
ð21Þ

Fig. 7. Convergence history of uniform temperature objective function

during optimization of an internally cooled turbine airfoil.
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The vectors {U} and {P} represent the values of the

displacements and tractions at the boundary nodal locations.

The centrifugal potential function, {C}; temperatures, {T},

and boundary heat fluxes, {Q}, are known, and can be

multiplied by their respective coefficient matrices. The

application of boundary conditions allows the columns of

the [HE] and [GE] matrices to be multiplied by the known

displacements and tractions, while the unknowns are passed

into a vector {X}. The result is a system of equations,

[A]{X} ¼ {F}, that can be solved by inverting the

coefficient matrix [A] with Gaussian elimination, LU

decomposition, or Singular Value Decomposition (SVD)

[20]. The latter solver is necessary for turbine blades with

extremely thin coolant walls and thermal barrier coatings

that create ill-conditioned matrices.

9. Implicit differentiation for thermo-elastic design

sensitivities

A new formulation for structural design sensitivity was

developed for elastic solids to consistently account for the

effects of thermal expansion along with centrifugal loading.

Implicit differentiation of the governing system was shown

to be capable of generating accurate sensitivities without the

need for domain integration [21]. The discretized form of

the boundary integral equation for thermo-elasticity with

centrifugal body forces was differentiated with respect to the

set of design variables, Vi; as follows:

½›H=›V�{U} þ ½H�{›U=›V} ¼

½›G=›V�{P} þ ½G�{›P=›V}

þ ½›Dn=›V�{C} þ
1 2 2n

2ð1 2 nÞ
½›Gg=›V�

›C

›n
2 gQ

� ��
2½Gg�{g›Q=›V} 2 ½›Hh=›V�{C2 gðT 2 T0Þ}

þ½Hh�{g›T=›V} 2 ½›En=›V�C0

�
ð22Þ

Since the centrifugal body force field is not a function of the

design variables, the sensitivity of the centrifugal potential

function is neglected, i.e. ›C=›V ¼ 0: The design sensi-

tivities of the temperature, T, and flux, q, do affect this

equation.

This sensitivity equation can be solved for the unknown

displacement and traction sensitivities on the boundary

given the boundary conditions › �U=›V ¼ 0 and › �P=›V ¼ 0

where �U and �P were specified on the direct problem.

The advantage is that the BEM coefficient matrix factoriz-

ation can be saved and re-used in the design sensitivity

analysis. This factorization process (using either a standard

LU decomposition or SVD) is generally the most compu-

tationally demanding part of the overall boundary element

analysis. This is especially true for three-dimensional

turbine blades because of the very large dense matrices to

factor and because the SVD solver is usually needed since

the matrix is ill conditioned due to the thin turbine blade

walls and coating. Another source of savings is that the

boundary stress sensitivities can be obtained without the

need for additional integration or matrix factorization.

10. Conclusions

The design and optimization system that was pre-

sented here combines parametric modeling of the internal

geometry, and computational aerodynamics, thermodyn-

amics, and structural analysis programs into a fully

computer-automated design tool for the optimization of

internally cooled turbine blades with thermal barrier

coatings. A hybrid optimization algorithm controlled

these analysis programs in order to minimize an aero-

thermal optimization objective function subject to one or

more thermal and structural constraint functions. The

purpose of this paper was to demonstrate the improved

performance and accuracy that can be achieved when one

uses implicit differentiation of the governing heat

conduction and thermo-elasticity systems of equations

in order to obtain sensitivities of these solutions to the

optimization design variables. Results have shown that

the optimization convergence rate can be reduced by a

factor of three for two-dimensional problems, and much

greater savings for three-dimensional problems, as well

as an improvement in the accuracy of the design

sensitivities.

Since its original conception at the Department of

Aerospace Engineering at the Pennsylvania State Univer-

sity, this multi-disciplinary design, analysis and optimiz-

ation tool has since been further developed, adapted and

improved by the Turbine Durability and Systems Optimiz-

ation Group at the Pratt and Whitney Aircraft Company.

This system has been applied to real and much more

complex cooled turbine blades and vanes, including those

with film cooling. The system has undergone extensive

validation efforts and the conjugate heat transfer results

have compared very well to experimental data and to results

from other analysis systems. Ultimately, the resulting

thermal loads in the turbine blade and the effects of the

thermo-elastic deformation were built into the design

process, providing a turbine designer with a tool to

confidently push the limits, durability and performance of

the cooled turbines [22].
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