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A Finite Element Formulation for
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Boundary Conditions for
Three-Dimensional Steady
Thermoelastic Problems
A three-dimensional finite element method (FEM) formulation for the prediction of un-
known boundary conditions in linear steady thermoelastic continuum problems is pre-
sented. The present FEM formulation is capable of determining displacements, surface
stresses, temperatures, and heat fluxes on the boundaries where such quantities are un-
known or inaccessible, provided such quantities are sufficiently over-specified on other
boundaries. The method can also handle multiple material domains and multiply con-
nected domains with ease. A regularized form of the method is also presented. The regu-
larization is necessary for solving problems where the over-specified boundary data con-
tain errors. Several regularization approaches are shown. The inverse FEM method
described is an extension of a method previously developed by the leading authors for
two-dimensional steady thermoelastic inverse problems and three-dimensional thermal
inverse problems. The method is demonstrated for several three-dimensional test cases
involving simple geometries although it is applicable to arbitrary three-dimensional con-
figurations. Several different solution techniques for sparse rectangular systems are
briefly discussed.@DOI: 10.1115/1.1640360#
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Introduction
It is often difficult or even impossible to place temperature

probes, heat flux probes, or strain gauges on certain parts of a
surface of a solid body. This can be due to its small size, geomet-
ric inaccessibility, or a exposure to a hostile environment. With an
appropriate inverse method these unknown boundary values can
be determined from additional information provided at the bound-
aries where the values can be measured directly. In the case of
steady thermal and elastic problems, the objective of the inverse
problem is to determine displacements, surface stresses, heat
fluxes, and temperatures on boundaries where they are unknown.
The problem of inverse determination of unknown boundary con-
ditions in two-dimensional steady heat conduction has been
solved by a variety of methods@1–5#. Similarly, a separate inverse
boundary condition determination problem in linear elastostatics
has been solved by different methods@6#. The inverse boundary
condition determination problem for steady thermoelasticity was
also solved for several two-dimensional problems@4#.

A three-dimensional finite element formulation is presented
here that allows one to solve this inverse problem in a direct
manner by over-specifying boundary conditions on boundaries
where that information is available. Our objective is to develop
and demonstrate an approach for the prediction of thermal bound-
ary conditions on parts of a three-dimensional solid body surface
by using FEM.

It should be pointed out that the method for the solution of
inverse problems to be discussed in this paper is different from the
approach based on boundary element method that has been used
separately in linear heat conduction@3# and linear elasticity@6#.

For inverse problems, the unknown boundary conditions on

parts of the boundary can be determined by overspecifying the
boundary conditions~enforcing both Dirichlet and Neumann type
boundary conditions! on at least some of the remaining portions of
the boundary, and providing either Dirichlet or Neumann type
boundary conditions on the rest of the boundary. It is possible,
after a series of algebraic manipulations, to transform the original
system of equations into a system which enforces the overspeci-
fied boundary conditions and includes the unknown boundary
conditions as a part of the unknown solution vector. This formu-
lation is an adaptation of a method used by Martin and Dulikrav-
ich @7# for the inverse detection of boundary conditions in steady
heat conduction.

Specifically, this work represents an extension of the conceptual
work presented by the authors@4,8# by extending the original
formulation from two dimensions into three dimensions.

FEM Formulation for Thermoelasticity
The Navier equations for linear static deformationsu, v, w in

three-dimensional Cartesianx, y, z coordinates are
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Here,X, Y, Z are body forces per unit volume due to stresses from
thermal expansion.
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This system of differential Eqs.~1–3! can be written in the fol-
lowing matrix form:

@L#T~@C#@L#$d%2@C#$«0%!2$ f b%50 (7)

where the differential operator matrix,@L#, is defined as
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and the elastic modulus matrix,@C#, is defined as
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Casting the system of Eq.~7! in integral form using the
weighted residual method@9,10# yields

E
V

@V#@L#T~@C#@L#$d%2@C#$«0%!dV2E
V

@V#$ f b%dV50

(10)

where the matrix,@V#, is the weight matrix which is a collection
of test functions.

@V#5F v1 0 0

0 v2 0

0 0 v3

G (11)

One should now integrate~10! by parts to get the weak form of
~7!
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where$T% is the vector of surface tractions on surfaceG1 .

$T%5@n#@C#@L#$d% (13)

The matrix@n# contains the Cartesian components of the unit vec-
tor normal to the surfaceG1 . The displacement field in thex, y,
and z directions can now be represented with approximation
functions
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Equations~14!–~16! can be rewritten in matrix form

d̃e5@N#$de% (17)

where@N# is the interpolation matrix which contains the trial func-
tions for each equation in the system. Also note that with Galer-
kin’s method the weight matrix and the interpolation matrix are
equal,@N#5@V#T. If the matrix @Be# is defined as

@Be#5@L#@N# (18)

then the substitution of the approximation functions~17! into the
weak statement~12! creates the weak integral form for a finite
element expressed as
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This can also be written in the matrix form as

@Ke#$de%5$ f e% (20)

For thermal stresses, the initial elemental strain vector,«0
e , be-

comes

$«0
e%5 baDQ aDQ aDQ 0 0 0cT (21)

The local stiffness matrix,@Ke#, and the force per unit volume
vector, $ f e%, are determined for each element in the domain and
then assembled into the global system

@K#$d%5$F% (22)

After applying boundary conditions, the global displacements are
found by solving this system of linear algebraic equations. The
stresses,$s%, can then be found in terms of the displacements,$d%

$s%5@C#@L#$d%2@C#$«0% (23)

FEM Formulation for the Thermal Problem
The temperature distribution throughout the domain can be

found by solving Poisson’s equation for steady linear heat conduc-
tion with a distributed steady heat source function,Q, and thermal
conductivity coefficient,k.
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Applying the method of weighted residuals to~24! over an ele-
ment results in
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Integrating this by parts once~25! creates the weak statement for
an element
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Variation of the temperature across an element can be expressed
by

Q~x,y,z!'Q̃e~x,y,z!5(
i 51

m

Ni~x,y,z!Q i (27)

Using Galerkin’s method, the weight functionv and the interpo-
lation function forQ are chosen to be the same. By defining the
matrix @BT# as
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the weak statement~26! can be written in the matrix form as

@Kc
e#$Qe%5$Qe% (29)

where
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The local stiffness matrix,@Kc
e#, and heat flux vector,$Qe%, are

determined for each element in the domain and then assembled
into the global system

@Kc#$Q%5$Q% (32)

Direct and Inverse Formulations
The above equations for steady thermoelasticity were dis-

cretized by using a Galerkin’s finite element method. This results
in two linear systems of algebraic equations

@K#$d%5$F%, @Kc#$Q%5$Q% (33)

The system is typically large, sparse, symmetric, and positive
definite. Once the global system has been formed, the boundary
conditions are applied. For a well-posed analysis~direct! problem,
the boundary conditions must be known on all boundaries of the
domain. For heat conduction, either the temperature,Qs , or the
heat flux,Qs , must be specified at each point of the boundary.

For an inverse problem, the unknown boundary conditions on
parts of the boundary can be determined by over-specifying the
boundary conditions~enforcing both Dirichlet and Neumann type
boundary conditions! on at least some of the remaining portions of
the boundary, and providing either Dirichlet or Neumann type
boundary conditions on the rest of the boundary. It is possible,
after a series of algebraic manipulations, to transform the original
system of equations into a system which enforces the over-
specified boundary conditions and includes the unknown bound-

ary conditions as a part of the unknown solution vector. As an
example, consider the linear system for heat conduction on a tet-
rahedral finite element with boundary conditions given at nodes 1
and 4.

F K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

G H Q1

Q2

Q3

Q4

J 5H Q1

Q2

Q3

Q4

J (34)

As an example of an inverse problem, one could specify both the
temperature,Qs , and the heat flux,Qs , at node 1, flux only at
nodes 2 and 3, and assume the boundary conditions at node 4 as
being unknown. The original system of Eq.~34! can be modified
by adding a row and a column corresponding to the additional
equation for the over-specified flux at node 1 and the additional
unknown due to the unknown boundary flux at node 4. The result
is

F 1 0 0 0 0

K21 K22 K23 K24 0

K31 K32 K33 K34 0

K41 K42 K43 K44 21

K11 K12 K13 K14 0

G 5 Q1

Q2

Q3

Q4

Q4

6 55
Qs

Q2

Q3

0
Qs

6 (35)

The resulting systems of equations will remain sparse, but will be
nonsymmetric and possibly rectangular~instead of square! de-
pending on the ratio of the number of known to unknown bound-
ary conditions.

Regularization
Three regularization methods were applied separately to the

solution of the systems of equations in attempts to increase the
method’s tolerance for measurement errors in the over-specified
boundary conditions. Here we consider the regularization of the
inverse heat conduction problem.

The general form of a regularized system is given as@11#

F Kc

LD G$Q%5 HQ
0 J (36)

The traditional Tikhonov regularization is obtained when the
damping matrix,@D#, is set equal to the identity matrix. Solving
~36! in a least squares sense minimizes the following error func-
tion.

error~Q!5i@Kc#$Q%2$Q%i2
21iL@D#$Q%i2

2 (37)

This is the minimization of the residual plus a penalty term. The
form of the damping matrix determines what penalty is used and
the damping parameter,L, weights the penalty for each equation.
These weights should be determined according to the error asso-
ciated with the respective equation.

Method 1. This method of regularization uses a constant
damping parameterL over the entire domain and the identity
matrix as the damping matrix. This method can be considered the
traditional ‘‘zeroth order’’ Tikhonov method. The penalty term
being minimized in this case is the square of theL2 norm of the
solution vector$x%. Minimizing this norm will tend to drive the
components of$x% to uniform values thus producing a smoothing
effect. However, minimizing this penalty term will ultimately
drive each component to zero, completely destroying the real so-
lution. Thus, great care must be exercised in choosing the damp-
ing parameterL so that a good balance of smoothness and accu-
racy is achieved.

Method 2. This method of regularization uses a constant
damping parameterL only for equations corresponding to the

Journal of Heat Transfer FEBRUARY 2004, Vol. 126 Õ 3

  PROOF COPY 001401JHR  



  PROOF COPY 001401JHR  

  PRO
O

F CO
PY 001401JHR  

unknown boundary values. For all other equationsL50 and
@D#5@ I # since the largest errors occur at the boundaries where
the temperatures and fluxes are unknown.

Method 3. This method uses Laplacian smoothing of the un-
known temperatures and displacements only on the boundaries
where the boundary conditions are unknown. This method could
be considered a ‘‘second order’’ Tikhonov method. A penalty term
can be constructed such that curvature of the solution on the un-
specified boundary is minimized along with the residual.

i¹2Qubi2
2→min (38)

For problems that involve unknown vector fields, such as dis-
placements, Eq.~38! must be modified to the following:

i¹2~ n̂•$dub%!i2
2→min (39)

Here the normal component of the vector displacement field$d% is
minimized along the unknown surface.

Equations~38! and~39! can be discretized using the method of
weighted residuals to determine the damping matrix,@D#.

i@D#Qubi2
25i@Kc#Qubi2

2 (40)

In three-dimensional problems,@Kc# is computed by integrating
over surface elements on the unknown boundaries. So the damp-
ing matrix can be thought of as an assembly of boundary elements
that make up the boundary of the object where the boundary con-
ditions are unknown. The stiffness matrix for each boundary ele-
ment is formed by using a Galerkin weighted residual method that
ensures the Laplacian of the solution is minimized over the un-
known boundary surface. The main advantage of this method is its
ability to smooth the solution vector without necessarily driving
the components to zero and away from the true solution.

Solution of the Linear System
In general, the resulting FEM systems for inverse thermoelastic

problems are sparse, unsymmetric, and often rectangular. These
properties make the process of finding a solution to the system
very challenging. Three approaches will be discussed here.

The first is to normalize the equations by multiplying both sides
by the matrix transpose and solve the resulting square system with
common sparse solvers.

@K#T@K#$Q%5@K#T$Q% (41)

This approach has been found to be effective for certain inverse
problems@12#. The resulting normalized system is less sparse than
the original system, but it is square, symmetric, and positive defi-
nite with application of regularization. The normalized system is
solved with a direct method~Cholesky or LU factorization! or
with a ILU preconditioned iterative method~preconditioned Kry-
lov subspace!. There are several disadvantages to this approach.
Among them being the expense of computing@K#T@K#, the large
in-core memory requirements, and the roundoff error incurred
during the@K#T@K# multiplication. In general, it is best to avoid
methods that require the explicit of formation of@K#T@K#.

Another approach is to use iterative methods suitable for least
squares problems. One such method is the LSQR method, which
is an extension of the well-known conjugate gradient~CG!
method@13#. The LSQR method and other similar methods such
as the conjugate gradient for least squares~CGLS! solve the nor-
malized system, but without explicit computation of@K#T@K#.
These methods need only matrix-vector products at each iteration
and therefore only require the storage of@K# so they are attractive
for large sized models. However, convergence rates of these meth-
ods depend strongly on the condition number of the normalized
system which is the condition number of@K# squared@14#. There-
fore, solver performance degrades significantly as the size of the
finite element model increases. Convergence can be slow when
solving the systems resulting from the inverse finite element dis-
cretization since they are naturally ill-conditioned problems.

Yet another approach is to use a non-iterative method for least
squares problems such as QR factorization@15# or SVD @16#.
However, sparse implementations of QR or SVD solvers are
needed to reduce the in-core memory requirements for the inverse
finite element problems. It is also possible to use static condensa-
tion to reduce the complete sparse system of equations into a
dense matrix of smaller dimensions@5#. The reduced system in-
volves only the unknowns on the boundary of the domain and can
be solved efficiently using standard QR or SVD algorithms for
dense matrices.

Numerical Results
The accuracy and efficiency of the finite element inverse for-

mulation was tested on several simple three-dimensional prob-
lems. The method was implemented in an object-oriented finite
element code written in C11. Elements used in the calculations
were hexahedra with tri-linear interpolation functions. The linear
systems were solved with a sparse QR factorization@15# or LSQR
method@13# with column scaling. The two basic test geometries
included an annular cylinder and a cylinder with multiply con-
nected regions.

The annular cylinder geometry was tested first. The hexahedral
mesh is shown in Fig. 1. The outer surface has a radius of 3.0 and
the inner surface has a radius of 2.0. The mesh is composed of
1440 elements and 1980 nodes. The inner and outer boundaries
each have 396 nodes. For this geometry, there is an analytical
solution for heat conduction if constant temperature boundary
conditions are used on the inner and outer boundaries. In a direct
~well-posed! thermoelastic problem a uniform temperature of
10.0°C was enforced on the inner boundary while a temperature
of 210.0°C was enforced on the outer boundary. Zero displace-
ment was enforced on the cylinder outer boundary. A uniform
pressure of 1.0 Pa was specified on the inner boundary. The fol-
lowing material properties were used:E51.0 Pa,n50.0, a52.0
31022 K21, k51.0 W m21 K21. Adiabatic and stress free condi-
tions were specified at the ends of the cylinder. The computed
temperature field and stress field is shown in Figs. 2 and 4. The
temperature field computed with the FEM had a maximum error
of less than 1.0% compared to the analytical solution.

The inverse problem was then created by over-specifying the
outer cylindrical boundary with the double-precision values of
temperatures, fluxes, displacements, and reaction forces on the
outer boundary obtained from the direct analysis case. At the same
time, no boundary conditions were specified on the inner cylindri-
cal boundary@3#. A damping parameter ofL50.0 was used. The
computed temperature and normal stress magnitude distributions
are shown in Figs. 3 and 5. The maximum relative differences in

Fig. 1 Surface mesh for cylinder test case
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temperatures and displacements between the analysis and inverse
results are less than 0.1% when solved using the QR factorization
@15#.

The above problem was repeated for the thermal problem only
using boundary conditions with random measurement errors

added. For these cases, regularization was used. Random errors in
the known boundary temperatures and fluxes were generated us-
ing the following equations@3#:

Q5Qbc6A22s2 ln R (42)

Q5Qbc6A22s2 ln R (43)

HereR is a uniform random number between 0.0 and 1.0 ands is
the standard deviation. For each case, Eqs.~42–43! were used to
generate errors in both the known boundary fluxes and tempera-
tures obtained from the forward solution.

First, regularization method 1 was used with a wide range of
damping parameters. The average percent error of the predicted
temperatures on the unknown boundaries as a function of damp-
ing parameter and various levels of measurement error is shown in
Fig. 6.

The inverse problem was also solved using regularization
method 2 and method 3 for a wide range of damping parameters.
The average percent error of the predicted temperatures on the
unknown boundary as a function of damping parameter is shown
in Fig. 7 for method 2 and Fig. 8 for method 3.

Results indicate that for simple three-dimensional geometries
the present formulation is capable of predicting the unknown
boundary conditions with errors on the same order of magnitude
as the errors in the over-specified data. In other words, all regu-

Fig. 2 Direct problem: computed isotherms when both inner
and outer boundary temperatures were specified

Fig. 3 Inverse problem: computed isotherms when only outer
boundary temperatures and fluxes were specified

Fig. 4 Direct problem: computed normal stress magnitude
when both inner and outer boundary conditions were specified

Fig. 5 Inverse problem: computed normal stress magnitude
when only outer boundary conditions were specified

Fig. 6 Average percent error of predicted temperatures on un-
known boundaries for regularization method 1 for cylinder
region
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larization methods prevent the amplification of the measurement
errors. Regularization method 2 achieved slightly more accurate
results than method 1 for all levels of random measurement error.
However, method 3 produced the most accurate results overall.

The lack of error amplification with this method may only oc-
cur for simple geometries. Results in two-dimensional indicate
that more sophisticated regularization techniques like method 3
are necessary for complicated geometries such as multiply con-
nected domains@4#.

The next test case involved a multiply-connected domain. Heat
conduction only is considered in order to give a clear comparison
of regularization methods for a more complex geometry. The ge-
ometry is composed of an outer cylinder with length 5.0 m and
diameter of 2.0 m. There are four cylindrical holes that pass com-
pletely through the cylinder, each with a diameter of 1.25 m. The
hexahedral mesh is shown in Fig. 9 and is composed of 1440
elements and 1980 nodes. The inner and outer boundaries each
have 440 nodes. For this geometry, there is no analytical solution,
even if constant temperature boundary conditions are used on the
boundaries.

In the direct ~well-posed! problem a uniform temperature of
10.0°C was enforced on the inner boundaries while a temperature
of 210.0°C was enforced on the outer boundary. Adiabatic
boundary conditions were specified at the ends of the cylinder.
The computed temperature field is shown in Fig. 10.

The inverse problem was then created by over-specifying the
outer cylindrical boundary with the double-precision values of
temperatures and fluxes obtained from the analysis case. At the
same time, no boundary conditions were specified on the inner
cylindrical boundaries. No errors were used in the over-specified
boundary data.

A damping parameter ofL50 was tried first. Without regular-
ization, the QR factorization became unstable due to the high
condition number of the linear system.

The same inverse problem was repeated using regularization
method 1 for a wide range of damping parameters. The lowest
percent error achieved was 9.97% at damping parameter value of
L51.7531028. The resulting temperature distribution forL
51.7531028 is shown in Fig. 11.

The inverse problem was also solved using regularization
method 2 for a wide range of damping parameters. The lowest
percent error achieved was 2.67% at damping parameter value of
L51.7531028. The resulting temperature distribution forL
51.7531028 is shown in Fig. 12.

Finally, the inverse problem was solved using regularization
method 3. A value ofL50.1 was used and percent error compared
to the direct solution was less than 0.0001%. The resulting tem-
perature distribution is shown in Fig. 13.

For the multiply-connected domain case only regularization
method 3 worked well. These results indicate that this FEM in-
verse method requires regularization that is more sophisticated
than the regular Tikhonov method if high accuracy is needed with
multiply-connected three-dimensional geometries.

Fig. 7 Average percent error of predicted temperatures on un-
known boundaries for regularization method 2 for cylinder
region

Fig. 8 Average percent error of predicted temperatures on un-
known boundaries for regularization method 3 for cylinder
region

Fig. 9 Surface mesh for multiply connected domain test case

Fig. 10 Direct problem: computed isotherms when both inner
and outer boundary temperatures were specified
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The final test case involves solving the thermoelastic inverse
problem for the multiply-connected domain in Fig. 9. This case
considers thermal and elastic boundary conditions that vary in all
coordinate directions thereby creating a truly three-dimensional
example. The all interior boundary conditions change linearly
along thez-axis. The exact values used are given in Table 1. On
the outer cylinder the displacement was set to zero and a fixed
temperature of 10°C was specified. The following material prop-
erties were used:E51.0 Pa,n50.0, a52.031022 K21, k51.0
W m21 K21.

The inverse problem was generated by over-specifying the
outer cylindrical boundary with the double-precision values of
temperatures, fluxes, displacements, and surface tractions ob-
tained from the forward analysis case. At the same time, no
boundary conditions were specified on the inner cylindrical
boundaries. No errors were used in the over-specified boundary
data.

Regularization method 3 was used withL58.531025. Our
experience indicates that a good value for the damping parameter,
L, is geometry and boundary condition dependent. Currently, the
damping parameter is chosen based on experience by first choos-
ing a small value and gradually increasing it until the numerical
oscillations in the unknown boundary solution are removed.

The system of equations for temperature was solved using
sparse QR factorization. The linear system for displacements was
too large to be solved with the sparse QR factorization code. Al-
ternatively, the system was solved using the LSQR method with
column scaling. The LSQR iterations were terminated after the
Euclidean norm of the residual of the normal system was less than
1.031026. In this example 16805 LSQR iterations were required,
which consumed about 10 min of computing time on a Pentium 4
workstation.

The average error between the inverse and direct solutions on
the unknown boundaries was 0.02% for temperature and 5.6% for
displacement. The direct and inverse temperature contours for
three sections of the domain are shown in Figs. 14, 16, and 18.
There is good agreement on all three sections between the direct
and inverse temperature contours. The direct and inverse displace-
ment magnitude contours for three sections of the domain are
shown in Figs. 15, 17, and 19. For all three sections there is a
noticeable difference in the direct and inverse contours in the
regions far away from the outer boundary. However, the inverse
solution does correctly capture the direct solution in a qualitative
sense.

This thermoelastic problem was also solved using the other
regularization methods over a wide range of damping parameters.
In those cases the error in the inverse solution was much higher
and did not match the direct solution even in a qualitative sense.
The accuracy of the displacement could be increased by improv-
ing the quality of the damping matrix for the displacement field.
The current damping matrix of Method 3 from Eq.~39! only
includes the normal component of the displacement. Further im-
provements could be made by smoothing the tangential compo-
nents as well. In addition, the current scheme depends on accurate
surface unit normal vectors,n̂, which are difficult to compute
accurately on the nodes of flat elements on curved surfaces. So

Fig. 11 Inverse problem: computed isotherms when only
outer boundary temperatures and fluxes were specified and us-
ing regularization method 1

Fig. 12 Inverse problem: computed isotherms when only
outer boundary temperatures and fluxes were specified and us-
ing regularization method 2

Fig. 13 Inverse problem: computed isotherms when only
outer boundary temperatures and fluxes were specified and us-
ing regularization method 3 „Inverse and Direct contours plot-
ted together …

Table 1 Temperature and pressure boundary conditions for
interior surfaces

Hole Tz50 (°C) Tz55 (°C) Pz50 (Pa) Pz55 (Pa)

A 5.0 2.0 2.0 1.0
B 6.0 1.0 2.0 1.0
C 7.0 1.0 2.0 1.0
D 8.0 2.0 2.0 1.0
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Fig. 14 Inverse problem: computed isotherms on xÀy plane
at zÄ0.5 m when only outer boundary temperatures and fluxes
were specified

Fig. 15 Inverse problem: computed displacement magnitude
on xÀy plane at zÄ0.5 m when only outer boundary displace-
ments and tractions were specified

Fig. 16 Inverse problem: computed isotherms on xÀy plane
at zÄ2.5 m when only outer boundary temperatures and fluxes
were specified

Fig. 17 Inverse problem: computed displacement magnitude
on xÀy plane at zÄ2.5 m when only outer boundary displace-
ments and tractions were specified

Fig. 18 Inverse problem: computed isotherms on xÀy plane
at zÄ4.5 m when only outer boundary temperatures and fluxes
were specified

Fig. 19 Inverse problem: computed displacement magnitude
on xÀy plane at zÄ4.5 m when only outer boundary displace-
ments and tractions were specified
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further reductions in errors could possibly be made by implement-
ing methods that compute the surface normals with a high degree
of accuracy.

The sparse QR factorization was found to provide the solution
with highest accuracy in the shortest amount of computing time.
However, the QR factorization requires substantial amounts of
in-core memory. For the largest examples presented here, a work-
station with 512 MB of memory was required. The sparse QR
factorization failed for the elastic inverse problem on the
multiply-connected domain that had more than 7000 unknowns.
For cases where QR factorization failed or required too much
memory, the LSQR method was employed. Reasonable results
were obtained by LSQR with column scaling in less than 20,000
iterations for displacements and 3000 iterations for temperature.
Although many iterations are required with the LSQR method, it
requires much less memory and is more robust than the sparse QR
factorization. The preconditioned CG method applied to the nor-
malized equations worked well for problems with less than 100
nodes. For more than 100 nodes, this method required many itera-
tions to converge to a solution less accurate than the QR or LSQR
solution. When regularization was applied to the sparse matrix,
the CG convergence improved dramatically but the QR factoriza-
tion was much faster by comparison.

Conclusions
A formulation for the inverse determination of unknown steady

boundary conditions in heat conduction and thermoelasticity for
three-dimensional problems has been developed using FEM. The
formulation has been tested numerically using an annular geom-
etry with a known analytic solution. The formulation can predict
the temperatures and displacements on the unknown boundary
with high accuracy in the annular domain without the need for
regularization. However, regularization was required in order to
compute a good solution when measurement errors in the over-
specified boundary conditions were added. Three different regu-
larization methods were applied. All allow a stable QR factoriza-
tion to be computed, but only method 3 resulted in highly accurate
temperature predictions on the unknown boundaries for large val-
ues of measurement errors. However, all regularization methods
prevented amplification of the measurement errors. It was shown
that the FEM formulation can accurately predict unknown bound-
ary conditions for multiply-connected domains when a good regu-
larization scheme is used. Further research is needed to develop
better regularization methods so that the present formulation can
be made more robust with respect to measurement errors and
more complex geometries. Further research is also needed to im-
prove regularization for inverse problems in elasticity over com-
plicated domains.
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Nomenclature

a 5 coefficient of thermal expansion

$d% 5 displacement vector
e 5 strain
G 5 boundary surface
l 5 Lame’s constant
L 5 damping parameter
n 5 Poisson’s ratio
s 5 normal stress
s̄ 5 standard deviation
t 5 shear stress

Q 5 temperature
DQ 5 difference between local and reference tempera-

ture
@D# 5 damping matrix

E 5 elastic modulus of elasticity
G 5 shear modulus
k 5 Fourier coefficient of heat conduction

Q 5 heat source
q 5 heat flux
R 5 uniform random number between 0 and 1
n̂ 5 unit normal vector

u, v, w 5 deformations in thex, y, z directions
X, Y, Z 5 body force inx, y, z directions
x, y, z 5 Cartesian body axes
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