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A Finite Element Formulation for
the Determination of Unknown
Boundary Conditions for
Three-Dimensional Steady
Thermoelastic Problems

A three-dimensional finite element method (FEM) formulation for the prediction of un-
known boundary conditions in linear steady thermoelastic continuum problems is pre-
sented. The present FEM formulation is capable of determining displacements, surface
stresses, temperatures, and heat fluxes on the boundaries where such quantities are un-
known or inaccessible, provided such quantities are sufficiently over-specified on other
boundaries. The method can also handle multiple material domains and multiply con-
nected domains with ease. A regularized form of the method is also presented. The regu-
larization is necessary for solving problems where the over-specified boundary data con-
tain errors. Several regularization approaches are shown. The inverse FEM method
described is an extension of a method previously developed by the leading authors for
two-dimensional steady thermoelastic inverse problems and three-dimensional thermal
inverse problems. The method is demonstrated for several three-dimensional test cases
involving simple geometries although it is applicable to arbitrary three-dimensional con-

figurations. Several different solution techniques for sparse rectangular systems are
briefly discussed.[DOI: 10.1115/1.1640360
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Introduction parts of the boundary can be determined by overspecifying the
It is often difficult or even impossible to place temperaturboundary conditiongentorcing both Dirichlet and Neumann type
?oundary conditionson at least some of the remaining portions of

probes, heat flux probes, or strain gauges on certain parts o, - : L
surface of a solid body. This can be due to its small size, geomg%8 boundary, and providing either Dirichlet or Neumann type

ric inaccessibility, or a exposure to a hostile environment. With aaﬁtundary conditions on the rest of the boundary. It is possible,

appropriate inverse method these unknown boundary values er a series of algebraic manipulations, to transform the original
be determined from additional information provided at the boun%’%tem of equations into a system which enforces the overspeci-

'eﬂ boundary conditions and includes the unknown boundary

aries where the values can be measured dl_recFIy. In the case.Qhditions as a part of the unknown solution vector. This formu-
steady thermal and elastic problems, the objective of the INVers@énn is an adaptation of a method used by Martin and Dulikrav-

problem is to determine dlsplacem_ents, surface stresses, *189 7] for the inverse detection of boundary conditions in steady
fluxes, and temperatures on boundaries where they are unknowgat conduction

The problem of inverse determination of unknown boundary con- g ifically, this work represents an extension of the conceptual

ditions in two-dimensional steady heat conduction has begp, hresented by the authofd,8] by extending the original
salved by a variety of methqcﬂs_—5]. Similarly, a separate inVerse o mjation from two dimensions into three dimensions.
boundary condition determination problem in linear elastostatics

has been solved by different methddd. The inverse boundary ) o
condition determination problem for steady thermoelasticity wdsEM Formulation for Thermoelasticity

also solved for several two-dimensional problejah The Navier equations for linear static deformatians), w in
A three-dimensional finite element formulation is presentegree-dimensional Cartesiaqy, z coordinates are
here that allows one to solve this inverse problem in a direct

manner by over-specifying boundary conditions on boundaries
where that information is available. Our objective is to develop (A+G)
and demonstrate an approach for the prediction of thermal bound-
ary conditions on parts of a three-dimensional solid body surface
by using FEM.

It should be pointed out that the method for the solution of
inverse problems to be discussed in this paper is different from the

azu+ v Pw
o2 OXdy  Ixdz

ic d%u +a2u+ PPw
( ) Xy gy?  dyoz

+GV2u+X=0 (1)

+GV2+Y=0 )

2 2 2
approach based on boundary element method that has been used U Jv W 2 _
A ; ; e AN+G)| —=—=+ ——=+—|+GVW+Z=0 3)

separately in linear heat conductif8] and linear elasticity6]. Xz = Iyiz 972

For inverse problems, the unknown boundary conditions on

where
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Here, X, Y, Z are body forces per unit volume due to stresses from

thermal expansion.

JaAO

X=—(3\+2G) X (4)
JaAO®

Y:_(3X+2G)T (5)
JdaAO

Z=—(3\+2G) 2 (6)

This system of differential Eq§1—-3) can be written in the fol-
lowing matrix form:

[LI([CILN{ 8} —[CH{eo}) —{fo}=0 )
where the differential operator matrii{, ], is defined as
— 0 O
X
0o — O
ady
0O 0 —
Jz
[L]= (8)
— — 0
gy  ox
J
— 0 —
Jz ox
J
0o — -
L 9z 3y
and the elastic modulus matri)C], is defined as
Fi—v v v 0 0 0 1
v 1-v v
v v 1-v 0
1-2v
N 0 0 0 0 0
[cl=~ 2
14
1-2v
0 0 0 0 0
2
1-2v
0 0 0 0 0
- 2 -
)

Casting the system of Eq.7) in integral form using the
weighted residual methd®,10] yields

L[V][L]T([C][L]{f?}—[C]{So})dQ— L[V]{fb}dﬂzo

(10)

where the matrix| V], is the weight matrix which is a collection
of test functions.

Uq 0 0
[VI=| 0 vz O (11)
0 0 U3

One should now integrat€l0) by parts to get the weak form of

@)
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L([L][V]T)T[C][L]{5}41'0*L([L][V]T)T[C]{So}dQ

- f [VI{fptdQ— f [V{T}dI'=0 (12)
Q r,
where{T} is the vector of surface tractions on surfdcg.
{T}=[n][CI[L{s} (13)

The matrix[n] contains the Cartesian components of the unit vec-
tor normal to the surfac€&,. The displacement field in the vy,

and z directions can now be represented with approximation
functions

6X<x,y,z>a3‘:<x,y,z):;1 Ni(X,Y,2)U;

(14)
8,(y.2)~5(xy.2)= 2 Ni(xy.2)v, (15)
8,(x,y,2)~ 6%y, 2)= 2, Ni(x.y.2)w, (16)
=1
Equations(14)—(16) can be rewritten in matrix form
=[N]{&% (17

where[N] is the interpolation matrix which contains the trial func-
tions for each equation in the system. Also note that with Galer-
kin’'s method the weight matrix and the interpolation matrix are
equal,[N]=[V]". If the matrix[B,] is defined as

[Be]=[LI][N] (18)

then the substitution of the approximation functidag) into the
weak statemen(l2) creates the weak integral form for a finite
element expressed as

Lze[Be]T[C][Be]{ée}dQe* Le[Be]T[CJ{eS}dne

—f [N]T{fﬁ}dﬂe—f [NI{T®dIr*=0  (19)
0 re

This can also be written in the matrix form as
[KE{ &% ={f% (20)

For thermal stresses, the initial elemental strain veetr, be-
comes

{e8l=|aA® aA® «A® 0 0 O (21)

The local stiffness matrix;K€], and the force per unit volume
vector,{f€}, are determined for each element in the domain and
then assembled into the global system

[KI{op={F} (22)

After applying boundary conditions, the global displacements are
found by solving this system of linear algebraic equations. The
stresses{a}, can then be found in terms of the displacemehis,

{o}=[C][LK &}~ [CNeo} (23)

FEM Formulation for the Thermal Problem

The temperature distribution throughout the domain can be
found by solving Poisson’s equation for steady linear heat conduc-
tion with a distributed steady heat source functiQnand thermal
conductivity coefficientk.

k( P20 920 a2®)

Xz ay? 9z

Q (24)
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Applying the method of weighted residuals @4) over an ele- ary conditions as a part of the unknown solution vector. As an

ment results in example, consider the linear system for heat conduction on a tet-
rahedral finite element with boundary conditions given at nodes 1
7’0 PO PO Q and 4.
— + STt E vdQe=0 (25)
e\ dx ay 9z K1 Ky Kz Kya
. . ®1 Ql
Integrating this by parts ond@5) creates the weak statement for Koi Koo Koa K 0
a1 Ko Ky Ky 2 Q2
an element = (34)
) 0 0 Kai Kz Kgz K| | O3 Qs
dv d dv d dv d
—j k ——+——+——) € Kar Kip Kyz Ky 04 Q
e \IX IX Ay dy Iz 9z

As an example of an inverse problem, one could specify both the
_ A temperature®,, and the heat fluxQg, at node 1, flux only at
- LeNiQdQe_ freNi(q' n)dO* (26)  nodes 2 and 3, and assume the boundary conditions at node 4 as
o being unknown. The original system of E@4) can be modified
Variation of the temperature across an element can be expres§9dadding a row and a column corresponding to the additional

by equation for the over-specified flux at node 1 and the additional
m ynknown due to the unknown boundary flux at node 4. The result
O(x,y,2)~0%(x,y,2)= >, Ni(x,y,2)0, @7 S
i=1

Using Galerkin’s method, the weight functienand the interpo- K K K K 0 0, 05
lation function for® are chosen to be the same. By defining the 21 ™22 s 24 0, Q2
matrix [B+] as Ka; Kz Kaz Kzz 0 [{03p=10Q; (35)
m N, IN, INpT Ka Kg Kgz Ky —1 0, 0
ax o ax Ky Ky Kig Ky O Qa Qs
dNy  dN, JINp, The resulting systems of equations will remain sparse, but will be
[Br]= oy Ty ey (28)  nonsymmetric and possibly rectangul@nstead of squajede-
pending on the ratio of the number of known to unknown bound-
Ny dNp Ny ary conditions.
| 9z oz 9z

the weak statemeri26) can be written in the matrix form as o
Regularization

e el — €
[KHO%={Q (29) Three regularization methods were applied separately to the
where solution of the systems of equations in attempts to increase the
method’s tolerance for measurement errors in the over-specified
[Kg]:J K[B+]"[Br]dQ® (30) boundary conditions. Here we consider the regularization of the
ae inverse heat conduction problem.
The general form of a regularized system is giverldg

@)=~ [ amoo+ [ amors @

K Q

AD {®}=[ 0} (36)
The local stiffness matrix,K¢], and heat flux vectofQ¢}, are N ] o )
determined for each element in the domain and then assembldt¢ traditional Tikhonov regularization is obtained when the

into the global system damping matrix[D], is set equal to the identity matrix. Solving
(36) in a least squares sense minimizes the following error func-
[KJ{O}={Q} (32) tion.
Direct and Inverse Formulations error(©) =[[K {0} —{Q}5+A[DK{O}]3 (37)

The above equations for steady thermoelasticity were dighis is the minimi_zation o_f the resi(_jual plus a penalty term. The
cretized by using a Galerkin’s finite element method. This resuligrm of the damping matrix determines what penalty is used and

in two linear systems of algebraic equations the damping parameteh, weights the penalty for each equation.
These weights should be determined according to the error asso-
[K{op={F}, [K:H{O}={Q} (33)  ciated with the respective equation.

The system is typically large, sparse, symmetric, and pOSitive;ohag 1. This method of regularization uses a constant

definite. Once the global system has been formed, the bounda%ping parameten over the entire domain and the identity

conditions are applied. For a well-posed analydieect problem, = \ayiy ag the damping matrix. This method can be considered the
the boundary conditions must be known on all boundaries of t ditional “zeroth order” Tikhonov method. The penalty term

domain. For heat conduction, either the temperat@rg, or the . P P ;
oy . ' eing minimized in this case is the square of thenorm of the
heat flux,Qs, must be specified at each point of the boundary. solution vector{x}. Minimizing this norm will tend to drive the

For 6}” ri]nvgrse groblem, tbhe dunknoyvn 5)0bundary conditions Qi yonents ofx! to uniform values thus producing a smoothing
parts of the boundary can be determined by over-specifying gect ~However, minimizing this penalty term will ultimately

boundary conditionsenforcing both Dirichlet and Neumann typefirive each component to zero, completely destroying the real so-
boundary conditionson at least some of the remaining portions o ution. Thus, great care must be exercised in choosing the damp-

the boundary, _a_nd providing either Dirichlet or Ne“ma“” typﬁ,g parameter\ so that a good balance of smoothness and accu-
boundary conditions on the rest of the boundary. It is possmlpe‘cy is achieved.
a

after a series of algebraic manipulations, to transform the origin
system of equations into a system which enforces the over-Method 2. This method of regularization uses a constant
specified boundary conditions and includes the unknown bourdbmping parameteA only for equations corresponding to the
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unknown boundary values. For all other equatiohs0 and
[D]=[1] since the largest errors occur at the boundaries where
the temperatures and fluxes are unknown.

Method 3. This method uses Laplacian smoothing of the un-
known temperatures and displacements only on the boundaries
where the boundary conditions are unknown. This method could
be considered a “second order” Tikhonov method. A penalty term
can be constructed such that curvature of the solution on the un-
specified boundary is minimized along with the residual.

[V20 45— min (38)

For problems that involve unknown vector fields, such as dis-
placements, Eq.38) must be modified to the following:

IV2(R-{ Suph) 13— min (39)

Here the normal component of the vector displacement {iglis
minimized along the unknown surface.

Equations(38) and(39) can be discretized using the method of
weighted residuals to determine the damping mafiiX,

(D10l 3=I[K 1O ypl3 (40)

In three-dimensional problemi..] is computed by integrating ~ Yet another approach is to use a non-iterative method for least
over surface elements on the unknown boundaries. So the darfguares problems such as QR factorizatjab] or SVD [16].
ing matrix can be thought of as an assembly of boundary elemeft@wever, sparse implementations of QR or SVD solvers are
that make up the boundary of the object where the boundary C(ma_eded to reduce the in-core memory requirements fc_>r the inverse
ditions are unknown. The stiffness matrix for each boundary elfibite element problems. Itis also possible to use static condensa-
ment is formed by using a Galerkin weighted residual method tH#@n to reduce the complete sparse system of equations into a
ensures the Laplacian of the solution is minimized over the uAense matrix of smaller dimensiofis]. The reduced system in-
known boundary surface. The main advantage of this method is @lves only the unknowns on the boundary of the domain and can
ability to smooth the solution vector without necessarily drivinge solved efficiently using standard QR or SVD algorithms for
the components to zero and away from the true solution. dense matrices.

Fig. 1 Surface mesh for cylinder test case

Solution of the Linear System Numerical Results

In general, the resulting FEM systems for inverse thermoelasticTpe accuracy and efficiency of the finite element inverse for-
problems are sparse, unsymmetric, and often rectangular. Thg§@ation was tested on several simple three-dimensional prob-
properties make the process of finding a solution to the systgins. The method was implemented in an object-oriented finite
very challenging. Three approaches will be discussed here.  glement code written in €+. Elements used in the calculations

The firstis to normalize the equations by multiplying both sidegere hexahedra with tri-linear interpolation functions. The linear
by the matrix transpose and solve the resulting square system V@%tems were solved with a sparse QR factorizgtid or LSQR
common sparse solvers. method[13] with column scaling. The two basic test geometries

[K]TKHO}=[K]{Q} (41) innec(lzltjgde(:eza?ossnnular cylinder and a cylinder with multiply con-
This approach has been found to be effective for certain inversethe annular cylinder geometry was tested first. The hexahedral
problemsg 12]. The resulting normalized system is less sparse thafesh is shown in Fig. 1. The outer surface has a radius of 3.0 and
the original system, but it is square, symmetric, and positive defiie inner surface has a radius of 2.0. The mesh is composed of
nite with application of regularization. The normalized system i$440 elements and 1980 nodes. The inner and outer boundaries
solved with a direct methodCholesky or LU factorizationor  each have 396 nodes. For this geometry, there is an analytical
with a ILU preconditioned iterative methdgreconditioned Kry- spjution for heat conduction if constant temperature boundary
lov subspace There are several disadvantages to this approagnditions are used on the inner and outer boundaries. In a direct
Among them being the expense of computjikg '[K], the large  (well-posed thermoelastic problem a uniform temperature of
in-core memory requirements, and the roundoff error incurrexh.0°C was enforced on the inner boundary while a temperature
during the[K]T[K] multiplication. In general, it is best to avoid of —10.0°C was enforced on the outer boundary. Zero displace-
methods that require the explicit of formation [d¢]"[K]. ment was enforced on the cylinder outer boundary. A uniform

Another approach is to use iterative methods suitable for leasessure of 1.0 Pa was specified on the inner boundary. The fol-
squares problems. One such method is the LSQR method, whictving material properties were use=1.0 Pa,»=0.0, a=2.0
is an extension of the well-known conjugate gradig@G) x10 2K~ ! k=1.0 Wm KL Adiabatic and stress free condi-
method[13]. The LSQR method and other similar methods suctions were specified at the ends of the cylinder. The computed
as the conjugate gradient for least squa@SLS) solve the nor- temperature field and stress field is shown in Figs. 2 and 4. The
malized system, but without explicit computation [d]"[K]. temperature field computed with the FEM had a maximum error
These methods need only matrix-vector products at each iteratmfess than 1.0% compared to the analytical solution.
and therefore only require the storagd i so they are attractive  The inverse problem was then created by over-specifying the
for large sized models. However, convergence rates of these mathter cylindrical boundary with the double-precision values of
ods depend strongly on the condition number of the normalizéeimperatures, fluxes, displacements, and reaction forces on the
system which is the condition number[d¢f] squared 14]. There- outer boundary obtained from the direct analysis case. At the same
fore, solver performance degrades significantly as the size of tiie, no boundary conditions were specified on the inner cylindri-
finite element model increases. Convergence can be slow wheh boundaryf3]. A damping parameter ok=0.0 was used. The
solving the systems resulting from the inverse finite element disemputed temperature and normal stress magnitude distributions
cretization since they are naturally ill-conditioned problems.  are shown in Figs. 3 and 5. The maximum relative differences in

4 | Vol. 126, FEBRUARY 2004 Transactions of the ASME

PROOF COPY 001401JHR



PROOF COPY 001401JHR

Fig. 2 Direct problem: computed isotherms when both inner Fig. 5

) Inverse problem: computed normal stress magnitude
and outer boundary temperatures were specified

when only outer boundary conditions were specified

temperatures and displacements between the analysis and invaggged. For these cases, regularization was used. Random errors in
results are less than 0.1% when solved using the QR factorizati@@ known boundary temperatures and fluxes were generated us-

[15]. ing the following equation§3]:
The above problem was repeated for the thermal problem only 5
using boundary conditions with random measurement errors 0=0p+tV-20°InR (42)
Q=Qp.=V—20?InR (43)

HereRis a uniform random number between 0.0 and 1.0 asl

the standard deviation. For each case, E48-43 were used to
generate errors in both the known boundary fluxes and tempera-
tures obtained from the forward solution.

First, regularization method 1 was used with a wide range of
damping parameters. The average percent error of the predicted
temperatures on the unknown boundaries as a function of damp-
ing parameter and various levels of measurement error is shown in
Fig. 6.

The inverse problem was also solved using regularization
method 2 and method 3 for a wide range of damping parameters.
The average percent error of the predicted temperatures on the
unknown boundary as a function of damping parameter is shown
in Fig. 7 for method 2 and Fig. 8 for method 3.

Results indicate that for simple three-dimensional geometries
the present formulation is capable of predicting the unknown
boundary conditions with errors on the same order of magnitude
as the errors in the over-specified data. In other words, all regu-

Fig. 3 Inverse problem: computed isotherms when only outer
boundary temperatures and fluxes were specified

3

<

S
S

Average Percent Error

<

1 1 1 1
10" 10™ 10° 10° 10" 10° 10° 10
A

Fig. 6 Average percent error of predicted temperatures on un-

Fig. 4 Direct problem: computed normal stress magnitude known boundaries for regularization method 1 for cylinder
when both inner and outer boundary conditions were specified region
Journal of Heat Transfer FEBRUARY 2004, Vol. 126 / 5
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Average Percent Error
5 & 3 3 3 3

<

T R T AL T T 10" 10" 107
A Fig. 9 Surface mesh for multiply connected domain test case

Fig. 7 Average percent error of predicted temperatures on un-

known boundaries for regularization method 2 for cylinder

region The inverse problem was then created by over-specifying the
outer cylindrical boundary with the double-precision values of
temperatures and fluxes obtained from the analysis case. At the

larization methods prevent the amplification of the measuremei@me time, no boundary conditions were specified on the inner

errors. Regularization method 2 achieved slightly more accuraglindrical boundaries. No errors were used in the over-specified

results than method 1 for all levels of random measurement err@pundary data. o )

However, method 3 produced the most accurate results overall. A damping parameter ok=0 was tried first. Without regular--

The lack of error amplification with this method may only ocization, the QR factorization became unstable due to the high
cur for simple geometries. Results in two-dimensional indicaondition number of the linear system. _ o
that more sophisticated regularization techniques like method 3The same inverse problem was repeated using regularization
are necessary for complicated geometries such as multiply cénethod 1 for a wide range of damping parameters. The lowest
nected domainf4]. percent error achieved was 9.97% at damping parameter value of

The next test case involved a multiply-connected domain. HeAt=1.75<10°%. The resulting temperature distribution fox
conduction only is considered in order to give a clear comparisenl.75x< 1078 is shown in Fig. 11.
of regularization methods for a more complex geometry. The ge-The inverse problem was also solved using regularization
ometry is composed of an outer cylinder with length 5.0 m antiethod 2 for a wide range of damping parameters. The lowest
diameter of 2.0 m. There are four cylindrical holes that pass compercent error achieved was 2.67% at damping parameter value of
pletely through the cylinder, each with a diameter of 1.25 m. Th&=1.75<10 8. The resulting temperature distribution fox
hexahedral mesh is shown in Fig. 9 and is composed of 14401.75< 10 8 is shown in Fig. 12.
elements and 1980 nodes. The inner and outer boundaries eadhinally, the inverse problem was solved using regularization
have 440 nodes. For this geometry, there is no analytical solutienethod 3. A value oA=0.1 was used and percent error compared
even if constant temperature boundary conditions are used on tbehe direct solution was less than 0.0001%. The resulting tem-
boundaries. perature distribution is shown in Fig. 13.

In the direct(well-posed problem a uniform temperature of For the multiply-connected domain case only regularization
10.0°C was enforced on the inner boundaries while a temperatutiethod 3 worked well. These results indicate that this FEM in-
of —10.0°C was enforced on the outer boundary. Adiabatigerse method requires regularization that is more sophisticated
boundary conditions were specified at the ends of the cylindéfan the regular Tikhonov method if high accuracy is needed with
The computed temperature field is shown in Fig. 10. multiply-connected three-dimensional geometries.

2,

<

=)
%

6=0.0001

Average Percent Error
2 3
T ]

o
&
1

o
b
I

i i 1 1 1 1 1
107 107" 107 10° 10° 10 107
A

Fig. 8 Average percent error of predicted temperatures on un-

known boundaries for regularization method 3 for cylinder Fig. 10 Direct problem: computed isotherms when both inner
region and outer boundary temperatures were specified
6 / Vol. 126, FEBRUARY 2004 Transactions of the ASME
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Fig. 11

Inverse problem: computed isotherms when only
outer boundary temperatures and fluxes were specified and us-
ing regularization method 1

Fig. 13 |Inverse problem: computed isotherms when only
outer boundary temperatures and fluxes were specified and us-
ing regularization method 3  (Inverse and Direct contours plot-
ted together )

The final test case involves solving the thermoelastic inverse
problem for the multiply-connected domain in Fig. 9. This case
considers thermal and elastic boundary conditions that vary in allThe system of equations for temperature was solved using
coordinate directions thereby creating a truly three-dimensiorggarse QR factorization. The linear system for displacements was
example. The all interior boundary conditions change linearipo large to be solved with the sparse QR factorization code. Al-
along thez-axis. The exact values used are given in Table 1. Qarnatively, the system was solved using the LSQR method with
the outer cylinder the displacement was set to zero and a fixeglumn scaling. The LSQR iterations were terminated after the
temperature of 10°C was specified. The following material proguclidean norm of the residual of the normal system was less than
erties were usedE=1.0Pa, »=0.0, a=2.0x10 K™%, k=1.0 1.0x10®. In this example 16805 LSQR iterations were required,

wm ikt

which consumed about 10 min of computing time on a Pentium 4

The inverse problem was generated by over-specifying thgrkstation.
outer cylindrical boundary with the double-precision values of The average error between the inverse and direct solutions on
temperatures, fluxes, displacements, and surface tractions @i& unknown boundaries was 0.02% for temperature and 5.6% for
tained from the forward analysis case. At the same time, mfisplacement. The direct and inverse temperature contours for
boundary conditions were specified on the inner cylindricahree sections of the domain are shown in Figs. 14, 16, and 18.
boundaries. No errors were used in the over-specified boundamyere is good agreement on all three sections between the direct

data.

Regularization method 3 was used with=8.5x10°. Our

and inverse temperature contours. The direct and inverse displace-
ment magnitude contours for three sections of the domain are

experience indicates that a good value for the damping paramegérown in Figs. 15, 17, and 19. For all three sections there is a
A, is geometry and boundary condition dependent. Currently, theticeable difference in the direct and inverse contours in the
damping parameter is chosen based on experience by first chaegions far away from the outer boundary. However, the inverse
ing a small value and gradually increasing it until the numericalblution does correctly capture the direct solution in a qualitative

oscillations in the unknown boundary solution are removed.

Fig. 12 Inverse problem: computed isotherms when only
outer boundary temperatures and fluxes were specified and us-
ing regularization method 2

Journal of Heat Transfer
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sense.

This thermoelastic problem was also solved using the other
regularization methods over a wide range of damping parameters.
In those cases the error in the inverse solution was much higher
and did not match the direct solution even in a qualitative sense.
The accuracy of the displacement could be increased by improv-
ing the quality of the damping matrix for the displacement field.
The current damping matrix of Method 3 from E(B9) only
includes the normal component of the displacement. Further im-
provements could be made by smoothing the tangential compo-
nents as well. In addition, the current scheme depends on accurate
surface unit normal vectors), which are difficult to compute
accurately on the nodes of flat elements on curved surfaces. So

Table 1 Temperature and pressure boundary conditions for
interior surfaces

Hole T:=0(°C)  T:=5(°C) Pi—o(Pa)  P,—5(Pa)
A 5.0 2.0 2.0 1.0
B 6.0 1.0 2.0 1.0
C 7.0 1.0 2.0 1.0
D 8.0 2.0 2.0 1.0

FEBRUARY 2004, Vol. 126 / 7
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Ly )
-1 -075 -05 -025 0 X0‘25 05

T IR B i
0.76 1 125

Fig. 14 Inverse problem: computed isotherms on
at z=0.5 m when only outer boundary temperatures and fluxes
were specified

Fig. 15 Inverse problem: computed displacement magnitude
on x—y plane at z=0.5m when only outer boundary displace-
ments and tractions were specified

Fig. 16 Inverse problem: computed isotherms on
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x—y plane

x—y plane
at z=2.5 m when only outer boundary temperatures and fluxes
were specified
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Fig. 17 Inverse problem: computed displacement magnitude
on x—y plane at z=2.5m when only outer boundary displace-
ments and tractions were specified

Fig. 18 Inverse problem: computed isotherms on Xx—y plane
at z=4.5m when only outer boundary temperatures and fluxes
were specified

Fig. 19 Inverse problem: computed displacement magnitude
on x—y plane at z=4.5m when only outer boundary displace-
ments and tractions were specified
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further reductions in errors could possibly be made by implement- {8} = displacement vector
ing methods that compute the surface normals with a high degree € = strain
of accuracy. I' = boundary surface
The sparse QR factorization was found to provide the solution N = Lame’s constant
with highest accuracy in the shortest amount of computing time. A = damping parameter
However, the QR factorization requires substantial amounts of v = Poisson’s ratio
in-core memory. For the largest examples presented here, a work- o = normal stress
station with 512 MB of memory was required. The sparse QR o = standard deviation
factorization failed for the elastic inverse problem on the 7 = shear stress
multiply-connected domain that had more than 7000 unknowns. ® = temperature
For cases where QR factorization failed or required too much  A® = difference between local and reference tempera-

memory, the LSQR method was employed. Reasonable results ture

were obtained by LSQR with column scaling in less than 20,000 [D] = damping matrix

iterations for displacements and 3000 iterations for temperature. E = elastic modulus of elasticity

Although many iterations are required with the LSQR method, it G = shear modulus

requires much less memory and is more robust than the sparse QR k = Fourier coefficient of heat conduction
factorization. The preconditioned CG method applied to the nor- Q = heat source

malized equations worked well for problems with less than 100 g = heat flux

nodes. For more than 100 nodes, this method required many itera- R = uniform random number between 0 and 1
tions to converge to a solution less accurate than the QR or LSQR n = unit normal vector

solution. When regularization was applied to the sparse matrix,u, v, w = deformations in the, y, z directions
the CG convergence improved dramatically but the QR factoriza- X, Y, Z = body force inx, y, z directions
tion was much faster by comparison. X, ¥, z = Cartesian body axes
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