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ABSTRACT: 2A new concept for controlled manufacturing of specialty composite
materials has been developed. It is based on the concept of aligning magnetizable
microfibers tangent to magnetic field lines of force. This paper offers a method that
allows users to specify desired patterns of the magnetic lines of force that can be
achieved by an appropriate positioning of magnets of various strengths along
the boundaries of the composites’ curing container. An improved analytical model
and a numerical algorithm have been developed for the prediction of the magnetic
force lines inside a flowing and solidifying melt. This analysis code was combined
with a hybrid constrained optimization algorithm that minimizes a normalized
sum of least square differences between the user-specified and the predicted patterns
of the magnetic lines of force. This software package was used to inversely evaluate
the strengths, locations, and orientations of magnets needed to generate the
user-specified patterns of the magnetic lines of force in the solidifying composite thus
verifying the conceptual feasibility of this novel manufacturing process.
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INTRODUCTION

I
T IS WELL known that defects in short fiber composites are often due to uncontrolled
fiber orientation and concentration during composites manufacturing [1]. These defects

can significantly reduce the functionality of the composite material [15]. Also, in many
applications it would be highly desirable to have directional dependence of physical
properties of the material, that is, to have strongly nonisotropic materials [19]. This implies
that it would be of interest to perform curing of the resin in such a way that the local
concentration and orientation of the fibers is fully controlled. During a controlled
solidification process from a melt, it is important to understand the process of solid phase
formation. The accumulated solid phase effectively reduces and deforms the cross
sectional area of the passages and causes significant local variations in pressure and melt
flow-field shear stresses. During the solidification process, melt flow is generated due to
strong thermal buoyancy forces. This process cannot be effectively controlled in the case
of strong heat transfer, except if influenced by a global body force. One such body force is
the general electromagnetic Lorentz force that is created in any electrically conducting
fluid when either a magnetic field or an electric field is applied.

During the curing process in composites manufacturing, we usually work with
electrically conducting liquid polymers and carbon fibers, although a variety of other
molten substances and fibers made of other materials are often used. The resins
are electrically conducting either because of the presence of iron atoms, salts, or acids.
In addition, if short carbon fibers (5–10 m in diameter and 200 m long) are vapor-coated
with a thin layer (2–3 m) of a ferromagnetic material like nickel [15], the fibers will respond
to the externally applied electromagnetic fields by rotating and translating so that
they become aligned with the magnetic lines of force [15,21]. This is especially true
for short fibers [15]. Thus, if an external magnetic field is applied, the molten resin
flow-field will respond and the solid/liquid front shape and its speed could be manipulated
nonintrusively [3,4,7]. Experimental confirmation of the validity of the concept of
aligning magnetized microfibers tangent to the magnetic field lines was performed by Hatta
and Yamashita [15]. However, no attempt was made to control the pattern of these lines.

The objective of this work is to explore the feasibility of manufacturing specialty metal
matrix and polymer composite materials that will have specified (desired) locally
directional variation of bulk physical properties like thermal and electrical conductivity,
modulus of elasticity, thermal expansion coefficient, etc. The fundamental concept is
based on specifying a desired pattern of orientations and spacing of microfibers in the final
composite material product. Then, the task is to determine the proper strengths, locations,
and orientations of magnets that will have to be placed along the boundaries of the curing
composite part so that the resulting magnetic field lines of force will coincide with the
specified (desired) pattern of the microfibers’ distribution. It is important to understand
that the pattern of these lines depends on the solidifying resin flow-field and the spatial
variation of the applied magnetic field.

Thus, the successful proof of this controlled manufacturing concept involves the
development of an appropriate software package for the numerical solution of the partial
differential equation system governing magneto-hydro-dynamics (MHD) involving
combined fluid flow, magnetic field, and heat transfer that includes liquid–solid phase
change [5]. In addition, it involves development of a constrained optimization software
that is capable of automatically determining the correct strengths, locations, and
orientations of a finite number of magnets that will produce the magnetic field force
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pattern which coincides with the desired and specified fiber concentration and orientation
pattern in the curing composite material part.

Numerous analytical and numerical formulations have been developed for simulation of
solidification processes in solidifying fluid flows with and without the influence of an
externally applied steady magnetic field [5,11]. An extended form of the Boussinesq
approximation allowing for temperature-dependent physical properties of the fluid
including latent heat of phase change was incorporated in this formulation that
simultaneously predicts detailed velocity, pressure, and temperature fields for the
moving fluid while capturing the forming solid phase by using a single computer code.
Computational results confirmed that the magnetic field has a profound influence on the
solidifying flow-field. It reduces intensity of the flow recirculation [3,4,9] and causes
distorted velocity profiles with pronounced overshoots close to the solid boundaries. This
change influences heat transfer through the boundaries and consequently the amount of
the solid phase accrued on undercooled walls.

A MATHEMATICAL MODEL OF MAGNETO-HYDRO-DYNAMICS (MHD)

WITH SOLIDIFICATION

The modifications to the Navier-Stokes relations for the MHD fluid flow with heat
transfer and phase change come from the electro-magnetic force on the fluid where all
induced electric field terms have been neglected. The latent heat released or absorbed per
unit mass of mushy region (where Tliquid >T>Tsolid) is proportional to the local
volumetric liquid/(liquidþ solid) ratio often modeled [20] as

f ¼
V‘

V‘ þ Vs
¼

T � Tsolid

Tliquid � Tsolid

� �n

¼ ~��n ð1Þ

Here, the exponent n is typically 0.2<n<5, subscripts ‘ and s designate liquid and solid
phases, respectively, while f¼ 1 for T � Tliquid and f¼ 0 for T � Tsolid. Physical properties
(density, viscosity, heat conductivity, heat capacity, etc.) are often significantly different in
the melt as compared to the solid phase. We may assume linear variation of density as a
function of the nondimensional temperature, �, in the liquid

�‘ ¼ �r 1þ
@ð�‘=�rÞ

@�

� �
r

ð� � �rÞ

� �
¼ �r½1� �‘ð� � �rÞ	 ð2Þ

with a similar expression for the solid phase. The reference values are designated with the
subscript ‘‘r’’. Then, the liquid–solid mixture density and modified specific heat can be
defined using an enthalpy method [18] as

�mix ¼ f �‘ þ ð1� f Þ�s ð3Þ

cmix ¼ fc‘ þ ð1� f Þcs þ ½ðT � TsÞðc‘ � csÞ þ L	
df

d�
ð4Þ

so that latent heat, L, is released in the mushy region according to Equation (4).
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The nondimensional numbers of interest in MHD are

Reynolds hydrodynamic Prandtl hydrodynamic Eckert

Re ¼
�rvr‘r
�vr

Pr ¼
�vrcr

�r
Ec ¼

v2r
cr�Tr

Grashof Prandtl magnetic Hartmann

Gr ¼
�2r�rgr�Tr‘

3
r

�2
vr

Pm ¼
�vr	r�r

�r
Ht ¼ ‘r�rHr

	r
�vr

� �1=2

where �vr, cr, �r,�r,Lr, ‘r,Hr, 	r,�r are the reference values of viscosity, specific heat, heat
conductivity, magnetic permeability, latent heat of liquid–solid phase change, length,
magnetic field, electric conductivity, and thermal expansion, respectively. Then, the
nondimensional Navier-Stokes equations for phase-changing MHD mixtures of two
liquids (solid phase is treated as the second liquid with extremely high viscosity), can be
formulated [5,6,17] so that the mixture mass conservation is

r � v ¼ 0 ð5Þ

where v is the fluid velocity. The classical modeling of MHD assumes that there are no free
electric charges in the fluid, there is no externally applied electric field, and that magnetic
field is not time-varying [6,17]. Linear momentum conservation for two-phase
incompressible MHD flows with thermal buoyancy force and magnetic force can be
expressed as

f �‘r � ðvvþ p
_

‘IÞ þ ð1� f Þ�sr � ðvvþ p
_

sIÞ

¼ f r �
�v‘

Re
ðrvþ rvT Þ

h i
þ

Gr

Re2
�‘�‘�gþ

Ht2

PmRe2
�‘ðr �HÞ �H

( )

þ ð1� f Þ r �
�vs

Re
ðrvþ rvT Þ

h i
þ

Gr

Re2
�s�s�gþ

Ht2

PmRe2
�sðr �HÞ �H

( ) ð6Þ

Here, I is the identity tensor. The nondimensional hydrodynamic, hydrostatic, and
magnetic pressures were combined to give

p
_

‘ ¼
p

�‘
þ

’

Fr2
þ

Ht2

PmRe2
m‘H �H and p

_

s ¼
p

�s
þ

’

Fr2
þ

Ht2

PmRe2
�sH �H ð7Þ

where ’ is the nondimensional gravity potential defined as g ¼ �r’ and H is the magnetic
field intensity (H¼B/�). Then, the energy conservation for steady incompressible
phase-changing MHD flows including Joule heating can be written in its nondimensional
form as [5]

�mixr � ðcmix�vÞ ¼ f
1

RePr
r � ð�‘r�Þ þ

1

	‘

H2
t Ec

P2
mR

3
e

ðr �HÞ � ðr �HÞ

� �

þ ð1� f Þ
1

RePr
r � ð�sr�Þ þ

1

	s

H2
t Ec

P2
mR

3
e

ðr �HÞ � ðr �HÞ

� � ð8Þ
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With MHD assumptions, Maxwell’s system for steady electromagnetics of a moving
medium becomes

r � B ¼ 0 ð9Þ

r �H¼ J ð10Þ

r � J ¼ 0 ð11Þ

Here, J is the electric current density. Under the MHD conditions and assuming that the
fluid speed is negligible compared to the speed of light [17], Ohm’s law reduces to

J ¼ 	 v� B ð12Þ

If electric conductivity and magnetic permeability are assumed constant, then the
following nondimensionalized magnetic field transport equation for the phase-changing
incompressible MHD flow can be obtained from Equations (9)–(12).

�r � ðv�HÞ ¼
F=ð	‘�‘Þ þ ð1� f Þ=ð	s�sÞ

PmRe
r2H ð13Þ

It needs to be solved intermittently [5] with the Equations (5)–(8). The modified magnetic
transport equations (13), the continuity equation (5), the modified Navier-Stokes
equations (6), and the modified energy equation (8) were integrated numerically using a
finite volume method for structured grids written in terms of nonorthogonal boundary-
conforming coordinates [7]. Artificial density formulation was used to de-singularize the
Navier-Stokes system and the artificial time integration was performed using a four-stage
Runge-Kutta algorithm.

INVERSE PROBLEM OF DETERMINING UNKNOWN MAGNETIC FIELD

BOUNDARY CONDITIONS

Given a prescribed pattern of magnetic field lines, let us try to estimate the magnetic
field boundary conditions that will generate such a pattern. This is a typical inverse
boundary condition determination problem [12].

As the basic test geometry we considered a square container (Figure 1) filled with
a molten electrically conducting silicon resin that contains a dispersed phase consisting of
magnetizable microfibers. Top and bottom walls of the container were treated as
adiabatic, while left vertical wall was treated as a ‘‘cold’’ surface with constant
temperature Tc ¼ 1676:0K that is below the solidification temperature for molten silicon.
The right vertical wall was treated as a ‘‘hot’’ surface with temperature Th ¼ 1686:0K that
is above the melting temperature of the silicon. Magnets of various strengths were
assumed positioned orthogonal to all four boundaries of the container.

Because of the highly coupled system of nonlinear partial differential equations
governing the MHD solidification, the easiest approach to solving this inverse problem is
to formulate it as a least squares problem and then use an optimization algorithm to
minimize the L2 norm. For example, the objective function for this problem could be the
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sum of all squared differences between the estimated and prescribed magnetic field
components. The task is then to find the minimum of F, where F is defined as

F ¼
1

#cells

X#cells
i¼1

ðBspecified
x � Bcalculated

x Þ
2
þ

1

#cells

X#cells
i¼1

ðBspecified
y � Bcalculated

y Þ
2

" #1=2

ð14Þ

since magnetization was neglected in this work. The values of the magnetic field strength
throughout the domain depend strongly on the values of the magnetic field along the
boundaries of the domain. Thus, the desired pattern of the magnetic field lines could be
created by the yet unknown boundary values of the magnetic field. The boundary values
of the magnetic field were parameterized with the following expression

BðxkÞ ¼
XM
i¼1

PiCiðxkÞ ð15Þ

where the Pis are unknown parameters that will be found with the help of the hybrid
optimization algorithm. The functions Ci (xk) are given as

CiðxkÞ ¼ cos ði � 1Þ


2
xk

h i
for i ¼ 1, 3, 5, . . . ð16Þ

CiðxkÞ ¼ cos i


2
xk

h i
for i ¼ 2, 4, 6, . . . ð17Þ

A variety of optimization algorithms have been developed and widely used in multiple
disciplines. Various optimization algorithms have been known to provide faster conver-
gence over others depending upon the size and shape of the mathematical design space, the
nature of the constraints, and where they are during the optimization process. This is why
we created a hybrid constrained optimization software [13] which incorporates several
of the most popular optimization modules; the Davidon-Fletcher-Powell (DFP) gradient
search method, a genetic algorithm (GA), the Nelder-Mead (NM) simplex method, quasi-
Newton algorithm of Pshenichny-Danilin (LM), differential evolution (DE), and
sequential quadratic programming (SQP). Each algorithm provides a unique approach
to optimization with varying degrees of convergence, reliability, and robustness at

g0=9.81 m/s2 Tc Th 

Insulated

Insulated

B4 (x)

B3 (x) 

B1 (y) B2 (y) 

Figure 1. Geometry and boundary conditions for test cases 1 and 2.
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different stages during the iterative optimization process. A set of analytic rules and
heuristics were coded into the program to automatically switch back and forth among the
different optimization algorithms as the process proceeded. Different versions of this
hybrid optimization package have been successfully applied during the optimization of
various multidisciplinary problems [10].

NUMERICAL RESULTS

Three test cases were considered corresponding to three different prescribed magnetic
field boundary conditions. In all test cases the initial guess for the parameters was zero,
that is, the initial guess for the magnetic field was that it is zero. The hybrid optimizer
started with the Differential Evolutionary method in all test cases and the initial
population was randomly generated around the initial guess. The number of population
members was equal to three times the number of parameters. Input parameters used in all
three test cases are given in Table 1.

In test Case 1, Equation (15) was used to generate prescribed magnetic boundary
conditions, where the values of the parameters Pi were

P1 ¼ 0:0032;P2 ¼ 0:0563;P3 ¼ 0:2365;P4 ¼ 0:3658;P5 ¼ 0:0698;P6 ¼ 0:0023

In the inverse problem of determining the unknown magnetic field boundary conditions
in test Case 1 we used three parameters for B1(y) and three parameters for B3(x), while
magnetic boundary conditions on the opposite walls were enforced as periodic, that is
B2(1, y)¼B1(0, y) and B4(x, 1)¼B3(x, 0).

Figure 2 shows the prescribed and the estimated boundary conditions for test Case 1. One
can see that the boundary conditions for x¼ 0.0 and x¼ 1.0 are better estimated than the

0.0 0.2 0.4 0.6 0.8 1.0
y

-0.08

-0.04

0.00

0.04

0.08

B
x 

/ B
o

Estimated

Prescribed

0.0 0.2 0.4 0.6 0.8 1.0
x

0.12

0.14

0.16

0.18

B
y 

/ B
o

Estimated

Prescribed

Figure 2. Specified and estimated boundary conditions for magnetic field in test case 1.

Table 1. Input values.

l¼0.01 m Fr¼ 8.7870�10�2

B0¼0.1 T Ec¼7.1524�10�8

Re¼ 1000 Ht¼4.1864�101

Pr¼1.1613�10�2 Gr¼ 1.8132�105

V0¼2.7522�10�2 m/s Pm¼ 1.0�10�2
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boundary conditions for y¼ 0.0 and y¼ 1.0. Figure 3 shows the magnetic and temperature
fields obtained with the prescribed boundary conditions (Figure 2) for test Case 1.

Figure 4 shows the magnetic and temperature fields for test Case 1 that were obtained
from minimization of the objective function F (Equation (14)) with the use of a hybrid
optimizer that varied the parameters of the boundary conditions of the magnetic field
(Equation (15)). One can see that the magnetic and thermal fields obtained from this
inverse methodology match the prescribed magnetic and thermal field patterns shown in
Figure 3 very closely. Since all values are nondimensionalized, the value of 0.0 in the
thermal field plot designates the liquid–solid interface. Finally, Figure 5 shows the
convergence history of the optimization process. In this case, the major optimization
modules applied were the GA and the SQP modules.

Figure 6 shows the prescribed and the estimated magnetic boundary conditions for test
Case 2, where a discontinuous function was considered specified on the vertical wall. In
this case, B1(0, y) was approximated with only six parameters although the actual value
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Figure 3. Specified magnetic and temperature field distributions for test case 1.
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Figure 4. Calculated magnetic and temperature field distributions for test case 1.
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was a discontinuous function. The value of B3(x, 0) was similarly approximated with six
parameters although the actual value was a constant. Magnetic boundary conditions on
the opposite walls were enforced as periodic, that is B2(1, y)¼B1(0, y) and B4(x, 1)
¼B3(x, 0). Again, the boundary conditions for x¼ 0.0 and x¼ 1.0 were better estimated
than the boundary conditions for y¼ 0.0 and y¼ 1.0. The discontinuous character of the
actual magnetic boundary condition for x¼ 0.0 and x¼ 1.0 could have been better
estimated if more parameters were used for the trial functions given by Equation (15).
Figure 7 shows the magnetic and temperature field distributions obtained with the
specified boundary conditions (Figure 6) for test Case 2.

Figure 8 shows the estimated magnetic and temperature fields distribution for test Case 2.
One can see that they have the same shape of the prescribed fields depicted in Figure 7,
except for the magnetic lines close to the boundaries y¼ 0.0 and y¼ 1.0. Figure 9 shows
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Figure 5. Convergence history for the hybrid optimization for test case 1.
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Figure 6. Specified and estimated boundary conditions for magnetic field in test case 2.
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the convergence history, where one can see that the DE optimization module did not have
a satisfactory performance in this case. In fact, for this case, the major optimization
module was the GA.

It should be pointed out that these test cases used physical properties for silicon. The
exception was the magnetic Prandtl number for which a value, which is three orders of
magnitude larger than the physical value, was used. This was done because the realistic
extremely small values of Pm were causing the explicit numerical integration algorithm
used in the MHD analysis to diverge. In addition, the value of viscosity coefficient in the
solid phase was treated as only two orders of magnitude higher than in the liquid. Higher
values of this artificial viscosity were causing the MHD analysis code to oscillate.
As a result of using the lower values of the viscosity in the locally solidified locations, the
local velocities predicted in the solid phase were not negligible. They needed to be
explicitly reinitialized to zero values after each iterative sweep through the computational
domain. This slowed the convergence rate of the MHD analysis significantly.
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Figure 8. Calculated magnetic and temperature field distributions for test case 2.
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Figure 7. Specified magnetic and temperature field distributions for test case 2.
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For the Case 3, the following problem was considered, using the same parameters of
Table 1. Vertical walls were adiabatic (Figure 10), top wall was at Tc ¼ 1676:0K and
bottom wall was at ThðxÞ ¼ 4ð�x2 þ xÞ þ 1686:0K. In this case, three separate parameters
were used to parameterize each of the four magnetic boundary conditions, where
B1ð0, yÞ 6¼ B2ð1, yÞ and B3ðx, 0Þ 6¼ B4ðx, 1Þ. That is, magnetic field boundary conditions
were not explicitly treated as periodic. Figure 11 shows the prescribed and the estimated
magnetic boundary conditions for test Case 3. Figure 12 shows the prescribed magnetic
and temperature field patterns obtained with the magnetic field boundary conditions as
specified in Figure 11. Figure 13 shows the estimated patterns of these fields obtained by
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Figure 9. Convergence history for the hybrid optimization for test case 2.
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Figure 10. Normalized geometry and thermal boundary conditions for test case 3.
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Figure 13. Calculated magnetic and temperature field distributions for test case 3.
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Figure 12. Specified magnetic and temperature field distributions for test case 3.
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Figure 11. Specified and estimated boundary conditions for magnetic field in test case 3.
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optimizing 3� 4¼ 12 parameters describing the boundary values of the magnetic field.
The specified and the optimized patterns of the magnetic and temperature fields match
each other well.

Finally, Figure 14 shows that the SQP optimization module performed the entire task
in Case 3.

DISCUSSION

In this proof-of-the-concept effort the objective was not to develop the most advanced
MHD analysis involving solidification. The objective was to demonstrate the feasibility
of the entire concept of inversely determining the unknown boundary values of the
magnetic field that will create a user-specified pattern of the magnetic lines of force. In this
study, a number of assumptions were made concerning physics of the problem. For
example, all physical properties were treated as constants instead of as functions of
temperature. Transport equation for the passive scalar (concentration of the microfibers)
was not included, but could be added relatively easily [16]. Its addition would enable us to
predict and possibly control the distribution of the microfibers along the magnetic field
lines of force. Thermal stresses in the accrued solid were not analyzed since such solids are
by definition nonisotropic. Different options for treating the mushy region were not
exercised [18]. Other, possibly more robust and accurate numerical integration methods
were not explored [4,14] that could allow for physical values of the magnetic Prandtl
number and for significantly higher values of viscosity used in the solid region.
Magnetization effects and fiber–resin interface drag were neglected. Also, possible effects
of the material properties and the thickness and shape of the container walls were not
included via a conjugate analysis [2]. Finally, the current effort neglects the fact that the
entire problem of having magnetizable microfibers orient themselves tangent to the
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Figure 14. Convergence history for the hybrid optimization for test case 3.
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prescribed magnetic field pattern is feasible only if the prescribed pattern is enforced in the
moving and deforming mushy region. This mandates that the entire problem should in
reality be treated as an unsteady control problem where boundary values of the magnetic
field should vary in time. All of these details could and should be incorporated in the
future work and compared to actual experimental results since this concept could be
extended to manufacturing of three-dimensional composite objects and functionally
graded objects of arbitrary shape.

SUMMARY

Feasibility of a new concept has been demonstrated for manufacturing composite
materials where microfibers will align along a user-specified desired pattern of the magnetic
lines of force. This was accomplished by combining an MHD analysis code capable of
simultaneously capturing features of the melt flow-field and the accrued solid, and a
hybrid constrained optimization code. The computed pattern of the magnetic lines of force
was shown to closely replicate the specified pattern when the optimizer minimized the L2-
norm of the difference between these two patterns. This minimization process was achieved
by optimizing a finite number of parameters describing analytically the distribution and
the orientations of the boundary values of the magnetic field.
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