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Abstract

In this paper, the non-reflective boundary conditions for the axisymmetric electro-magneto-hydrodynamic
(EMHD) flows have been derived. The electro-magneto-hydrodynamics (EMHD) deals with the motion of
electrically conducting incompressible fluids under the combined influence of externally applied and internally
generated electric and magnetic fields. A consistent axisymmetric EMHD flow model with linear constitutive
relations and artificial compressibility was expressed in cylindrical coordinates. After some simplifications, the
resulting EMHD system comprised of modified Maxwell equations for the electro-magnetic fields and modified
Navier-Stokes equations for the flow-field, was transformed to a characteristic form, and the non-reflective
boundary conditions were derived. The results show the strong mutual interactions between the axisymmetric
flow-field and the electro-magnetic fields. The limiting cases, including the conventional axisymmetric flow-
field model and the electro-magnetic field model in vacuum, are recoverable from these results.

Nomenclature

B=pH+M) magnetic flux density, kg A™ s E electric field intensity, kg m s> A™
p specific heat at constant pressure, E=E+vxB electromotive intensity, kg m s> A™!
K'm?s? £ mechanical body force per unit mass,
D=g,E+P electric displacement vector, A s m ms?
D o . N H magnetic field intensity, A m™'
oo +v.-V material derivative, s
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J=J+q.v electric current density, A m™

i electric conduction current, A m™

M total magnetization per unit volume,
Am’

M =M+vxP magnetomotive intensity, A m”

p pressure, kg m™' s

~=p+sp(I_S~I;3) L (BB

modified pressure, kg m’ s?
2 2u,,

a-}

P polarization per unit volume, A s m?

q. electric charge density, A s m™

q conduction heat flux, kg s

Qu heat source per unit volume,

kg m's?

t time, s

t Cauchy stress tensor, kg m™ s?

T absolute temperature, K

v fluid velocity, m s

Greek Symbols

B Chorin’s artificial compressibility,
kgm's?

€ electric permittivity of fluid,
kg m? s* A?

€, =8.854x10™"? electric permittivity of vacuum,
kgl m? st A?

£, =£—g polarization electric permittivity,
kg' m3 st A?

g, =¢€lgg relative electric permittivity of fluid

n coefficient of fluid viscosity, kg m™ s

K thermal conductivity coefficient,
kgms3K!

Xg electro-thermal conductivity coefficient,
m' A

p fluid density, kg m>

c electric conductivity coefficient,
kg m? s A?

or thermo-electric conductivity coefficient,
mtAK!

vy magnetic permeability of fluid,
kgmA?s?

Wo = 4nx107 magnetic permeability of vacuum,
kgmA?s?

Hp = —p—ult— magnetization magnetic permeability,

“FHo

kgmA?s?

1. Introduction

Electro-magneto-hydrodynamics (EMHD) is
an interdisciplinary study of electro-magnetics
and fluid dynamics. It deals with the flow of
polarizable and magnetizable incompressible
fluids under the combined effects of electric and
magnetic fields.  The conventional electro-
hydrodynamics (EHD) and magneto-
hydrodynamics (MHD) are two extreme cases of
EMHD. Recently, a series of rigorous
theoretical continuum mechanics treatments of
EMHD flows (Eringen and Maugin, 1990a,
1990b; Lakhtakia, 1993; Dulikravich and Lynn,
1995a, 1995b, 1997a, 1997b; Dulikravich and
Jing, 1996, 1997, Dulikravich, 1998; Ko and
Dulikravich, 1998) have been developed.
Especially, Eringen and Maugin (1990a; 1990b)
laid the firm foundations of the EMHD theory
and developed the most complete and robust
model for the balance laws and constitutive
equations. Following their general formulation,
Ko and Dulikravich (1998) developed a fully
consistent non-linear multi-dimensional EMHD
model.

A complete set of boundary conditions 1is
required in order to perform numerical simulation
of EMHD flows. Usually the no-slip conditions
and jump conditions are imposed at the solid
walls, while non-reflective (for incoming waves)
or characteristic (for outgoing waves) boundary
conditions are used at the open boundaries.
Shankar et al. (1989) and Shang (1991) have
performed numerical simulations of electro-
magnetic fields with-fluid flow, but they did not
include the effects of fluid polarization and
magnetization. Although the effects of
polarization and magnetization was treated
inconsistently, Dulikravich and Jing (1996)
performed an analytical formulation of the
EMHD flow model and formulated the
procedures to define open boundary conditions
(Dulikravich and Jing, 1997). Based on their

recently developed fully consistent non-linear
EMHD theory, Ko and Dulikravich (1998)
derived non-reflective boundary conditions for
two-dimensional planar EMHD flows (Ko and




Dulikravich, 1999). Like the numerous studies
on the open boundary conditions, such as for
MHD flows by Sun et al. (1995) and for
acoustics by Reitsma et al. (1993), this
formulation was an extension of Thompson’s
(1987, 1990) method for the general hyperbolic
system of equations.

This paper presents a formulation of the non-
reflective boundary conditions at the open
boundaries for an axisymmetric EMHD flow
model, thus complementing the study for the two-
dimensional planar EMHD case (Ko and
Dulikravich, 1999).  For this purpose, the
consistent linear EMHD model will be
investigated. With the help of certain
modifications and simplifications, the
characteristic boundary conditions will be
derived from the characteristic form of the
governing equations, by following Thompson’s
approach.  This work, like its planar flow
counterpart, will supercede the results of
Dulikravich (1998) based on an inconsistent
EMHD model.

2. Governing Equations of EMHD
Flows

A complete set of balance laws governing the
general electro-magneto-gas-dynamic (EMGD)
flows has been derived by Eringen and Maugin
(1990a; 1990b) using a continuum mechanical
approach. The corresponding set of electro-
magneto-hydrodynamic (EMHD) flow equations
was formulated by Ko and Dulikravich (1998).
It consists of modified Maxwell’s equations
governing electro-magnetism in a moving fluid,
the modified Navier-Stokes equations governing
heat and fluid flow under the influence of electric
and magnetic fields, and constitutive equations
(Wineman and Rajagopal, 1995) describing
behavior of the fluid.

It can be shown (Dulikravich, 1998; Ko and
Dulikravich, 1999) that a vector operator form of
the set of equations governing EMHD flows can
be written in the rationalized MKS system as a
combination of the reduced -electro-magnetic
subsystem

d oP
ZE=vxH-j-&

RIPTaR ot’ (1)
oq
Heyv.J=0, 3
o = @)

and the thermo-mechanical subsystem

V.v=0, Q)]
Dy
o=V t+pf +aE+IxB+(VE)-P+(VB)-M

+V-(x(2x1_3»+§@x§>,

®
(6)
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|tTh>
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Qy+V-q+J-E+ "I‘l'

This set of conservation laws can constitute a
closed system when it is supplemented by
appropriate constitutive equations for the field
variables such as polarization and magnetization.
The most general theory of constitutive equations
determining the polarization, magnetization,
electric conduction current, heat flux, and
Cauchy stress tensor has been developed by
Eringen and Maugin (1990a; 1990b), while the
second order theory has been developed by Ko
and Dulikravich (1998). If the analysis is limited
to the linear fluid medium, then the following
expressions can be used.

P=¢,E, (M
M=--B, ®)

He
J=0E+0,VT, )]
ﬁ=KVT+KEI£:, (10)
t=-pI+q[Vy+(V)']. 1n
Here, coefficients ¢,,p,,0,07,x,xg,n  are

material properties and depend only on
temperature in the case of an incompressible fluid.
For the physical importance of these properties,
see review papers by Dulikravich and Lynn
(1997a; 1997b).

Substituting the constitutive relations (Eqs.
(7)~«(11)) into the conservation equations (Egs. (1)
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- (6)), a closed set of governing equations can be
obtained. Since the purpose of the present study
is a derivation of non-reflective boundary
conditions for an axisymmetric EMHD flow, a
simplified version will be given in the next
section.

3. Axisymmetric EMHD Flows

Here, we will deal with an axisymmetric
EMHD flow case in which there is no
circumferential variation of any field variable.
Such flows can be most easily described by using
the circular cylindrical coordinates, (r,6,z). The
velocity and electric fields (influencing E E P,J,J)
have only the r- and z- components, while the
magnetic field (influencing B,H,M,M) has only
the 6- component. None of the variables
depends on @ - coordinate. More specifically,

v, E, 0
y= 0 §= 0 B= BZ . (12)
v, E, 0

The remaining field vectors can also be readily
represented from this form of velocity, electric,
and magnetic fields. For example, the
polarization per unit volume and the magnetic
field intensity vector are as follows.

B £pE, &p(E; - V;B;) v
P=40;={ 0 ;= 0 (13)
Py g,E, ep(E; + ViB,)

0 0
B
H={H,}= —2—sp(V,E3—V3E,) (14)
0 H 0

Following the theory of vector and tensor
analysis in general curvilinear coordinates
(Happel and Brenner, 1965) and after a step by
step calculation, we can obtain following system
of governing equations for an axisymmetric
EMHD flow model.

J0E OH oP,
0 6tl #' T+ ~O9E -q, 1‘;‘ (15)
0E, 6H, H OP.

T e T T TNy (16)
9B, OB % (17
ot or oz

aqe =-V, aqe \Y/ &_ aEI 5 %

1 3
ot or oz o r oz
(18)
' 14T T
—O7 “2+__+—2
o° ro oz
& A A
_= =3 19
o202 ay
oV, _ v, v, %
—L vV, L +V £ 4pf,
P o P( P 3 az] ar pL

(azv 19V, 8%V,
+

\ A ~
+q.E, - oE,B
o r o az2 r)qel 2

-a:B, E+P aE' +p,—1 %, -V, oB:B,)
oz oz o
B
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A NI EVASALRFR VAL A B il N
P ot P( 15 315 pis

v, 1av, V.
H{ s 19 3,

a: 1o 61.2 ]+qu3 +oEB,
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+v,—-_a(P'B2) (B2+ &,(ViE; - V,E, )JaBz i
oz Hp

+B2£
ot

T oT aT 8T 10T &°T)
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Here, the variation of material properties such as
electric permittivity, magnetic permeability, and
viscosity are assumed negligible. Notice also
that an artificial compressibility term is added in
the continuity equation in order to create an
artificial unsteady term for marching in time
(Chorin, 1967). This modification is justified if
the aim is to get a steady-state solution.

The right hand sides of Egs. (15)-(16) and
(20)-(22) contain unsteady terms P, /ot and

op;/at.  Even if it is assumed that the
polarization electric permittivity ¢, is constant,

these terms must be solved for using the
definition given in Eq. (13). Solving Egs. (15)-
(21) with the defining Eq. (13) simultaneously
for all the rate of time variation terms is possible
in principle. The resulting system, however, is
extremely complicated and severely coupled. It
is nearly impossible to elucidate the physical
meaning of the characteristic behavior of such
EMHD system, because the system does not
allow further analytical treatment.

If the analysis is limited to the formulation of
non-reflective boundary conditions needed in
simulating the steady state flows only, then this
difficulty can be avoided by slightly modifying
the governing equations. The time derivative of
the polarization vector on the right hand sides of
Eqgs. (15)-(16) and (20)-(22) can be omitted in
case of simulation of steady-state EMHD flows,
because these terms vanish at the converged final
steady state. This idea is similar to the
preconditioning method that is frequently used to
accelerate the convergence of iterative algorithms
as well as the artificial compressibility method.
It has been successfully adopted in formulating
non-reflective boundary conditions for a two-
dimensional planar EMHD flow model (Ko and
Dulikravich, 1999).

The modified version of the evolution
equations (15)-(22), which can be readily
obtained by omitting the unsteady terms &P, /&
and op,/at, will be used to investigate the

characteristic features of the axisymmetric
EMHD flows and to obtain non-reflective

boundary conditions at the open boundaries for
such flows.

4. Non-Reflective Boundary
Conditions

In order to obtain a complete understanding of
the characteristic behavior of an axisymmetric
EMHD flow, it is desirable to investigate the full
EMHD evolution equations. But the coefficient
matrix of the characteristic form of the full
governing equation system is so dense that it does
not allow a symbolic (closed form) calculation of
eigenvalues. In addition, electro-magnetic time
scale differs from the thermo-mechanical one by
orders of magnitude. Except for the extreme
cases such as a flow in a medium without
polarizaion and magnetization, it does not seem
possible to derive non-reflective boundary
conditions by treating the electro-magnetic and
thermo-mechanical effects in a coupled manner.
Therefore, the formulation of the characteristic
boundary conditions will be carried out
separately for the two subsystems (electro-
magnetic and thermo-mechanical). This
approach is acceptable when computing steady-
state solution of EMHD flows.

Non-reflective Boundary Conditions for
Electro-magnetic Subsystem

As mentioned in the previous section, the time
derivatives of polarization will be omitted here
and in the next subsection. A characteristic form
of the modified electro-magnetic (Maxwell’s)
subsystem can be written from Eqgs. (15)-(18) as
follows.

£+A115_(_2'+Bua_9'=su —AM fg__Bnﬁgi 'S"
4 = o = & T = a = o T
(23)
Here, indices 1 and 2 correspond to the electro-
magnetic subsystem and thermo-mechanical
subsystem, respectively. The electro-magnetic

solution vector Q' contains the following

unknown primitive variables
Q! ={E,, E,, By, qe}‘ (24)
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while Q* denotes the solution vector representing

thermo-mechanical field. The coefficient
matrices A" and B"' are defined by
0 0 0 0
Al -, -DVy (¢, -1V, -l/ggn O (25)
= 0 -1 0 0/
o 0 -oV, VY

(€ ~DV; & -1V, I/eou 0

0 0
BH - 6
= 1 0 (26)
0 o oV, v3

The remaining coefficient matrices,

B”, may be obtained by collectmg the
appropriate first order spatial derivative terms in
Eqgs. (15)-(18). The source vector S' is defined
as N

i CAY "'01:31)/90

§| = (Hz/r'—qu3 —UE3)/80 (27)
0
—cTezT—cﬁ,/r
where
~, 8 @
2
Vit 8)

is a second order differential operator which is
similar to the Laplacian operator. In a strict
sense, neither §' nor S' (see Eq. (23)) can be a
source vector because a source vector should not
contain any spatial derivative. A second order
derivative term associated with the diffusion of
heat is included in these two source vectors. This
means that the diffusive nature of the
characteristic waves has been neglected. This is
the only viable option, since there is no known
method to handle this effect.

The eigenmatrix A(A') corresponding to the

coefficient matrix A" can be calculated as

AA")=disgMt", 25", 15", 24" 1= diaglo, Vi, &1 €3]
29

. Jue, vy i1’4eo+usgvlz (30)

1,27 2% J— L3

while the eigenmatrix corresponding to B'' is

found to be
AB") =diag (A8, 25", 28", A5} = diag{0, V,, EP, EF)

@31

e Je, v,_‘/4so+uspv3 (32)
I ZGOJ_

As expected, all of the eigenvalues are real,
which means that the electro-magnetic evolution
equation system is hyperbolic. The characteristic
wave propagating in the radial direction
(represented by A'') shows the same behavior as

the axially propagating characteristic wave
(represented by B'').  The only difference

between Eq. (29) and Eq. (31) is that Vv, was
replaced by V,. These eigenvalues show that the

incoming and outgoing electro-magnetic waves
are not influenced by the electric or magnetic
field, but by the fluid velocity, magnetic
permeability, and electric permittivity of the flutd.

Since the wave propagation characteristics in
the axial z- direction are the same as those in the
radial r- direction, it is sufficient to set up the
non-reflective boundary conditions on the
surfaces r = constant, that is, in the radial
direction.  The matrix of Ieft eigenvectors
corresponding to A", which is identical to the

inverse of the similarity transformation matrix,
can be calculated as

1 0 0 0
0'(8.] + u‘spvsz) _ O'Llsov3 c“‘"(8;) —80 )Vlv3
5‘" - a,V, a, a,
p‘epVJ —psoglA 1 0
l-lSPV3 —U‘Sog? i Y
(33)
a, =1+(g, —g UV’ . (34)

The direction of wave propagation is well
defined for the actually or locally one-
dimensional problems.  For two-dimensional
problems, there is no unique direction of
propagation. This is reflected in the fact that A"

and B" cannot be simultaneously diagonalized.

[romE T ST ey reTa




For most cases, however, there exists a main flow
direction at the open (inlet and outlet) boundaries
where the characteristic boundary conditions are
required. If r- direction is such a direction, then
one can estimate that the wave propagation
characteristics are predominantly determined by
A", because the effect of the transversal
variation is relatively negligible. In this (quasi
one-dimensional) approach, the transverse term is
considered constant and treated as a source term
in the same way as the thermo-mechanical

derivative terms are treated as source terms
(Thompson, 1987; Dulikravich and Jing, 1997).

The fact that all eigenvalues of A" are real
means that Eq. (23) is locally hyperbolic.

Following Thompson’s approach, the boundary
conditions at the inlet and outlet can be written as

Ila ! 1n lla ! Ul
niA T%_"'aﬂ'? 1-_1|A %"'E;‘ gl=0 at F=Tfp, Tout -

(35)
Here, n*" is the i-th row vector of EA" , and 3,
is defined by

5 =

1 for ﬁ)utgoixllg waves, (36)
0 for incoming waves.

Finally, U' is the source term modification
vector, which is given by

y! =B“%—§l . (7)

In cases where the open boundaries lie at the
axial cross-sections, that is, defined by z =
constant, the non-reflective boundary conditions
can be written as '

1" ua ! 1
+8% n? —§—+gi8 W'=0 at z=z,, z.

1
n,B" 6g
—1 at, 1
(38%)

Here, nf" is the i-th row vector of N®" defined
by

0 1 , 0 0
_ ope,V, o(b, +psle ) cp.(sp AR

N® = b, bV, b,
- N3 -pe,V, 1 0
Heok? ~ps,V 1 0
(39
b, =1+(s, —¢)uVs . (40)

The vector, W', which modifies the source term
is given by

~1

Wl=é”%’—s

(41)

Note the close similarity, which exists between
the radial mode and the axial mode, represented
by Egs. (25) through (41). The curvature effect
of the boundary surface, that is the dependence

on r, appears only in a source term (S' or 5‘ ).

Non-reflective Boundary Conditions for
Thermo-mechanical Subsystem

The procedure of formulating the non-
reflective boundary conditions for the thermo-
mechanical subsystem is the same as that for the
electro-magnetic subsystem. Using Eqgs. (19)-
(22), this subsystem can be written in a
characteristic form as
1 a 1

0 _Bll

o]

2

e

aQ? -
o 3
at _—

(42)
where the solution vector g’ and source vector

s* are defined as

2 2
+Azzf§T+Bzz%=§z _AY

S’||
S"I

Q= Vi, V5, TV, (43)
| BV, /r
"V, -V, /r*)+q,.E, -oE,B, +pf,
p
s?’= NV, +q,.E; +6E;B, +pf; , (44)
p ~
Q, +¥VT +xE, /r+o(E] +E})
PCp
respectively. As in the electro-magnetic

subsystem, the source vector has second order
derivative terms due to the momentum diffusion
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and heat diffusion. We will assume that their
effects are much smaller than the first order
derivative terms. The coefficient matrices A¥,

E” are defined as follows:

[0 B 0
1 gy-n 0
p pr
A% =|0 0 gy, - _91By
= pr P
B +X
0 _BVB, @V, +x)B, VI_GT Ty
L PCp PCp Py |
0o B 0 0
{lp ¢ 0 0
1o o €, —C,
| 0 -¢c3 ¢4 ¢4
(45)
0 0 B 0
0 GV, S8y
BZZ_ 1 ’ P
g == 0 GV, 0
p
0 _ BV +xg)B, PR V;B, VS_CTEJ
| PCp PCp Pey |
[0 0 B o
|0 4 o 4
fup 0 4, o
| 0 -d, d, d;
(46)
2
G=1+ e?? . 47

It should be noted that the most important
factor combing the electro-magnetic and thermo-
mechanical effects is the thermo-electric
conductivity, o .

In contrast to the electro-magnetic subsystem,
the coefficient matrix B associated with the
axial direction cannot be constructed cyclically
from A” associated with the radial direction.

The matrix A has terms proportional to 1/r in
its principal diagonal elements (¢, and c;).

These terms arise from the (momentum and heat)
diffusion and reflect the curvature effect of the

cylindrical boundary surfaces. In a far field this
effect diminishes to zero and the situation arising
in a two-dimensional planar case is recovered. In
a near filed, however, the effect of curved surface
is important.

The eigenmatrix A(A”) corresponding to A™

can be written as
AA™)=diag[M} 387 087 M0 T=diagla,, oy, oy, 0]
(48)
M; =(c 2eg)/2, My =(c,+este,)/2,  (49)

Cg ="4B/p+c|2 , € =‘/(cl —c5)?~4cye, . (50)

The eigenmatrix AB®) corresponding to B”
can be written as

AB™)=diag[A] A5 A5 A% 1=diagB,, B,. B3, Bul

(b

A%, =(d, tdg)/2, A, =(d, +ds£d;)/2,  (52)

d6=\/4[3/p+d12, dy =4(d, ~d5)?—4d,d, . (53)

From the results of eigenvalues, the wave
speed propagating in the radial direction is a
function of coordinate, r, at least in a near field.
On the other hand, the wave speed in the axial
direction is not influenced by radial distance itself.
In the far field, that is, as r— o, the qualitative
difference between two modes diminishes. Their
variation with respect to position is also included
indirectly in the field strengths. The eigenvalues
for both r- and z- directions are strongly
dependent on the electric and magnetic field
intensities, velocity, and fluid material property
such as electric conductivity, density, and
magnetic permittivity. This behavior is quite
different from the electro-magnetic subsystem,
and is evidence that the effect of electro-magnetic
field on flow is much stronger than that of flow-
field on the electro-magnetic field.

The non-reflective boundary conditions for the
thermo-mechanical subsystem can be derived in
exactly the same way as for the electro-magnetic
subsystem. They can be expressed concisely as




2
an 0Q A

2 O 2 2 z
o} _§ +50 0 ——+n U’ =0 at r=g,, o,
(54)
2 0Q? 2 g 0Q
n; % +8A] n?n%w?uﬂzﬂm =2y, Zou -
(55)

In this expression, n*” and n®* denote the i-
th row vector of the similarity transformation
matrices N*” and N®" defined by

-, /B 1 0 0
-o,/B 1 0 0
A% _ 2¢4 ~2pcyay Cs—C1 ¢y
T | Bamosede Brlogmcser)p 20
2¢c, 2pcyo, Os=C1*¢
2B+(cg+eseq)p 2B +(cg—cscy)p 2c,
(56)
Cg =2C,¢4 +¢,C5 —C2 7
and
—B,/p 0 1 0
~B,/B 0 1 0
B2 _ -2d, d, ~d; +d, —2pd,a,
= | 2B+(dg-dyd,)p 2d, 28+(dg —d,d,)p
-2d, d -d;-d, -2pdya,
2B+(dg +dsd, )p 2d, 2B+(d; +did, )p
(58
dg =2d,d, +d,ds -d?, (59)

respectiVely. In addition, source terms should be
modified as

2

g, (60)

Ut =B*® an_ -
= &

2_andQ g
wi-an &g (61)

Conclusion

Starting from a consistent linear EMHD model
written in a circular cylindrical coordinate system,
the derivation of non-reflective boundary
conditions for numerical simulation of steady
axisymmetric EMHD flows was performed. An
artificial compressibility term was added in the
continuity equation, and the temporal variation of
polarization vector was neglected. Under these

simplifications, both modified Maxwell equations
(electro-magnetic  subsystem) and modified
Navier-Stokes equations  (thermo-mechanical
subsystem) were transformed to their
characteristic form for the fluids with constant
material property. The characteristic and non-
reflective boundary conditions at the inlet and
outlet boundary were formulated for both
subsystems by assuming that transversal
variation is negligible.

The results for the eigenvalues of the
coefficient matrices show that there is a
substantial coupling between the electro-magnetic
field and flow-field. The effect of curvature of
the radial boundary surfaces is manifested in the
radially propagating waves. This effect reduces
to zero as the far field is reached. In the far field,
there is no distinction between the waves in the
radial direction and the axial direction. Because
of the modification of some unsteady terms, our
results are only valid for steady-state problems.
Therefore, further studies are needed to
circumvent this restriction for the simulation of
unsteady flows.
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