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Abstract

The electro-magneto-hydrodynamics (EMHD) deals with the motion of electrically conducting incompressible fluids
under the combined influence of externally applied and internally generated electric and magnetic fields. In this paper, the
non-reflective boundary conditions for the EMHD flow simulation have been studied. The consistent EMHD model
with linear constitutive relations and artificial compressibility is expressed as a standard form in Cartesian coordinates.
After some simplifications, the resulting EMHD system comprised of Maxwell equations for the electromagnetic field
and modified Navier-Stokes equations for the flow field, is transformed to a characteristic form. and the non-reflective
boundary conditions are derived. The results show the strong mutual interactions between the flow field and the
electromagnetic field. The limiting cases, including the conventional flow field model and the electromagnetic field model
in vacuum, are recoverable from these results. The non-reflective boundary condition formulation for EMHD can be
readily extended to the general curvilinear coordinate system and made suitable for direct numerical implementa-
tion. © 2000 Elsevier Science Ltd. All rights reserved.
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special cases of EMHD. There has been a series of
theoretical studies on the EMHD flows [1-12].
Based on continuum mechanics, the firm founda-
tions of the EMHD theory were formulated by
Eringen and Maugin [2,3]. They developed the
most complete and robust model for the balance
laws and constitutive equations. Following their
general formulation, Ko and Dulikravich [12] de-
veloped a fully consistent non-linear multi-dimen-
sional EMHD model.

1. Introduction

Electro-magneto-hydrodynamics (EMHD) is the
study of the flow of polarizable and magnetizable
incompressible fluids under the combined effects of
electric and magnetic fields. Hence, the conven-
tional electro-hydrodynamics (EHD) and mag-
neto-hydrodynamics (MHD) may be considered
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In order to develop a computational code for the
EMHD problems, it is essential to have a formula-
tion of the complete boundary conditions including
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Nomenclature

B=yu,(H+M) magnetic flux density, kgA ™ !s™?

C, specific heat at constant pressure, K ! m?s 2
D=¢E+P electric displacement vector, Asm™

b_ i +v'V material derivative, s’

Dt ot

E electric field intensity, kgms *A™!
E=E+vxB electromotive intensity, kgms 3 A ™!

f mechanical body force per unit mass, ms"
Fem

H magnetic field intensity, Am~

J=J. 4+ q.v electric current density, Am~

J. electric conduction current, Am~

M total magnetization per unit volume, Am~
M=M+vxP magnetomotive intensity, Am”~

p pressure, kgm " !'s™2

p=p+ 8”“; E) + (];#B) modified pressure, kgm ™ 's ™2

P polarization per unit volume, Asm~

qe electric charge density, Asm™

q conduction heat flux, kgs™?

O heat source per unit volume, kgm™'s

t Cauchy stress tensor, kgm ™' s

T absolute temperature, K

v fluid velocity, ms™!

Greek symbols

p Chorin’s artificial compressibility, kgm ™~ 's

& = &/eg relative electric permittivity

n coeflicient of fluid viscosity, kgm ™ 's
p fluid density, kgm~?

I magnetic permeability, kgm A~ ?s”~
o = dnx 1077

2

2

2
electromagnetic body force per unit volume, kgm ™25~ 2
1

2

2

1

1

2
3

1.,-3
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1.-2

electric permittivity, kg "' m™3s* A2
electric permittivity of vacuum, kg 'm~3s*A?
polarization electric permittivity, kg™ 'm™3s* A?

1.-1

2

magnetic permeability of vacuum, kgm A~ 2s ™2

magnetization magnetic permeability, kgm A~ ?s 2

the open boundary conditions. Existing publica-
tions of numerical simulations of electromagnetic
fields with fluid flow do not include the effects of the
polarization and magnetization [13,14]. The ana-
lytical formulation of the EMHD performed by
Dulikravich and Jing [9] was inconsistent in ac-

counting for the polarization and magnetization.
Consequently, an attempt [ 10] to derive non-reflec-
tive and characteristic boundary conditions for this
EMHD model was also inconsistent. They also
reviewed jump conditions at the solid wall or dis-
continuity surface.
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There have been numerous studies on the char-
acteristic and non-reflective boundary conditions.
For example, these studies were performed in gen-
eral hyperbolic systems of equations by Thompson
[15,16], in MHD by Sun et al. [17], in acoustics by
Reitsma et al. [18], etc. In this paper, the formula-
tion of the non-reflective boundary conditions at
the open boundaries will be performed by following
Thompson’s approach. For this purpose, the con-
sistent linear EMHD model will be investigated
[12]. With the help of certain simplifications, the
characteristic boundary conditions will be derived
from the characteristic forms of the governing
equations. This work will supplement the results of
Dulikravich [11] based on an inconsistent EMHD
model.

2. Governing equations of EMHD flows

The full system of equations governing electro-
magneto-hydrodynamic (EMHD) flows consists of
Maxwell’s equations governing electro-magnetism,
the Navier-Stokes equations governing fluid flow,
and constitutive equations [19] describing behav-
ior of the fluid. Following the general electro-mag-
neto-gas-dynamic (EMGD) theory of Eringen and
Maugin [2,3], the balance laws for the electro-
magnetic field are represented by Maxwell’s equa-
tions. Using a vector operator form, the Maxwell’s
equations can be written in the rationalized MKS
system as follows:

V:D =g, (Gauss’ law), (1)
V:B =0 (conservation of magnetic flux), (2)
oD
i VxH~—-J (Ampere-Maxwell’s law), (3)
‘B
il VxE (Faraday’s law). 4)

The relations between flux density and field inten-
sity vectors in the polarizable and magnetizable
medium are

D =¢E + P, (3)
B = uo(H + M). (6)

The vectors of polarization and magnetization
should be estimated from the constitutive equa-
tions.

Taking the divergence of Eqgs. (3) and (4), and
using Egs. (1) and (2), we obtain the following
equations:

0q.

=4V =0, (7)
d
=(V-B)=0. (8)

Here the former is called the equation of charge
conservation. The latter equation implies that if
V-B = 0 at the initial time, then V-B = 0 for any
later time, t. Therefore, the equation of conserva-
tion of magnetic flux (Eq. (2)) is required only to
restrict the initial distribution of B. We can dis-
pense with this equation in the further analysis. The
governing equations for the electromagnetic field
consist of Egs. (3), (4), and (7).

The balance laws of the thermo-mechanical field
are comprised of the three conservation laws. The
equations of conservation of mass, linear mo-
mentum, and energy for the incompressible fluids
can be expressed in a vector operator form as

Vev=0, 9)
Dv
— =Vt + pf + F"
PD: + pf +F°7, (10)
DT . =~ DP . DB
C.2o = . . M=
PCrpy Oy+Vq+J.-E+E Di M Dr’
(1
respectively. Here,
F"=¢qE+JxB+ (VE):-P + (VB)'M
0
+V'(V(P><B))+E(P><B) (12)

is the electromagnetic body force per unit volume
[21.

In order to completely determine the electro-
magnetic and thermo-mechanical fields, the
balance laws must be supplemented by the consti-
tutive equations since the number of the balance
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equations is less than that of unknowns. The most
general theory of constitutive equations determin-
ing the polarization, magnetization, conduction
current, heat flux, and Cauchy stress tensor has
been developed by Eringen and Maugin [2,3],
while the second-order theory has been developed
by Ko and Dulikravich [12]. If we limit the analysis
to the linear fluid medium, then we can use the
following expressions:

P=¢E, (13)
M= ~1—-B, (14)
J. = oKk + 0, VT, (15)
q = «VT + x:E, (16)
t= —pT + n(Vv + (Vv)). (17)

Here, all the coefficients are material properties and
depend only on temperature, T, because the fluid is
assumed to be incompressible. The extension of the
analysis to the non-linear fluids makes the formula-
tion very complicated and cumbersome [11,12].
Substituting the constitutive relations into the
electromagnetic (Egs. (3)-(7)) and thermo-mechan-
ical balance laws (Egs. (10)-(12)), the following
closed set of governing equations can be obtained:

JE 1
80_@? =V><<;B+epv><(E+va)>—qev

P
—(o(E +vxB) + 0, VT) ——
_ ap 18
=F, -, (18)
B
P — VxE, (19)
9.
5 = ~ V' (@v+oE+vxB) +o,VT),  (20)

Vev =0, 21)

ov
po; = — POV =V + V- (Vv + (VW) + pf
+4.E+(gv+oE +vxB)+06,;VT)xB
+ &(VE)*(E + vxB) + V+(¢,V(E + v x B)
B
+(VB)-<N——spvx(E+va)>
oP
_,gp(E+v><B)><(VxE)+a—th
opP
:va +EXB, (22)
oT
PCyar = — PGV V)T + V- (VT
+ kg(E+vxB)+Q, + (E+ vxB)
'(0‘(E+VXB)+O’TVT)+£‘(VXE)
B
— (- VB) + (E +vxB)(vV)
oP
x(gp(E+va)))+(E+VXB)'E
opP
= pC,Fr + (E + vx B)'E’ (23)
.a_P—g a—]§+—6v>(]3 VxE
=\ T B vx(VXE)
cT
+& 5 (E + vxB). (24)

Here, note that de,/dT = de/dT = ¢'. This set of
equations is not in a standard form since certain
time derivative terms exist on the right-hand side
(Egs. (18), (22)-(24)). Therefore, we must solve for
JE/ot, ov/ot, 0T /0t and OP/dt in order to obtain
a system of equations that could be solved by
marching in time. After a lengthy derivation, the
following system of evolution equations can be
formulated:

oE Fy 1

% "o "o Fo + GiB+iGE), (25)
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ov 1 , o
EzFV_pTO(BXF°+EGZBXE)’ (26)
oT
=G 27
o 5 (27)
oP 1 SN
= = E;(FO + G{B + £G,E), (28)
Fo = (& — )Fp —g,(BxF, +vx(VxE), (29
€ ey
Go = , + £ B-B s G, = L—’
o=¢ p( ) ! pAo
A,
_ 72 30
G, FT+pCpA0, (30)
¢ A 0 &p £\ 2
Ao =66y — —{&(E-E)+—(B-E)° ), (31
pC, P

’

A, = Go(B-Fo) + ;’Z—p(pC,,GoF,(B-E)
— (E-E)B-F,) + (B-E)E- Fy)), (32)

Ay = (E-Fp) + %"(B-E)(B- Fo) + ¢ Fr <g,(E-1«‘:)

4]

+ —"(B-F:)2>. (33)
p ’

3. Two-dimensional planar EMHD flows

The evolution equations for the general cases of
EMHD flows are too complicated to be used for
practical applications. Here, we will deal with
a simpler case, that is, a two-dimensional case
where the flow is confined in the x-y plane. The
velocity and electric field (influencing E, E,
P, J., J) have only the x and y components, while
the magnetic field (influencing B, H, M, M) has
only the z component. None of the variables de-
pends on z-coordinate. More specifically,

E=(E1,E2,0)t’ B=(0,O,Bs)t, V=(V1’V2,0)'~
(34)

Note that the conservation of the magnetic field
(Eq. (2)) is automatically satisfied in this case. In

addition to the assumption of two-dimensional
flow, we assume that the variation of material prop-
erties such as electric permittivity, magnetic per-
meability, and viscosity are negligible.

Substituting the reduced form of Eq. (34) into
Eqgs. (18)—(23) and utilizing the general solution
given in Eqgs. (25)-(28), a system of accurate evolu-
tion equations corresponding to the two-dimen-
sional EMHD flow with constant material
properties can be obtained. The resulting system,
however, is extremely complicated and severely
coupled. It is nearly impossible to get a physical
meaning about the characteristic behavior of such
EMHD flows, because the system does not allow
further analytical treatment.

If the analysis is limited to the formulation of
non-reflective boundary conditions needed in simu-
lating the steady-state flows, then this difficulty can
be avoided by slightly modifying the governing
equations. For the simulation of steady-state
EMHD flow, the time derivative of the polarization
vector in the right-hand sides of Egs. (18), (22), (23)
can be omitted because it vanishes at the converged
final steady state. This idea is similar to the precon-
ditioning method that is frequently used to acceler-
ate the convergence of iterative algorithms. On the
other hand, we can add the so-called artificial com-
pressibility term in the continuity equation in order
to create an artificially unsteady term for the
marching in time as follows [20]:

op ovy Vi
E+ﬁ< o +ﬁ—y>-0' (35)

Keeping in mind the form of Eq. (34), the modified
version of the remaining equations can be readily
obtained by omitting the time derivative of the
polarization vector. The specific form of the result-
ing system will be presented in the next section.

4. Non-reflective boundary conditions

It is ideal to derive the non-reflective boundary
conditions from the characteristic form of the full
EMHD system, because this can provide the max-
imum information about the interactions of the
electromagnetic and thermo-mechanical effects.
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Unfortunately, the full system, even for two-dimen-
sional case, is too involved to treat it in a coupled
manner. The coefficient matrix in the characteristic
form of the full governing equation system is so
dense that it does not allow the symbolic (closed
form) calculation of eigenvalues. In addition to this
complication, the fact that electromagnetic time
scale differs from the thermo-mechanical one by
orders of magnitude makes the coupled analysis
approach difficult. For these reasons, the formula-
tion of the characteristic boundary conditions will
be carried out separately for the two subsystems
(electromechanical and thermo-mechanical).

4.1. Non-reflective boundary conditions for
electromagnetic subsystem

The characteristic form of the electromagnetic
(Maxwell’s) subsystem can be written from Egs.
(18)-(20) as follows:

6Q1 llan llan
ot 4 0x +B oy
2 2
=sl_A12%%_312%’y—zsfl, (36)

where indices 1 and 2 correspond to the electro-
magnetic and thermo-mechanical subsystem, re-
spectively. The electromagnetic solution vector
represents the unknown primitive variables

Q' =(E(,E;, B3, q.), (37
while the coefficient matrix A'" is defined by
0 0 0 0
Jrt (& — DV, (e, — 1DV, /e O
0 1 0 0
o 0 aV, V.
(38)

The remaining coefficient matrices B'', 4'?, and
B'? may be obtained by collecting the appropriate
first order spatial derivative terms in Egs. (18)—(20).
The details will be omitted because of the restricted
typing space. The source vector, S, is defined as

St=(-(q.V, + JEI)/SOa
—q.V, + UEz)/So, 0, —orV?T). (39)

Because the source vector should not contain any
spatial derivative, neither S! nor §'is a genuine
source vector. A second-order derivative (heat dif-
fusion) term is included in them. This means that
we neglect the diffusive nature of the characteristic
wave. This is the only viable option since there is no
known method to handle this effect.

The eigenmatrix A'! corresponding to the coef-
ficient matrix 4'" can be calculated as

A" =diag{A!, A3, A3, A
= dlag{o’ Vls él’ él}» (40)

£, = VeVt e + pedVi (1)
. 230ﬁ -

These eigenvalues show that the incoming and out-
going electromagnetic waves are not influenced by
the electromagnetic field intensity, but by the fluid
motion and the fluid material properties.

The matrix of left eigenvectors corresponding to
A'', which is identical to the inverse of the sim-
ilarity transformation matrix, can be calculated as

Nilz

i 1 0 0 0
o(l + by +e,uV3) —couls ob, )
Vi(' +by) 1+ by Vi(' +by) ’
— eV go &y 1 0
— e,V go &, 1 0
(42)
by = ue, — SO)V%- (43)

The direction of wave propagation is well defined
for the actually or locally one-dimensional prob-
lems. For two-dimensional problems, there is no
unique direction of propagation. This is reflected in
the fact that 4'! and B'! cannot be simultaneously
diagonalized. For most cases, however, there exists
a main flow direction at the inlet and outlet bound-
aries where the characteristic boundary conditions
are required. If x-direction is such a direction, then
one can estimate that the wave propagation char-
acteristics are predominantly determined by 4'%,
and the effect of the transversal variation is relative-
ly negligible. In this (quasi-one-dimensional) ap-
proach, the transverse term is considered constant
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and treated as a source term in the same way as the
thermo-mechanical derivative terms are treated as
source terms [10,15].

The fact that all eigenvalues of A'! are real
means that Eq. (36) is locally hyperbolic. Following
Thompson’s approach, the boundary conditions at
the inlet and outlet can be written as

1 1
6Q 4+, ,a—~{vn,-Ul =0 at x = Xjn, Xout
ot ox
(44)
1 for outgoing waves,
5 = oueome (45)
0 for incoming waves.

Here, n; is the ith row vector of N'!, and the source
term modification vector U' is given by

1
uU! =B“a& —St (46)
oy

4.2. Non-reflective boundary conditions for
thermo-mechanical subsystem

The procedure of formulating the non-reflective
boundary conditions for the thermo-mechanical
subsystem is the same as that for the electromag-
netic subsystem. Using Egs. (35), (22), and (23), this
subsystem can be written in a characteristic form as

Q’ 0Q? 0Q?
A22 BZZ____
T ax TPy
1 ~y1
=S? —AZ‘Q — B“ﬁ =§2 (47)
Ox oy

where the solution vector and source vector are
defined by

Q =(p,Vy, Vs, T), (48)
= {0, (4V*V + pfi + q.E1 + oE,B3)/p,
V2V, + pfs + q.E2 — 0E1 B3)lp,

(WV2T + Q4 + o(ET + E3)/pC, )" (49)

It should be pointed out that the source vector has
linear momentum and heat diffusion terms. Sup-
pose that the dominant wave propagation is in the

x-direction. For such cases, prevailing role is
played by the coefficient matrix 422 that is given as

Ay =
0 B 0 0
1/p GV, 0 0
0 0 GV, orBs/p
0 SpE2V1B3 —8pE1 VIB3 —ICEB3 Vl _O-TEI
pCy pCy pC,
(50)
- B3
G=1+*“p3, C =pC,. (51)

The eigenmatrix A%* corresponding to 4%% can be
calculated as

= diag(A3?2, 422, 132, 2%, (52)
GV 2
/1%,22 = : + "ﬁ- + g
2 P 2 (53)
/’LZZ :C(l +G)V1 —O'TEl
3.4 2C
JCG =1V, +061E)> =D
+
+ Te (54)
where D = 4C(xg + &,V E{)B3ar/p. (55)

The thermo-mechanical subsystem eigenvalues are
strongly dependent on the electric and magnetic
field intensities as well as the velocity and fluid
material property. This characteristic is rather dif-
ferent from the electromagnetic subsystem. It im-
plies that the effect of the electromagnetic field on
flow-field is much stronger than that of the flow-
field on the electromagnetic field. The most impor-
tant factor combining the electromagnetic and
thermo-mechanical effects is the thermo-electric
conductivity, ¢;. The analysis leading to the
boundary conditions for the thermo-mechanical
subsystem could be performed in the same fashion
as shown in Egs. (42)-(46). Since the result is more
complicated than in the case of the electromagnetic
subsystem (compare the eigenmatrices), we omit
the details.
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5. Conclusions

Starting from a consistent EMHD model with
linear constitutive equations, a standard form of
governing equation system was obtained in Car-
tesian coordinates. Introducing the artificial com-
pressibility and neglecting the temporal variation
of polarization vector, both Maxwell’s equations
(electromagnetic ~ subsystem) and  modified
Navier-Stokes equations (thermo-mechanical sub-
system) were transformed to their characteristic
forms for the fluids with constant property. The
characteristic and non-reflective boundary condi-
tions at the inlet and outlet boundary were for-
mulated for both subsystems by assuming that
transversal variation is negligible. The results for
the eigenvalues of the coefficient matrices show that
there is a substantial coupling between the electro-
magnetic field and flow-field. Since the time deriva-
tive of the polarization was neglected and artificial
compressibility was introduced, the results are ap-
plicable only to the steady state EMHD planar
flows. For the simulation of unsteady flows, further
studies are needed to circumvent this restriction.
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