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Abstract

A number of analytical models exist for both clectrohydrodynamics (EHD) and magnetohydrodynamics (MHD). At
present there are no practical yet consistent models for the combined electro-magneto-hydrodynamic (EMHD) effects
which occur quite often in actual situations. This work represents an attempt to develop such a fully consistent analytical
model for multi-dimensional, steady and unsteady, compressible and incompressible flows of electrically conducting
fluids under the simultaneous or separate influence of externally applied and internally generated electric and magnetic
fields. The approach is based on the fundamental laws of continuum mechanics and thermodynamics with all
assumptions clearly stated and consistently applied. The resulting second order EMHD model allows for non-linear
electric and thermal conduction and electromagnetic stress within the medium. The new model is therefore superior to
the existing EMHD models and represents a tractable set of equations suitable for detailed numerical discretization and
integration. 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study of fluid flows under the influence of the
externally applied and internally generated electric
and magnetic fields is often called electromagneto
dynamics of fluids [1], clectromagneto fluid dy-
namics [2,3], electromagneto hydrodynamics
(EMHD) [4-6], magneto-gas dynamics and plasma
dynamics [7], or the electrodynamics of material
continua [8]. To reduce the complexity of the
model for this phenomenon, the analytical models
have traditionally been simplified into electrohyd-
rodynamics (EHD) and magnetohydrodynamics

* Corresponding author. Tel: + 1-817-272-7376; fax: + 1-
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(MHD), ie. the study of flows containing electric
charges under the influence of an externally applied
electric field and negligible magnetic field and the
study of flows influenced only by an externally
applied magnetic field without electric charges in
the fluid [9-11]. The existing EHD and MHD
models often represent unacceptable oversimplifi-
cations of the actual combined electromagnetic ef-
fects [3]. More recently, rigorous continuum
mechanical treatments of unified electromagneto
gas dynamic (EMGD) [12] and EMHD flows
[3-6,13,14] have been developed. These ap-
proaches are limited to non-relativistic, quasi-
static, or relatively low-frequency phenomenon
[15,16]. The existing EMGD model is extremely
complex and requires a large number of physical
properties of the fluid, most of which are still
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Nomenclature

B ( = po(H + M)), magnetic flux density, kg A~ 's~?
Bo reference value of B, kg A™! 72

¢ ( = 3 x 10®), speed of light in vacuum, m s~ '

C, specific heat at constant pressure, K ™' m? s 72

d { = 3[(Vv + (Vv)]}, average rate of deformation tensor, s~
D = 2 + v+ V |, material derivative, s}

Dt ot

D ( =¢E + P), electric displacement vector, A s m ™2
E electric field intensity, kg ms™* A™!

E, reference value of E, kgm s~ A™!

E (= E + vxB), electromotive intensity, kg m s> A™"
f mechanical body force per unit mass, m s~ 2

Fem electromagnetic body force per unit volume, kg m™? s~ 2
g acceleration due to gravity, m s~ 2

H magnetic field intensity, A m ™!

1 unit tensor

J (=J. + g.v), electric current density, A m~?

J. electric conduction current, A m~?2

L reference length, m

M total magnetization per unit volume, A m ™'

M ( =M + v x P), magnetomotive intensity, A m ™"

p pressure, kg m™! s 2

P total polarization per unit volume, A s m~>

qe total electric charge per unit volume, A s m™?*

q conduction heat flux, kg s 3

Oh heat source per unit volume, kg m™' s>

s entropy per unit mass, m> kg ' K~ 1572

t time, s

t ( = ¢l + 1), Cauchy stress tensor, kgm ' s7?

T absolute temperature, K

T, reference temperature, K

AT reference temperature difference, K

i internal energy per unit mass, m? s~ 2

v fluid velocity, m s~ !

|4 reference speed, m s~ !

Greek symbols

Ji] ( = goto V?), square of electro-magnetic Mach number
€ electric permittivity, kg™! m~* s* A?

€o (= 8.854 x 1072, electric permittivity of vacuum, kg~' m ™ s* A?
€ ( = &oy.), polarization electric permittivity, kg~' m™ 3 s* A2
& ( = ¢/gy), relative electric permittivity

€kim permutation symbol

® modified hydrostatic pressure, kg m ™! s™2
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0 fluid density, kg m~?

T deviator part of stress tensor, kg m~ s~

0 dimensionless temperature

U magnetic permeability, kg m A ?2s7?

o ( = 47 x 10~ 7), magnetic permeability of vacuum, kgm A™? 577

He (= p/1o), relative magnetic permeability

Hen ( = po/ys), Magnetization magnetic permeability, kgm A™? s ™2

1B (=1 — u '), magnetic susceptibility based on B

Ye (=& — 1), electric susceptibility

¥ (=i — Ts — E+P/p), generalized Helmholtz free energy per unit mass, m* s~ >

unknown. Even in the case of EMHD (incompress-
ible fluids under the influence of combined electric
and magnetic fields) the existing models are not
simple and are not fully consistent with the general
EMGD model. Dulikravich and Jing [5,6] have
shown that a compact vector form of the unified
EMGD system can be written as a combination of
Maxwell’s electromagnetic subsystem and the
Navier-Stokes fluid flow subsystem. Nevertheless,
their version of the EMGD and ecspecially of
EMHD is not fully consistent with the most general
version obtained by Eringen and Maugin [12]. In
addition, the inconsistent models allow only for
linear polarization and linear magnetization of the
fluid.

The objective of this paper is to summarize the
most general EMGD analytical model, develop
a rational second-order approximation to the
EMGD model, and finally to develop a fully consis-
tent EMHD model. The new model should super-
cede the existing inconsistent EMHD model [6]
and be acceptable for numerical discretization and
integration. The consistent simplification of the
EMHD model will also be performed using non-
dimensionalization of each term in the governing
equations.

2. General balance laws

The firm foundations of the EMGD theory were
formulated by Eringen and Maugin [12], based on
continuum mechanics. The general set of balance
laws governing single-phase EMGD and EMHD

flows consist of two groups of equations. One
group is for the electromagnetic field, the other is
for the thermomechanical field. This set should be
supplemented by the material constitutive equa-
tions.

The electromagnetic balance laws are represent-
ed by the Maxwell’s equations. Using a vector
operator form, the Maxwell’s equations can be
written in the rationalized MKS system as follows:

V:D =g¢q. (Gauss law), (1)
V-B =0 (conservation of magnetic flux), (2)
B
VXE = — % (Faraday’s law), (3)
oD
VxH= ¥ +J (Ampere-Maxwell’s law).  (4)
¢

This set of equations defines the divergence and
curl of the electric and magnetic field. It is well
known that a vector field can be completely deter-
mined if its divergence and curl are known. The
relations between flux density and field intensity
vectors in the polarizable and magnetizable me-
dium are given by

D =¢,E + P, (%)
B = po(H + M). (6)

Polarization and magnetization strongly depend
on the material and can be estimated from the
constitutive equations. The electric charge conser-
vation equation is derived from a combination of
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Gauss’ law and Ampere-Maxwell’s law as

-

Me Ly.g=o. )
ot

This equation accounts for all types of charged
species together since charge transport takes place
by charge carrier motion and by charge jumping
from one carrier to another.

The balance laws of the thermomechanical field
are comprised of three conservation laws and the
second law of thermodynamics. The equations of
conservation of mass, linear momentum, and en-
ergy are expressed as

op

a0 +V:(pv)=0, 8)

ﬂ% =Vt + pf + F™, ©)

p% —t:d+0, +V-q+pF:-D(pT_th)
_1\7[.%: +J.-E, (10)

respectively. Here, the electromagnetic body force
per unit volume is given by

F" = ¢.E + JxB + (VE)-P + (VB)*M
+ V[v(P x B)] +£(P><B). (11)

The final balance law comes from the second law of
thermodynamics. This is represented by the
Clausius-Duhem (C-D) inequality

Ds _ -
b5~ VAT ' —T710, >0, (12)

By using the energy conservation (Eq. (10)), and by
introducing the generalized Helmholtz free energy,

Y=ia—Ts—p 'E-P, (13)

the C-D inequality can be rewritten as

DY DT
Py = —p<‘ +s—>+t:d+ T 'q-VT

Dt Dt
p.DE M-DB+J E>0 (14)
D¢ Dt ©TT

3. Constitutive equations
3.1. General constitutive relations

In order to completely determine the electromag-
netic and thermo-mechanical fields, the balance
laws must be supplemented by the constitutive
equations, since the number of unknowns is larger
than the number of balance equations. Given the
mechanical body force and the internal heat source,
additional information about the polarization and
magnetization, stress tensor, electric conduction,
and conduction heat transfer are required. The
most general theory of constitutive equations, relat-
ing the electromagnetic and thermomechanical ef-
fects, has been developed by Eringen and Maugin
[12] using a continuum approach. Since the sec-
ond-order model starts with the general non-linear
theory, some of the essentials will be reproduced
here.

For simple rate-dependent, memory-indepen-
dent, and isotropic fluids, the set of independent
variables for the constitutive relations can be
chosen to be d,E,B,VT and T, p. In other words,
any field variable (scalar, vector, and tensor) which
must be defined by a constitutive relation can be
represented as a function of these variables. There-
fore, ¥ takes the form

¥ =%¥(d,EBVT,T,p), (15)

where the assumption of a medium with purely
instantaneous response has been also made [17].
Similar equations with the same arguments are
valid for the stress tensor, electric conduction cur-
rent vector, etc.

Substitution of Eq. (15) into Eq. (14) yields an
implication of the following restrictions on the con-
stitutive equations:

oV o o
—_ = —— = § = — —
od ~ ovT o1’
N . oV
= — — = — ——— 16
P P35 M 35’ (16)

py=t:d+J.-E+ T 'q-VT =0, (17)
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where the deviator part of stress tensor and the

modified hydrostatic pressure are defined by
ik g
t=—ol+1, (p:ngp" (18)

The first two terms of Eq. (16) imply that ¥ is
independent of d and VT. Then, the only possible
dependence of the free energy upon E and B is
through its scalar invariants defined by

I,=E-E, I,=B-B, I =(E-B)>. (19)

Consequently, the general form of free energy (Eq.
(15)) changes into

IP:LP(11512713’T9p)' (20)

From Egs. (16} and (20) the polarization vector and
magnetomotive intensity vector can be found as

v Y 4

= —2(5—E + —(E-BB
P 2p<allE+813(E ))

= goy.E + A(E-B)B, (21)

_ FE .
M= -2 B+ (E-BE
p<512 +ar, B )

= 8g |\ XE-B)E. (22)
Ho

Here, notice that %, g, and 4 are general functions
of I,-1; and T, p.

Using a similar reasoning, the symmetric devi-
ator stress tensor for a non-linear fluid, which is
defined by Eq. (18), can be expressed as (similar to
that in Ref. [12], pp. 177-178)

t=ool + o,;d + a,d* + 1 EQE + «,B®B
+asVTQVT + oo (E®d - B
+ o (ERd?* E) + ag(VT®d-VT)s
+ 0o (VT ®d?*VT)s + ayo(d- W)
to  Wod-W + a,,(d? - W
+ o3 (W-d-W3g + o, (EQVT)s
+ o15s(W-EQW-E) + 2, (EQW - E)g
+ o2 (W-EQW? - E)q
+ o s(W - VT)QW:-VT) + o, VIRW - VT)

+ o20(W-VT)®(W? - VT))s
+ 0z (A (EQVT — VI QE))
+ 02, (W-(EQVT — VT QE))s. (23)

In this expression, W is a skew-symmetric tensor
defined by, W, = &qmBn, and the subscript
S means the symmetric part of a dyadic. Electric
conduction current and conduction heat flux in the
most general case can be expressed as

J.=0,E+0,d'E+03;d*E +0,VT
+065d-VT + 64d*-VT 4+ 5,ExB
+ 0gVT xB + oo(d-(ExB) — (d- E)x B)
4+ 0,0(B-E)B 4 0,,(B-VT)B
+ 01,(d* (VT xB) —(d-VT)B), (24)
q=1,VT + 1,d-VT + 1;d?- VT + ki, E
+ ksd E 4+ k¢d* E + k,VT xB
+ kg EXB + ko(d- (VT xB) — (d+VT) xB)
+ k10(B*VT)B + x;;(B-E)B
+ k12(d-(ExB) — (d-E)x B), (25)

respectively. All of the physical properties of the
media in Egs. (23)-(25) are functions of the scalar
invariants and thermodynamic states. Specifically,

w =o(ln, T,p), o5 =0;(,T,p)

K5 =151, T, p)

(i=0,1,...,22,j=12,...,12, n =12, ..., 27).
(26)

The irreducible set of joint scalar invariants,
which can be constructed from d, E, B, VT, includ-
ing the three already defined by Eq. (19), consists of
27 invariants:

I, =tr(d)y=V-v, Is=tr(d?), I, =1tr(d’),
[, =VT-VT, Iy =E-VT, I, =E-d-E,
lio=E-d**E, I,, =VT-d-VT,

I,, =VT-d*-VT, I,; =B-d-B,
[,,=B-d*B, I,s =B-(d-B)x(d*B)),
li6 =(B-VT)? I,, =E-d-VT,

Iig =E-d*-VT, I,, =E-(VT xB),



714 Hyung-Jong Ko, G.S. Dulikravich | International Journal of Non-Linear Mechanics 35 (2000) 709-719

Io = (E-BYVT-B), I; =E-Bx(d-E),

I,, =VT-Bx(d:VT)), I, =E:-(Bx(d’ E)),
I, = VT -Bx(d*-VT)),

Is :(E'B)E'(Bx(d'B))»

I, =(VT+B)VT - (B x(d-B)),

I, =E:Bx(d-VT)) + VT (Bx(d-E)). (27)

3.2. Second-order theory of constitutive equations

Because so many joint invariants are involved in
the constitutive equations for the stress tensor, con-
duction current, and heat flux vector, they cannot
be used in the general form for practical applica-
tions. While the linear theory is relatively simple
[6], it is inconsistent and inappropriate for cases
where non-linear and/or cross effects are impor-
tant. The typical examples are found in electror-
heological (ER) or magnetorheological (MR) fluids.
For the ER case, there is a recent continuum mech-
anical treatment by Rajagopal and RuZicka [18],
who developed a model for the ER materials within
the very general framework of an electromechani-
cal theory.

A fully consistent non-linear combined EMHD
model, with a somewhat reduced complexity, may
be called a second-order theory. The underlying
assumption is that the electromagnetic fields, rate
of strain, and temperature gradient are relatively
small. More precisely, the following two assump-
tions will be made in the constitutive equations.
First, only the terms up to second order in
d,E,B,VT will be retained. Second, terms of sec-
ond order and higher in d will be neglected as in the
case of conventional Newtonian fluids. The ap-
plication of these assumptions to the general form
of the previous section causes the constitutive equa-
tions for ¥, P, M, and @ to simplify as follows:

1
¥ =W, 1,,T,p) = Vo — —<goxe11 + —X312>,
2p Ho

(28)
a\P 2 2
o=p—2 - £op ?(?‘<&>11 — L_0_<X_B>12
dp 2 dp\p 2uo0p\ p
=¢o + e + Pm; (29)
R A B
P=trE=¢E M=22B-_" (30)

Ho Hm

This indicates a medium with purely instantaneous
response [17]. Here, Wy, ..,z and ¢q,0./1,,
©m/I, depend on T and p only. By the same rea-
soning, the deviator part of the Cauchy stress ten-
sor, electric conduction current, and conduction
heat flux can be consistently simplified as follows:

T = (oo + o1y + tgadz + 0galy + g1,
+ aog gl + o0yd + 1 EQE + 0, BB
+ asVTRVT + ayo(dW)s + a,,(EQVT),
(31)
Jo=(0, + 0 )E + 0,dE + (6, + 64, 1,)VT
+065d-VT + 0,ExB + 64VT x B, (32)
q = (k1 + K16d4)VT + 120 VT + (k4 + K40 4)E
+ ksd*E + x,VT xB + kg E x B. (33)

Here, all coefficients denoted with a, o, k are general
functions of T and p. Note that Eq. (18) still holds
with Egs. (29) and (31).

The possible restrictions imposed on the coeffi-
cients can be sought through the C-D inequality.
First, one of the immediate implication of Eq. (17) is

t=0whend=0, E=0,VT =0. (34)
From Eq. (31) it follows that this implies
Apgo = Uga = 0, Ay = O (35)

Hence, when d, E, B and VT are not zero, the non-
negative irreversible entropy generation function
can be computed as

py = {oyd:d + ao4(tr(d))?} + {o,(E-E)
(T ')y + 0 )E-VT)+ T ' (VT-VT)}
+ (o3 + o) E-d-E) + (a5 + T k,)
X(VT+d-VT) + a;o(d-W)s :d
+ {(001 + o16)E-E) + (2os + T *x4p
+ 0a)EVT) £ (607 + T K1)
x (VT -VT)itr(d) + (214 + T 'ks + 05)
x(E-d-VT) 4+ (T 'kg — 5)VT - (E xB).

(36)

Note that the two expressions in braces of the
first line are quadratic in d and E, VT, while each of
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the remaining scalar terms are cubic in d, E.B,VT.
In order that this function should be non-negative
definite for any values of d, E, B, VT, the following
relations among the physical properties must be
satisfied [12,13]:

0y 2 O., 30(04 + o > Oa 73] 2 09 K1 > Oa

(T71K4 + 0'4)2 < 4T_1K10'1,

4y = — 0y, as=—T "k5, ao=0,

Opy = — O1py Xog = — T41K4b — O4b>

Oo7 = — T 'Kip, %ia = — T 'vs —o0s,

s = T iy, (37)

Therefore, the final expression for the deviator part
of the Cauchy stress tensor simplifies to

t= — (o] —0oals + T 'K1ul4
+ (T ')ap + ap) s + a,d — 0, EQE
— T ', VTQVT — (T 'ks + a5 E®VT)s.
(38)

There is a slight change in the expression for the
electric conduction current from Eq. (32) into

Jo=(0, + 0o )E + 0,d-E+ (04 + 04 Ia)VT
+0sd"VT + 0-ExB 4+ T~ 'kgVT x B, (39)

while the conduction heat flux, Eq. (33), remains
unchanged.

3.3. Constitutive equations for incompressible flows

In the case of an incompressible fluid, all terms
that contain I, = ( = ti{d) = V+v) reduce to zero.
This means that in electromagneto hydrodynamics
(EMHD) there is no dependence of physical prop-
erties upon density. The equation for the modified
hydrostatic pressure ¢ can be written as

cLpy L B
E-E)+—(B‘B
3 > )+2N0( )

=P+ pe + Pm> (40)

while the expressions for the polarization and mag-
netization (Eq. (30)) remain unchanged. Similarly,

the deviator part of the stress tensor and conduc-
tion vectors reduce from Egs. (38), (39) and (33) to

t=2u,d — 6, EQE — T ', VT ®VT

— (T 'ks + a5} E-VT)s, (41)
J.=0,E+0,d'E+06,VT +0:d-VT

+0,ExB+ T 'kgVT xB, (42)
G=w,VT +1,d"VT + «,E + xsd-E

+ r; VT xB + ngE xB. (43)

Here, the coefficient of fluid viscosity is defined as
i, = o1 /2. Notice that in the EMHD, the physical
properties of the media, y., xs; ;01,02,04,05,07;
Ky,Ka,Kq,Ks,K7,Kg, can be either constants or
functions of temperature only. The pressure, p,
must be determined such that the incompressibility
condition, V-v = 0, should be satisfied everywhere
in the flow-field. The magnetic field intensity H and
the total magnetization vector M can be readily
determined by substituting Eq. (30) into Eq. (6).

4. Non-linear EMHD model
4.1. Governing equations

A full system of governing equations for the
incompressible flows under the combined effect of
electromagnetic forces is described in this section
by using the constitutive equations which have
been derived through the second-order theory.

A slight modification, which is called the Bous-
sinesq approximation, of the conservation laws is
needed to be compatible with incompressible flows.
In the Boussinesq approximation, the variation of
density is kept only in the gravity force of the
momentum equation. A linear dependence of den-
sity on temperature is assumed there. If the thermal
buoyancy is the only mechanical body force acting
on the fluid, the linear momentum equation can be

rewritten as
Dv .
D = p MVt + F™) — gl — T — To)lis. (44)

Here, o is the coefficient of thermal expansion of the
fluid, and i, is the unit vector directing vertically
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upward. It is a common practice to neglect the
thermal buoyancy, and to use « = 0 in forced con-
vection studies. For incompressible flows, the en-
ergy conservation (Eq. (10)) can be rewritten in
terms of temperature, T, as

DT Dp . DP
—— =-— +t:d . E-—
pC,,D[ Dt+ +0n+Veq+ Di
- DB -
—M-— + J.-E. 45
or T (43)

By substituting the relevant constitutive equations
into all balance laws, the following system of gov-
erning equations can be obtained.

Maxwell’s equations (Egs. (1)-(4)):

V- (eoE + ¢,E) = q., (46)

V-B=0, 47)
‘B

- — 48

VxE o (48)

B .
V><<—|—gpv><E>
U

G, N N
= =(6oE + &,B) + q.v + 0, E

+O'2d'E+ O'4VT+O'5d'VT
+ 0, ExB+ T 'kVT xB. (49)

Navier-Stokes equations:

V-v=0. (30)
Dv :
poy = — PILL — T — To)lis = Vip + pe + pm)

+ V- (u (V¥ + VV)) — V+ (0, (EQE))

— VAT 'y (VIRVT) — V(T ks

+ 05 E®QVT)) + q.E + 6, ExB
+0,d*ExB + 0,VT xB +05d-VT xB
+0,(ExB)xB + T 'kg(VT x B)x B

+ &,(VE) E + (VB)-<E — £,V X F:)

m

+ g-t(gp(ﬁ x B)). (51)

DT &
PCPE =0n + V(K1 VT + 1,d VT + , E

+K5d'E+K7VT><B+K8E-B)

+ 0, B-E+ o, E-VT —K—;VT~d-VT

- =F d-VT + —E-(VT xB)

. De,E) B DB

E--r~ .7 2
* Dt Un Dt (52

In the above system, the equation of electric charge
conservation is omitted because it can be readily
obtained by combining the first and fourth of the
Maxwell’s equations. The viscous dissipation term
and the unsteady pressure term on the right side of
the energy conservation (Eq. (52)} have been ne-
glected, as is usually done in incompressible viscous
flow modeling [19].

4.2. Non-dimensionalization and dimensionless
parameters

Because of the extreme complexity of the com-
plete, non-linear, fully coupled EMHD model, it is
practically impossible at the present time to con-
template development of a numerical simulation
package for its integration. Consequently, the com-
plete general EMHD model should be simplified
for particular circumstances. This simplification
must be performed in a consistent manner starting
from the general EMHD model. Elimination of
certain terms could be justified by an order of
magnitude analysis that is most efficiently accomp-
lished by performing a complete non-dimensional-
ization of the model.

Thus all flow-field, electric field, and magnetic
field parameters and all physical properties will be
non-dimensionalized. The reference length and ve-
locity are denoted by L and V, respectively. The
reference time will be defined by the ratio, L/V.
The reference values of the pressure, electric
field, and magnetic flux are taken to be pV? Eg,
and B,, respectively. Temperature, however, is
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non-dimensionalized by the equation

T-T,

AT (53)

Additional reference values for each parameter will
be designated with a subscript R. The field vari-
ables and material properties with a prime " denote
the corresponding non-dimensionalized values. For
example, the magnetic flux B and the electric per-
mittivity & can be represented as B = BoB’ and
&= &gé.

Non-dimensional forms of the governing equa-
tions (Egs. (46)-(52)) for the complete EMHD
model are presented next, followed by a set of
dimensionless parameters. There is no restriction to
the temporal and spatial variation of the material
properties, such as conduction coefficients, electric
permittivity, and coefficient of viscosity.

A very important parameter that will be helpful
in the elimination of a number of terms in the
EMHD model is the squared ratio of the reference
fluid speed and the speed of light, that is, square of
the electromagnetic Mach number,

2

Vv
ﬁ=£0y0V2=7<1. (54)

This parameter assumes an extremely small value
for incompressible flows. For example, 8 ~ 10~ '*
when V = 20 m/s. This is the typical upper bound
for the speed of an aqueous solution at room tem-
perature and atmospheric pressure, in order to
avoid cavitation.

Also, two additional dimensionless quantities
will be introduced for compactness,

e=FE + Ngv xB, © =14 N0 (55)

Then, the non-dimensionalized Maxwell’s equa-
tions for EMHD model are

V- (¢E) + Ng&, V' (e,(v x B')) = Nqe, (56)
V'-B =0, (57)
OB’
VxE = — Ng—
X B at, 3 (58)

’

B
NV o+ Bl 7o V' X (v €)

a i ’ - a / ’ ’
= P, &, [ﬁ(SE) + NBepa(ap(v x B'))

+ Nq(Q’eV’)} + Noi(o1€) + Noa(o2d - e)

+ Noa(04V'0) + Nys(osd - V'O)
+ N,-(chexB) + Ny N gk O (VO x B).
(59)

Non-dimensionalized Navier-Stokes equations for
the EMHD model are

Vv =0, (60)
DV é(eve) BB
= = VP =N V[ N,V

Dr P < 2 > 5V< 240, >

) 1
— Fr (1 = aAT Ok + o=V [V

+(VV))] — K, V' (02 e®e)

— KNV (@ 'L, VIRV)

— Kes NtV (O 5 (e®@V'0)s)

— K,s V' (05(e®@V')s) + Neolg.e)

+ K (c1exB) + NgK,,[o5(d - e) x BT]
+ K 4@, V'O xB) + NgK,5

X (s (d' - V'0) x B) + K,-(c(e x B) x B)
+ N Nt® Hks(VOx B) x B)

+ Ne&p(VE)-e + (VB)- <Nm5%

m

D
— NNV x e)> + NBNesa(s;,(e x B)).
(61)

D6

Cym = Na.0h + Pe V- (1 V'0)
+ N,V (xhd V') + N V- (k4e)

£ NV (ks v e) + N V(65 V0 B)

+ NV (kgexB)+ A, 01(e-e)
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+Aa40:‘,(e°vlﬁ) — NKzNT(aﬁlK,Z
X(VO-d' - V'0) — NosNy®~ 'ics(e- d'- V'6)
+ NogN© (e (V0 x B))

Depe) . B DB

ENC\- * - -
EeNee Ty L D

(62)

Note here that the electromagnetic field contains
only three unknowns: E', B’, and q..

The non-dimensional parameters appearing in
the system of equations (Egs. (56)-(62)) are

VB AT e L
NB = 0’ NT ETEE p — fﬂ, Nq = o >
E, To £R trEg

N, =0, g VL = magnetic Reynolds number,

o ATV
NUZ =02, :uRVZa Na4 = Ls
Ey
Js ,URATVZ
Noys =————, N, =0, mxBoVL,
5 EoL 7 7. Hr Do
< Kg irVBog N fon E}
k8 — T o es 2
EO pV
Bt V
Npy = ——, Fr=—= = Froude number,
PV i, JyL
VL o, E2
Re = P = Reynolds number, K,, = LZQ,
ve pV
_KZRAT _KSREO _O'SRE()AT
VALY T T AL T VAL
e Eo L
Ne¢, = q;(;— = Coulomb number,
oV
1. EoBoL 04, BoAT
Ko'l = 5 s o4 = T 1,3 >
pV pV
(77REOB(2) Kg, Bé
Ky =——5— Kg = 3 s
pV oV
_ QhkL
Q. — T ’
pCp ATV
(C, VL
Pe = £2m 75 _ peclet number,
KIR

Ky Ka EO
NK :‘_—‘R——’ NK :_R——5
2T pC, LY TN T pCL ATV
Nyg = fsBo o Ka B
pC,o ATL pCp VL
NKS = KSREOBO ) Aal = O-IRE(Z)L >
pC, ATV pC, ATV
04 E v?
A, = ﬁ Ec = CLAT = Eckert number.

(63)

5. Conclusions

Starting from very general fundamental prin-
ciples and material constitutive relations, a com-
plete analytical model (EMGD) was outlined for
combined influence of unsteady electric and mag-
netic fields in a moving fluid that is polarizable and
magnetizable. A simpler model of the EMGD was
then derived by neglecting the terms which are
higher than the second order in the original com-
plete EMGD model. Finally, a complete analytical
model for the incompressible flow-field under the
combined influence of unsteady electric and mag-
netic fields (EMHD) was derived in a consistent
manner. The EMHD model allows for non-linear,
cross effects of electromagnetic field and clearly
specifies which physical properties need to be
known for the successful modeling of such flows.
The EMHD model was also represented in its
non-dimensional fully consistent form.
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