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A finite element method formulation for the detection of unknown steady boundary
conditions in heat conduction and linear elasticity and combined thermoelasticity con-
tinuum problems is presented. The present finite element method formulation is capable
of determining displacements, surface stresses, temperatures, and heat fluxes on the
boundaries where such quantities are unknown or inaccessible, provided such quantities
are sufficiently overspecified on other boundaries. Details of the discretization, linear

system solution techniques, and sample results for two-dimensional problems are pre-

sented.

Introduction

It is often difficult and even impossible to place temperature
probes, heat flux probes, or strain gauges on certain parts of a
surface of a solid body. This can be either due to its small size or
geometric inaccessibility or because of the hostile environment on
that surface. With an appropriate inverse method these unknown
boundary values can be deduced from additional information that
should be made available at a finite number of points within the
body or on some other surfaces of the solid body. In the case of
steady thermoelasticity, the objective of an inverse boundary con-
dition determination problem is to deduce displacements, tractions,
temperatures, and heat fluxes on any surfaces or surface elements
where such information is unknown. This represents a multidisci-
plinary (combined heat conduction and linear elasticity) inverse
problem. A separate problem of inverse determination of unknown
boundary conditions in steady heat conduction has been solved by
a variety of methods (Larsen, 1985; Martin and Dulikravich,
1996a; Hensel and Hills, 1989). -Similarly, a separate inverse
boundary condition determination problem in linear elastostatics
has been solved by different methods (Maniatty and Zabaras,
1994; Martin et al., 1995).

Our objective is to develop and demonstrate a novel approach
for the simultaneous determination of both thermal and elasticity
conditions on parts of a solid body surface. It should be pointed out
that the iterative method for the solution of inverse problems to be
discussed in this paper is entirely different from the noniterative
approach based on boundary element method that has been used
separately in linear heat conduction (Martin and Dulikravich,
1996a) and linear elasticity (Martin et al., 1995). Moreover, the
current method has nothing in common with a more familiar
inverse shape design problem (Kassab et al., 1994; Martin and
Dulikravich, 1996b).

For inverse problems, the unknown boundary conditions on
parts of the boundary can be determined by overspecifying the
boundary conditions (enforcing both Dirichlet and Neumann-type
boundary conditions) on at least some of the remaining portions of
the boundary, and providing either Dirichlet or Neumann type
boundary conditions on the rest of the boundary. It is possible,
after a series of algebraic manipulations, to transform the original
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system of equations into a system which enforces the overspecified
boundary conditions and includes the unknown boundary condi-
tions as a part of the unknown solution vector. This formulation is
an adaptation of a method by Martin and Dulikravich (1996a) for
the inverse detection of boundary conditions in steady heat con-
duction and by Martin et al. (1995) for finding unknown boundary
tractions and deformations in elastostatics using the boundary
element method.

The main novelty of the current method is that it is capable of
treating heat conduction and linear elasticity simultaneously (Den-
nis and Dulikravich, 1998a, b). Specifically, it represents an ex-
tension of the conceptual work presented by the authors (Dennis
and Dulikravich, 1998a) by adding several regularization formu-
lations. It also represents a more complete version of the work
presented recently (Dennis and Dulikravich, 1998b).

Analytical and Numerical Formulation

When analyzing steady-state elasticity problems, either dis-
placement vectors or surface traction vectors are specified every-
where on the boundary of the object. This way, one of these
quantities is known, while the other is unknown at every point on
the boundary.

When performing an inverse evaluation of the steady-state elas-
ticity problem, both displacement vectors and surface traction
vectors must be specified on a part of the body surface, while both
are unknown on another part of the surface. Elsewhere on the body
surface, either displacement vectors or surface traction vectors
should be provided. The surface section where both displacement
vectors and surface traction vectors are specified simultaneously is
called the overspecified boundary.

Finite Element Method Formulation for Thermoelasticity.
The Navier equations for linear static deformations u, v, w in
three-dimensional Cartesian x, y, z coordinates are
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Galerkin’s method the weight matrix and the interpolation matrix
are equal, [N] = [V]". If the matrix [B] is defined as

[B] = [L][N] (18)

then the substitution of the approximation functions (17) into the
weak statement (12) creates the weak integral form for a finite
element expressed as

J [BI'[CI[BI{8}d2 —j [B]'[CHeotd —J (N1} Q

- f [NIH{T}dT = 0. (19)
I

This can also be written in the matrix form as

[K1{8} = {1} (20

For thermal stresses, the initial elemental. strain vector, €,, be-
comes

{eg} =LlaA® aA® «A® 0 0 0] (21

The local stiffness matrix, [K], and the force per unit volume
vector, { f}, are determined for each element in the domain and
then assembled into the global system

(K8} = {1}. (22)

After applying boundary conditions, the global displacements are
found by solving this system of linear algebraic equations. The
stresses, {’}, can then be found in terms of the displacements, {5},
as

{o} = [CIIL){8} - [CKeo} (23)

Finite Element Method Formulation for Thermal Problem.
The temperature distribution throughout the domain can be found
by solving Poisson’s equation for steady linear heat conduction
with a distributed steady heat source function, S, and thermal
conductivity coefficient, k.

az®+az®+az® _ "
axt ' ay? o az%) 24

Applying the method of weighted residuals to (24) with a weight
function, ¢, over an element results in

3’0 40 3@ S 40 -0
W+W+3z—2_; $d) = 0. (25)
Q

Integrating this by parts once (25) creates the weak statement for
an element

ddp 3O 9P 90 ad)a@))

=J NiSdQ—f N(Q-#)dQ. (26)
Q r

Variation of the temperature across an element can be expressed
by

G(xa Y, Z) = 2 Ni(xv Y, z)®i~ (27)

i=1
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Using Galerkin’s method, the weight function ¢ and the interpo-
lation function for ® are chosen to be'the same. By defining the
matrix [E] as

aN, aN, N,
ax  dx o dx
aN, 9N, N,
[E]= S oy ey | (28)
dN, N, N,
9z ez oz

the weak statement (26) for a single element can be written in the
matrix form as

[K1{0} = {g} (29)

where

[Kc]e=f KE]TE]dQ* (30)
a

{0} = —f S{N}dﬂf+f Q{N}dI*. G
0

r

The local stiffness matrix, [K,]°, and heat flux vector, {Q}°, are
determined for each element in the domain and then assembled
into the global system

(K]){8} = {0} (32)

Direct and Inverse Formulations

The above equations for linear elastostatics and steady heat
conduction were discretized separately by using a Galerkin’s finite
element method. This results in two linear systems of algebraic
equations,

(K1} = {}. [K.]{®}={g} (33)

These systems are large, sparse, symmetric, and positive definite.
Once these global systems have been formed, the boundary con-
ditions can be applied. For a well-posed (analysis or direct) prob-
lem, the boundary conditions must be known on all boundaries of
the domain. For heat conduction, either the temperature, ©, or the
heat flux, Q, must be specified at each point of the boundary. For
elasticity, the displacement vector components, u,, v,, w,, or the
surface traction vector components, T,,, T,,, T,,, must be specified
on the entire boundary.

Consider the linear system (29) for steady heat conduction on a
quadrilateral finite element with boundary conditions given at
points 1 and 4.

K, K K Ky 91 o
Ky Kn Ky KullOl 0, 34
Ky K Ky Kal]|05[ 70 B34)
Ky Ky Ky K| O on

As an example of an inverse problem, one could specify both the
temperature and the heat flux at point 1, flux only at points 2 and
3, and assume the boundary conditions at point 4 as being un-
known. The original system of Eq. (34) can be modified by
grouping all available boundary conditions in a vector on the
right-hand side

KlZ K13 KM 0 ®2 Ql - ®1K1|
Ky Ky Ky O 9, _ 0, - 0K, 35
Ky K Ky O O, " 10:— 0Ky |- G5)
Ky, Ky Ky —1]0s 0 - 0K,

AUGUST 1999, Vol. 121 / 539




The same procedure can be applied to the system matrices for
both steady heat conduction and elasticity in two or three
dimensions. The resulting systems of equations will remain
sparse, but will become unsymmetric and possibly rectangular
depending on the ratio of the number of known to unknown
boundary conditions. The next section will discuss techniques
for solving such systems.

Regularization

Three regularization methods were applied separately to the
solution of the systems of equations in attempts to increase the
method’s tolerance for measurement errors in the overspecified
boundary conditions. Here, we consider the regularization of the
inverse heat conduction problem.

The general form of a regularized system is given as (Neumaier,

1998)
Se-(g. e

The traditional Tikhonov regularization (Tikhonov and Arsenin,
1977) is obtained when the damping matrix, [ D], is set equal to the
identity matrix. Solving (36) in a least-squares sense minimizes the
following error function:

error (@) = [[K.{®} — {Q}I} + IA[DK®}z. 37

This is the minimization of the residual plus a penalty term. The
form of the damping matrix determines what penalty is used and
the damping parameter, A, weights the penalty for each equation.
These weights should be determined according to the error asso-
ciated with the respective equation.

Method 1. This method of regularization uses a constant
damping parameter A over the entire domain and the identity
matrix as the damping matrix. This method can be considered
the traditional Tikhonov method. The penalty term being min-
imized in this case is the square of the L, norm of the solution
vector { x}. Minimizing this norm will tend to drive the com-
ponents of { x} to uniform values thus producing a smoothing
effect. However, minimizing this penalty term will ultimately
drive each component to zero, completely destroying the real
solution. Thus, great care must be exercised in choosing the
damping parameter A so that a good balance of smoothness and
accuracy is achieved.
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Fig. 1 Triangular mesh for an annular disk test case geometry
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Method 2. This method of regularization uses a constant
damping parameter A only for equations corresponding to the
unknown boundary values. For all other equations A = 0 and [D]
= [I] since the largest errors occur at the boundaries where the
temperatures and fluxes are unknown.

Method 3. This method uses Laplacian smoothing of the
temperatures only on the boundaries where the boundary condi-
tions are unknown. A penalty term could be constructed such that
curvature of the solution on the boundary where conditions are
unknown is minimized along with the residual.

V?0,,[12 — min (38)

Equation (38) can be discretized using the method of weighted
residuals to determine the damping matrix, [D].

ID1®.l3 = J (V20,,)%dT = [[K10,l} (39

r

In two-dimensional planar problems, [K.] and [D] can be
thought of as an assembly of the linear or quadratic rod ele-
ments that discretize the boundary of the object where the
boundary conditions are unknown. The main advantage of this
method is its ability to smooth the solution vector without
necessarily driving the components to zero and away from the
true solution.

Solution of the Linear System

In general, the resulting finite element method systems for the
inverse thermoelastic problems are sparse, unsymmetric, and often
rectangular. These properties make the process of finding a solu-
tion to the system very challenging. Three approaches will be
discussed here.

The first is to normalize the equations by multiplying both sides
by the matrix transpose and solve the resulting square system with
common sparse solvers.

(K1TKN8} = (K1} (40)

This approach has been found to be effective for certain inverse
problems (Boschi and Fischer, 1996). The resulting normalized
system is less sparse than the original system, but it is square,
symmetric, and positive definite with application of regulariza-
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Fig. 2 Triangular mesh for a multiply connected domain test case ge-
ometry
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Fig. 3 Computed isotherms with inner and outer boundary tempera-
tures specified

tion. The normalized system is solved with a direct method
(Cholesky or LU factorization) or with an iterative method
(preconditioned Krylov subspace). There are several disadvan-
tages to this approach, among them being the computational
expense of computing [K]'[K], the large in-core memory re-
quirements, and the roundoff error incurred during the [K]'[K]
multiplication.

A second approach is to use iterative methods suitable for
unsymmetrical and least-squares problems. One such method is the
least squares QR method, which is an extension of the well-known
conjugate gradient method (Paige and Saunders, 1982). The least-
squares QR method and other similar methods, such as the con-
Jjugate gradient for least squares, solve the normalized system, but
without explicit computation of [K]7[K]. However, convergence
rates of these methods depend strongly on the condition number of
the normalized system which is roughly the condition number of
[K] squared. Convergence can be slow when solving the systems
resulting from the inverse finite element discretization since they
are ill-conditioned.

Level xx
21 187264
20 175104
18 162945
18 150785
17 138625
16 126465
15 114306
14 102146
13 89986.1
12 778264
11 65666.6
10 535068
413471
291873
170275
4867.78
-7291.99
-19451.7
-31611.5
437713
-56931
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Fig.5 Computed normal stress distribution with inner and outer bound-
ary tractions specified
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P IR T R

0.5 1

Fig. 4 Computed isotherms with outer boundary temperatures and
fluxes specified. Nothing was specified on the inner boundary.

A third approach is to use a noniterative method for unsymmetrical
and least-squares problems such as QR factorization (Golub and Van
Loan, 1996) or singular value decomposition (Golub and Van Loan,
1996). However, sparse implementations of QR or singular value
decomposition solvers are needed to reduce the in-core memory
requirements for the inverse finite element problems.

Numerical Results

The accuracy and efficiency of the finite element inverse for-
mulation was tested on several simple two-dimensional problems
with known analytic solutions. The method was implemented in an
object-oriented finite element code written in C+ +. Elements
used in the calculations were triangles with linear and quadratic
interpolation functions. The triangular meshes were generated by
an automatic Delauney triangulation technique (Shewchuk, 1996).

! I Leval xx

s 21 187263
075k 20 175103
F 19 162944

- 18 150784
05 17 138624

s 16 126454

I 15 114305

025 14 102145
13 899852
12 778254
> o 11 656857
10 535059
9 413462
-0.25 8 29186.5
7 170267
6  4866.96
-0.5 5 729278
4 194525
3 36123

-0.75 2 43772
1 559318

-1
1 PR
-1 -0.5 0 05 1
X

Fig. 6 Computed normal stress distribution with outer boundary trac-
tions and displacements specified. Nothing was specified on the inner
boundary.
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N Level ps
N 18 199429
075 18 193897
- 17 188385
N 16 182823
0.5 s 15 177301
o 14 171769
2 13 166237
025 [ 12 160705
[ 11 155173
> 0k 10 149641
[ 9 144108
[ 8 138576
-025F 7 133044
[ 6 127512
[ 5 121980
-0.5F 4 118448
o 3 110916
[ 2 105384
-0.75F 1 998521
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o Level ps
075 19 199428
- 18 193896
[ 17 188364
05 16 182832
i 15 177300
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[ 6 127512
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3 3 110916
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Fig. 7 Computed principal stress distribution with inner and outer
boundary tractions specified

Three different solution techniques were tested: a sparse QR
factorization (Matstoms, 1991), a conjugate gradient for least
squares method and least-squares QR code, and a CG solver
applied to solving the normalized equations. The two basic test
geometries included a rectangular plate and an annular disk (Fig.
1).

For heat conduction, one analytical test problem consisted of
a rectangular homogeneous plate with uniform temperatures
specified at the opposite boundaries and adiabatic conditions
specified at the remaining two opposite boundaries. The finite
element method solution of this direct problem was-less than
one percent in error compared to the analytical solution. An-
other simple test case was steady heat conduction in an annular
homogeneous disk. In a direct (well-posed) problem a uniform
temperature of 50.0 K was enforced on the inner circular
boundary while a temperature of 10.0 K was enforced on the
outer circular boundary. The temperature field computed with
the finite element method had a maximum error of 1.0 percent
compared to the analytical solution.

Fig. 8 Computed principal stress distribution with outer boundary trac-
tions and displacements specified. Nothing was specified on the inner
boundary.

For elasticity, one analytical test problem consisted of a rectan-
gular homogeneous plate under uniform tension at one end while
having a fixed opposite boundary and zero tractions on the side
walls. The finite element method solution of this direct problem
was less than 1.0 percent in error. Another elasticity test case was
also utilized where an annular pressure vessel was used to test the
finite element method code (Martin et al., 1995). The finite element
method solution of a direct problem was obtained when specifying
tractions on both the inner and outer circular boundaries. The
computed stress distributions were less than 2.0 percent in error
compared to the analytical solution (Dennis and Dulikravich,
1998a).

Next, the combined thermoelastic analysis and inverse problems
were attempted on an annular disk shown in Fig. 1. The outer
circular boundary was constructed with 60 points while 30 points
were used for the inner circular boundary. The triangular mesh
contained 574 nodes and 242 quadratic elements. For the analysis
problem, a temperature of 50.0 K was specified on the outer

0.8

0.6

04

T

[

Fig. 9 Computed isotherms with inner and outer boundary tempera-
tures specified
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Fig. 10 Computed isotherms with outer boundary temperatures and
fluxes specified. Nothing was specified on the inner boundary.
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Level u
25  0.0284947
24 0.0268675
08 23 0.0244402
[ 2 00219128
- 21 00193857
06 20
[ 18 00143311
18 00118038
04 17 0.00827658
3 18 0.00674931
15 000422204
0.2 14 000168477
13 00008325
12 -0.00335877
11 -0.00588704
> OF bbp! ! ' 10 -0.00841431
LA 8 00108416
Preesz LeA5Y 8 -00134688
< § ( < > ) -0.0159961

0.0168584
-0.2

7

8  -0.0185234
5  -0.0210507
4  -0.0235779
3

2

1

&
—25

-04

-0.0261052
-0.0286325

-0.6 -6.0311597

vvrnllrvv|vlvvlyyl||||v|lvvl '

NIY] SN R

Fig. 11 Computed displacements in x-direction with inner and outer
boundary tractions specified

circular boundary and 10.0 K was specified on the inner circular
boundary. Simultaneously, a tensile surface stress of 101.0 kPa
was specified on the outer circular boundary and a tensile stress of
202.0 kPa was specified on the inner circular boundary. The
following material properties were used: E = 2.0 X 10’ Pa, v =
2X 107, 0 =20x%x 107K ", and k = 1.0 Wm™' K" The
computed temperature and stress distributions are shown in Figs.
3,5,and 7.

The inverse problem was then created by overspecifying the
outer circular boundary with the double-precision values of tem-
peratures, fluxes, displacements, and tractions obtained from the
numerical solution of the analysis problem. At the same time, no
boundary conditions were specified on the inner circular boundary
(Martin and Dulikravich, 1996a). A damping parameter of A = 0
was used. The computed temperature and stress distributions are
shown in Figs. 4, 6, and 8. The maximum relative differences in
temperatures, displacements, and stresses between the analysis and
inverse results were less than 0.1 percent when solved with a QR
factorization.

As a second thermoelastic test case, an analysis and an inverse
problem were solved on the domain shown in Fig. 2. The domain

Fig. 13 Computed principal stress distribution with inner and outer

boundary tractions specified

Journal of Heat Transfer

tavel u

25  0.0204947
24 0.0269675
0.0244402
00219128
0.0183857
0.0168584
0.0143311
0.0118038
0.00927658
0.00674831
0.00422204
0.00169477
-0.0008325
-0.00335977
-0.00588704
-0.0084143%
-0.0108416
-0.0134688
-0.0159961
-0.0185234
-0.0210507
-0.0235779
-0.0261052
-0.0286325
0.0311597

08

06

04

0.2
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Fig. 12 Computed displacements in x-direction with outer boundary
tractions and displacements specifies. Nothing was specified on the
inner boundary.

was composed of 16 internal holes, each defined with 15 nodes.
The outer circular boundary was constructed with 250 nodes. The
triangular mesh contained 2310 nodes and 4170 linear elements.

For the analysis problem, a temperature of 1000.0 K was spec-
ified on the outer circular boundary and 50.0 K was specified on
the 16 inner circular boundaries. A pressure of 101.0 kPa was
applied to the outer boundary while a pressure of 202.0 kPa was
applied to each of the 16 inner boundaries. The following material
properties were used: E = 2 X 10°Pa, v=10"", a = 107* K,
k = 1.0 Wm™" K. The computed temperature and stress distri-
butions from this well-posed (direct or analysis) problem are
shown in Figs. 9, 11, and 13.

For the inverse problem, the boundary temperatures, fluxes,
displacements, and tractions obtained from the forward analysis
were specified on the outer circular boundary. No boundary
conditions were specified on any of the 16 inner circular bound-
aries. Regularization method 3 was used. A damping parameter
was A = 1 X 107* when determining the temperature field and
A =1 X 107* was used when computing the displacement field.

158510
161633
147756
143880
140003
136126
132249
128373
124496
120619
116743
112868
108989
105113
101236

Fig. 14 Computed principal stress distribution with outer boundary
tractions and displacements specified. Nothing was specified on the
inner boundary.
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Fig. 15 Average error of predicted temperatures on unknown bound-
aries for regularization method 1 on annular region

The computed temperature and stress distributions from this
ill-posed (inverse) problem are shown in Figs. 10, 12, and 14.
The average relative differences between the numerical solu-
tions of the forward and inverse temperatures, fluxes, displace-
ments, and stresses were less than 0.1 percent when solved
using a QR factorization.

Sensitivity to Input Error

The inverse heat conduction problem on the annular disk and
multiply connected domain problems were tested with simulation
of random measurement errors in the overspecified temperatures
and fluxes. Random errors in the known boundary temperatures
and fluxes were generated using the following equations (Martin
and Dulikravich, 1996a):

®=0,*+./-2"nR @1
0=0,* J-26°InR (42)

For each case, Eqgs. (41)-(42) were used to generate errors in both
the known boundary temperatures and fluxes obtained from the
numerical solution of the forward problem.

For the annular disk case, Figs. 15, 16, and 17 show the effect
of the standard deviation, o, and damping parameter, A, on the
average error of the temperatures recovered on the unknown
boundaries compared to the temperatures given by the forward
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Fig. 17 Average error of predicted temperatures on unknown bound-
aries for regularization method 3 on annular region
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Fig. 16 Average error of predicted temperatures on unknown bound-
aries for regularization method 2 on annular region

solution. Regularization method 3 gave the best results for all
values of o. It produced errors in the unknown boundary condi-
tions of the same magnitude as the inpyt errors in the known
boundary conditions.

For the multiply connected domain case, Figs. 18, 19, and 20
show the effect of the standard deviation, ¢, and damping param-
eter, A, on the average error of the temperatures recovered on the
unspecified boundaries compared to the values given by the for-
ward solution. None of the regularization methods worked well
with this case when simulated measurement errors were applied.
The input errors in the overspecified boundary conditions were
amplified by several orders of magnitude in the temperatures
predicted on the unspecified boundary. These results indicate that
this finite element method inverse method requires better regular-
ization if measurement errors are to be used with complicated
multidomain geometries.

Discussion of Results

All three sparse matrix solvers performed well for test cases
with relatively small number of variables. The QR factorization
was found to provide the highest accuracy in the shortest
computing time. For each of the test problems presented here
the total solution time was less than five seconds on a Pentium
200 MHz PC. However, the QR factorization failed for larger
problems where the number of grid points was greater than
about 2000. This is most likely due to the instability of the QR
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Fig. 18 Average error of predicted temperatures on unknown bound-
aries for regularization method 1 on multiply connected domain
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Fig. 19 Average error of predicted temperatures on unknown bound-
aries for regularization method 2 on multiply connected domain

algorithm when dealing with systems with high condition num-
bers (Golub and Van Loan, 1996). Applying small amounts of
regularization (A > 107'°) to the sparse matrix eliminated the
instability. The CG method applied to the normalized equations
worked well for problems with less than 100 nodes. For more
than 100 nodes, this method required many iterations to con-
verge to a solution less accurate than the QR solution. When
regularization was applied to the sparse matrix, the CG conver-
gence improved dramatically but the QR factorization was still
much faster by comparison. The conjugate gradient least-square
and least-squares QR methods were found to be slow for
problems with more than 500 nodes, but were able to provide
better solutions than those obtained with the CG applied to the
normal equations.

Conclusion

A unified formulation for inverse determination of unknown
steady boundary conditions in thermoelasticity has been devel-
oped and tested numerically using finite element method on
several two-dimensional multiply connected configurations.
The main conclusion is that the type and the amount of regu-
larization used can significantly affect the accuracy of the
results. This is true for the cases with no errors in the over-
specified boundary conditions and for the cases with a random
input error taken into account.
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