T. J. Martin

Graduate Research Assistant.
Student Mem. ASME

G. S. Dulikravich

Associate Professor.
Fellow ASME
FT7@PSU.EDU

Department of Aerospace Engineering,
The Pennsylvania State University,
University Park, PA 16802

Inverse .Determination of Steady
Heat Convection Coefficient
Distributions

An inverse Boundary Element Method (BEM ) procedure has been used to determine
unknown heat transfer coefficients on surfaces of arbitrarily shaped solids. The proce-
dure is noniterative and cost effective, involving only a simple modification to any
existing steady-state heat conduction BEM algorithm. Its main advantage is that this
method does not require any knowledge of, or solution to, the fluid flow field. Thermal
boundary conditions can be prescribed on only part of the boundary of the solid
object, while the heat transfer coefficients on boundaries exposed to a moving fluid
can be partially or entirely unknown. Over-specified boundary conditions or internal
temperature measurements on other, more accessible boundaries are required in
order to compensate for the unknown conditions. An ill-conditioned matrix results
from the inverse BEM formulation, which must be properly inverted to obtain the
solution to the ill-posed problem. Accuracy of numerical results has been demon-
strated for several steady two-dimensional heat conduction problems including sensi-
tivity of the algorithm to errors in the measurement data of surface temperatures and

heat fluxes.

Introduction

A well-posed thermal boundary value problem requires either
temperature or heat flux specified over the entire boundary of
the solid region. When the surface is exposed to a moving fluid,
convective heat transfer coefficients can be utilized as boundary
conditions. Accurate values of the convective heat transfer coef-
ficients are difficult to obtain experimentally because their val-
ues depend strongly on at least twelve variables or eight nondi-
mensional groups (White, 1988). Typical semi-empirical ex-
pressions for prediction of heat convection coefficients represent
curve fits through experimental data for very simple configura-
tions covering only limited ranges of flow-field parameters.
Consequently, in most practical situations, the heat convection
problems are solved by using a single value of the heat convec-
tion coefficient on the entire surface exposed to a moving fluid.

This paper offers an entirely different approach to a problem
of predicting the surface variation of the heat convection coeffi-
cient. The most innovative aspects of this approach are that it
does not require any information about the flow-field and that
it is noniterative. In other words, it is possible to treat the heat
convection coefficient determination problem as an ill-posed
boundary value heat conduction problem where no thermal data
are available on parts of the boundary exposed to a moving fluid.
This approach is capable of utilizing over-determined thermal
measurements involving temperatures and heat fluxes where
they are accessible. These data are then used to predict distribu-
tions of temperature, heat fluxes, and convective heat transfer
coefficients on the boundaries where they are unknown.

A noniterative algorithm has been developed that reliably
and efficiently solves inverse (ill-posed) boundary condition
problems governed by the Laplace equation in two-dimensional
and three-dimensional multiply connected domains having dif-
ferent thermal material properties (Martin and Dulikravich,
1996; Dulikravich and Martin, 1996). An extended version of
this method was also successfully used in solving ill-posed
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problems in two-dimensional elasticity (Martin et al., 1994)
as well as for the determination of heat sources (Martin and
Dulikravich, 1996). This technique is based on the Green’s
function solution method, commonly referred to as the Bound-
ary Element Method (BEM). It is an integral technique that
generates a set of linear algebraic equations with unknowns
confined only to the boundaries. For well-posed problems,
Gaussian elimination or any other standard matrix inverter can
solve the resulting solution matrix. When an ill-posed problem
is encountered, the matrix becomes ill-conditioned. It has been
shown that the proper solution to this matrix provides accurate
results to various steady inverse heat conduction boundary value
problems (Martin and Dulikravich, 1996, 1997). This method
has been shown to suppress the amplification in measurement
errors in the input data while both minimizing the variance in the
output and preventing output bias. The algorithm is applicable to
complex, multiply connected two and three-dimensional con-
figurations.

Numerical Formulation

The governing partial differential equation for steady-state
heat conduction in a two-dimensional solid with a constant
coefficient of thermal conductivity is

kVT = 0. (1

This linear elliptic partial differential equation can be inte-
grated subject to Dirichlet (temperature) boundary conditions,
Neumann (heat flux) boundary conditions, and, when a bound-
ary is exposed to a moving fluid, the Robin (convective heat
transfer) boundary conditions given as

or
—k — = hconv(TII"mv - Tnmb) (2)
onir..

When ill-posed boundary value problems are encountered,
portions of the boundary must be over-specified with both tem-
peratures and heat fluxes, while nothing is known on boundary
Ieonv- Such linear boundary value problems can be solved nonit-
eratively when using the BEM. Consequently, the BEM is more
robust than the widely used iterative numerical solution tech-
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niques. Analytical solutions to the partial differential equation,
in the form of the Green’s function, are part of the BEM solu-
tion. Therefore, high accuracy is expected because introducing
the Green’s functions does not introduce any error into the
solution. In addition, the noniterative nature of the BEM elimi-
nates stability, numerical dissipation, and iterative convergence
problems. This is valuable because iterative procedures for the
solution of inverse problems tend to amplify errors due to ill-
posedness of the iteration matrix thus requiring complex regu-
larization (smoothing) algorithms (Tikhonov and Arsenin,
1977).

The BEM is a standard numerical technique that can be found
in a number of textbooks (Brebbia and Dominguez, 1989).
Consequently, only pertinent concepts will be summarized in
this paper. Since the objective is strictly solving a boundary
value problem, the unknown temperature, T, and the unknown
flux, @, are on the boundary I, that is a part of the overall
boundary I'. The boundary I can be discretized into Ny isopara-
metric boundary elements. Although these test cases will not
be discussed in this paper (Martin and Dulikravich, 1996),
internal measurement points could exist where temperature data
are obtained. The T and Q can vary between the neighboring
end-nodes defining each boundary element. Each boundary ele-
ment can be integrated numerically using a standard Gaussian
quadrature integration formula. Boundary elements containing
a singularity at one end-point can be integrated analytically,
resulting in a set of boundary integral equations, one for each
boundary node plus one for every possible internal temperature
measurement. The resulting discretized form of the BEM can
be represented in matrix form (Brebbia and Dominguez, 1989)
as

[HI{T} = [G]{Q}. (3)

Here, {H] and [G] are full matrices containing geometrically
defined coefficients.

For a well-posed boundary value problem, every point on the
boundary I" is given one Dirichlet, Neumann, or Robin bound-
ary condition and there are no internal temperature measure-
ments. These boundary conditions are then multiplied by their
respective coefficient matrix and collected on the right-hand
side to form a vector of known quantities, { F}. The left-hand
side remains in the standard form [A]{X }. This well-posed
system of linear algebraic equations can be solved for the vector
of unknown quantities { X } on the boundary by any standard
matrix solver such as Gaussian elimination or LU factorization.

If the boundary conditions (T, Q, or A,y ) are unknown on
parts of the boundary or if internal temperature measurements
are included in the analysis, the problem becomes ill-posed. A
solution of this inverse problem of determination of unknown
boundary conditions may be obtained by using a procedure
explained by Dulikravich and Martin (1996) and Martin and
Dulikravich (1996).

In summary, after multiplying the known quantities in the
vectors {T} and {Q} by their respective coefficient matrix

Nomenclature

columns, the products should be collected into the vector of
known quantities, {F}. The unknown boundary values of the
vectors {T} and {Q]} then form a single vector, {X},
multiplied by a highly ill-conditioned coefficient matrix, [A],
which is, in general, not square. The truncated Singular Value
Decomposition (SVD) method (Press et al., 1986) has been
often used to solve this ill-conditioned system of algebraic equa-
tions. Very small singular values of such ili-conditioned matrix
[A] are zeroed out so that those algebraic terms that are domi-
nated by noise and round-off error are eliminated from the
matrix. In order to determine which singular values are to be
truncated, it is necessary to provide a user-specified singularity
threshold parameter, 7syp. One method for determining the
most suitable value of 7gyp has been suggested by Martin and
Dulikravich (1996). Any singular value, whose ratio with the
largest singular value is less than this singularity threshold, will
be automatically zeroed out in the SVD algorithm.

In addition to the SVD algorithm, Tikhonov’s regularization
(Tikhonov and Arsenin, 1977) was also applied in a number
of test cases in this study. The observation was that Tikhonov’s
regularization produces unacceptable levels of global bias when
large regularization parameters are required for a smooth solu-
tion. Tikhonov’s regularization was found to be very effective
when errors were introduced into the surface heat flux measure-
ments (Martin and Dulikravich, 1996).

Results

The equation for the boundary heat flux from the Robin
boundary condition was added directly into the linear BEM
system (Martin and Dulikravich, 1996; Dulikravich and Martin,
1996). The unknown temperatures were factored together with
the other boundary nodal temperatures appearing on the left-
hand side of the BEM matrix equation set. After the ill-condi-
tioned coefficient matrix [ A] has been inverted using the SVD
algorithm, the unknown boundary values of T and Q were ob-
tained from {X } = [A]7'{F}. Once these thermal boundary
values were determined on the boundary T, the convective
heat transfer coefficients were determined from

/(Tlrm = Tam)-
rDoI!V

Here, T, is considered as known. Two test cases were used
to assess the accuracy of the entire noniterative BEM inverse
algorithm and its sensitivity to measurement errors in boundary
temperatures and heat fluxes.

A square flat plate with side lengths of 1 m was subject to
homogeneous Dirichlet boundary conditions (7 = 0°C) on three
boundaries and a Robin boundary condition (k. = 1.0 W
m™2°C™!, Ty = 1.0°C) on the bottom boundary. The thermal
conductivity (k) was 1.0 W m™' °C~'. The analysis or well-
posed formulation consisted of the Dirichlet boundary condi-
tions on the top, left, and right boundaries of the plate, and

aT
hconv = _k -
on

4)

[A] = coefficient matrix multiplying a

vector of unknowns
Bi = Biot number = h,, L/k

{F} =vector of known sources and
boundary conditions

[ G] = BEM coefficient matrix multi-
plying nodal fluxes

h..ay = convective heat transfer coeffi-
cient

[H] = BEM coefficient matrix multi-
plying nodal temperatures

flux 8T/0n

T = temperature

Journal of Heat Transfer

k = thermal conductivity
L = characteristic length
Nz = number of boundary elements
Q = normal temperature derivative or

{Q} = vector of nodal fluxes
R = random number (0 < R < 1)

{T} = vector of nodal temperatures
{X } = vector of unknowns
T" = boundary contour

o? = statistical variance

Tsvp = SVD threshold value
€} = domain

Subscripts

amb = ambient fluid quantities

INT = internal measurement

conv = convective heat transfer
perturb = perturbed value
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Fig.1 Isotherms predicted within the rectangular plate by the analytical
{solid tines), direct BEM (dotted fines), inverse BEM with top boundary
over-specified (dashed lines), and the inverse BEM with top and side
boundaries over-specified (dash-dot lines). Forty panels per side.

the Robin boundary condition on the bottom boundary. Using
separation of variables, an analytical solution for this test case
can be found in the following form (where a and b are the side

lengths):
f Tomp sin ("—”)dx]
0 a

|
sinh (——’”"b - Y)) sin <ﬂ>
a a

n=1
Boony sinth (ﬂ-IZ) + K cosh <"—”b>
a a

a

The BEM analysis predicted the heat fluxes on the top, left,
and right boundaries, and temperature on the bottom boundary.
When the entire computed temperature field was plotted (Fig.
1), the isotherms (thin dashed lines ) obtained numerically using
the BEM analysis were practically identical to the analytically
obtained isotherms (full lines), having an error of less than 0.1
percent. This confirmed the very high accuracy of the analysis
version of the BEM code used in this study.

The inverse problem was then formulated by specifying noth-
ing on the bottom boundary of the rectangular plate while one
or more of the remaining boundaries were over-specified with
temperatures and heat fluxes taken from the analytical solution.
In order to check the performance of the inverse version of the
BEM code with respect to the amount of over-specified data,
two variations of this numerical test case were performed.

Test Cases With Constant k... In the first variation, only
the top boundary of the square plate was over-specified with
temperature and heat flux, while the side boundaries were speci-
fied with temperature only. The isotherms predicted by the in-
verse noniterative BEM procedure are shown as dotted lines in
Fig. 1. The ambient fluid temperature was considered to be
known (Tome = 1.0°C). Therefore, the convective heat transfer
coefficients can be computed directly after both the temperature
and heat flux on the bottom boundary have been predicted.

The computed convective heat transfer coefficients on the
bottom boundary, which in this test case should be Ay = 1.0
W m™2 °C™, are plotted as square symbols in Fig. 2. The
average error in Ay, is less than 1 percent and a peak error is

X (5)
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6 percent in this test case where over-specified data were pro-
vided only on a single boundary farthest from the boundary
with unknown thermal boundary conditions.

Influence of the Amount of Over-specified Data. In the
second variation of this test case, the opposite (top) boundary
as well as both side boundaries were over-specified with both
temperature and heat flux from the analytical solution. The iso-
therms that were predicted by the inverse noniterative BEM
code are shown as dash-dot lines in Fig. 1. These isotherms
cannot be seen because they lie directly on top of the isotherms
predicted by the analysis version of the BEM code and by the
analytical solution. The numerically predicted values of local
heony from the inverse BEM procedure for this test case are
plotted using triangle symbols in Fig. 2. Notice that the predic-
tion of h.,,, is more accurate in this test case, having a peak
error of 0.4 percent. From these results it can be concluded that
the inverse BEM prediction of the unknown ., is sensitive
to the amount of over-specified data and the location of the
over-specified boundaries. ;

Influence of Distance of Over-specified Boundary. To
clarify that issue further, the aspect ratio (AR = b/a) of the
rectangular plate was varied while over-specifying only the top
boundary, which is the farthest away from the unspecified bot-
tom boundary. From Fig. 3 it can be seen that for relatively
thin domains (AR < 0.25) the peak error in the predicted fcon,
is less than 0.3 percent. The peak error increases to approxi-
mately 10 percent, as the rectangular plate becomes a square
plate (Fig. 3), while the average error remains below 1 percent.

Applicability to Different Values of Biot Number. The
previous numerical results were obtained for unity Biot number
(Bi = heony L/k). The second variation inverse problem was
then repeated for a variety of Biot numbers by utilizing values
of the thermal conductivity in the interval 0.01 < k < 100.0
W m™' °C™!, and thus varying the Biot number over the same
range since L = 1.0 m and heopy = 1.0 W m~2 °C ™" were kept
constant. The threshold parameter in the SVD algorithm was
Tsvp = 107°. From Fig. 4 it can be concluded that the standard
deviation and maximum error of the predicted A, Were very
low for 0 < Bi < 20, after which the maximum error increased
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Fig.2 Convective heat transfer coefficients, h...,, numerically predicted
by the inverse BEM on the bottom boundary of a square plate when:
(a) the top boundary (squares), and (b} left, top, and right boundaries
(triangles) were over-specified. The exact value is hoow = 1.0 Wm=2°C ™",
Ten panels per side were used.
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Fig. 3 Influence of the aspect ratio (height/width) of the rectangular

plate and the amount of the over-specified data on the numerically pre-
dicted h.. on the bottom boundary when: (a) the top boundary
(squares), and (b) left, top, and right boundaries (triangles) were over-
specified. The exact value is hcony = 1.0 W m™2°C . Ten panels per side
were used.
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Fig.4 Influence of Biot numbers on maximum error and standard devia-

tion of the predicted h.onv

until it reached 30 percent for Bi = 100. For example, a plasma-
coated gas turbine blade surface distribution of A can be
predicted quite accurately with this inverse BEM algorithm. In
this example, the coating thickness (L) is 2 X 10™* m, and k
is .0 Wm™' °C~'. If Bi < 20, this means that A, as high as
10° W m™2 °C~! can be predicted with a maximum error of 2
percent and a standard deviation of less than 1072 W m™2°C .

A Test Case With Variable h,.,. The inverse BEM algo-
rithm was also evaluated for the more realistic case where the
heat convection coefficient is not a constant. The same boundary
conditions on the top and the vertical side boundaries were used
as in the previous test cases while specifying the variable heat
convection coefficient as Ay = [1.0 + sin (27x)] Wm™°C™!
on the bottom boundary. This test case does not have an analyti-
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Fig.5 Isotherms predicted by a well-posed BEM (full lines) and inverse
BEM (dashed lines) for the rectangular plate with h .o, = [1.0 + sin (27x)]
W m~2 °C~" on the bottom boundary and T = 0.0°C on the remaining
three boundaries. Forty panels per side were used.

cal solution. Therefore, the BEM analysis code was run with
40 boundary elements on each of the four sides of this well-
posed problem and treated the predicted isotherms as the accu-
rate result (Fig. 5).

An inverse problem was then created by pretending that .oy
is unknown on the bottom boundary. These ‘‘unknown’’ values
of heny Were then predicted by over-specifying the vertical
boundaries and the top‘boundary with the T = 0.0°C and with
the heat fluxes that were previously predicted by the BEM
solution for the forward problem with sine wave hcn, On the
bottom boundary. The threshold parameter used in the SVD
algorithm had the value Tsyp = 107%. The result of the inverse
BEM code was a highly accurate temperature field shown as
dashed lines in Fig. 5 that practically coincide with the solid
lines predicted by the well-posed problem solution. An equally
accurate prediction of the sine wave k., variation on the lower
boundary (dashed line in Fig. 6) thus confirms the high accu-
racy and the applicability of this inverse BEM algorithm to
prediction of variable A, values.
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Fig.6 Analytical (full line) and inverse BEM predicted (dotted line) varia-
tion of he.n along the bottom boundary
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Fig. 7 Isotherms predicted analytically {solid lines) and using analysis
BEM (thin dashed lines), inverse BEM with left boundary over-specified
{dotted lines), and the inverse BEM with bottom, left, and top boundaries
over-specified (dash-dot lines). Ten panels per side were used.

Test Cases With Asymmetric Boundary Conditions. For
a second test case, the geometry was a homogeneous square
plate with each side of length L discretized with 10 linear iso-
parametric boundary elements. The boundary conditions were
altered such that the right-side boundary had the Robin bound-
ary condition (Aeony = 1.0 W m2°C~ !, Ty = 0.0°C). In the
well-posed (analytical ) problem, the top boundary was specified
with a temperature 7 = 1.0°C and the left-side and bottom
boundaries were specified with a temperature T = 0.0°C. The
analytical solution for this problem can be found by separation
of variables, and is given by

T(x y) — 2Tambh<:onv14 i
k n=1 a,.(hm% + cosza,,>

1 — cos a,

sinh 24
x ———sin 22X (6)
sinh a, L
where
ok
tana, = — —— . 7
hconvL ( )

As in the previous test case, the BEM analysis was compared
to the analytical solution. The analytically predicted isotherms
(solid lines) and the numerical analysis or the well-posed BEM
numerical prediction (dashed lines) are directly on top of each
other (Fig. 7), thus confirming the high accuracy of the analysis
version of the BEM code used in this study.

Again, two variations of the inverse problem were created.
One variation had only the left boundary over-specified. The
other variation had bottom, left, and top boundaries over-speci-
fied. In both inverse variations, nothing was specified on the
right-side boundary where heat transfer coefficients were pre-
scribed in the well-posed problem. In the case where only the
opposite boundary (left side) was over-specified, the inversely
predicted isotherms (dotted lines) show an appreciable error in
the vicinity of the unspecified right side boundary (Fig. 7).
The error in the inversely predicted isotherms was significantly
reduced when a larger quantity of the over-specified data (40
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Fig. 8 Isotherms predicted analytically (solid lines) and using analysis
BEM (thin dashed lines), inverse BEM with left boundary over-specified
(dotted lines), and the inverse BEM with bottom, left, and top boundaries
over-specified (dash-dot lines). Forty panels per side were used.

panels per each side of a square) was used (Fig. 8). The value
of heone On the right-side boundary was then obtained from the
predicted temperatures and heat fluxes on that boundary (Fig.
9). There was a large discrepancy in the computed fcony values
‘when only the opposite boundary (left-side boundary) was over-
specified, since this boundary is far away from the unspecified
right-side boundary. The maximum error in predicted Aoy Was
dramatically reduced to about 2 percent when bottom, left-side,
and top boundaries were over-specified (Fig. 9).

Sensitivity to Errors in the Input Temperatures. It is of
utmost practical importance to access the influence of measure-
ment errors of boundary values in any newly proposed inverse
boundary value determination algorithm. Adding a random error
based on the Gaussian probability density distribution to the
temperature measurements numerically simulated this effect. A
random number, 0 < R < 1, was generated using a standard
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Fig.9 Convective heat transfer coefficient predicted by the inverse BEM
on the right boundary of a square plate when: (a) the left boundary
(triangles), and (b) bottom, left, andtop boundaries (squares) were over-
specified. Ten panels per side were used.
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Fig. 10 Sensitivity of the predicted distributions of h,. on the bottom
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errors in over-specified temperatures on the remaining three boundaries
in the first test case. SVD and ten panels per side were used.
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Fig. 11 Sensitivity of the predicted distributions of hc.. On the bottom
boundary for different standard deviations of the intentionally introduced
errors in over-specified fluxes on the remaining three boundaries in the
first test case. Tikhonov's regularization and ten panels per side were
used.

RANF utility subroutine on Cray C-90 computer. The desired
variance o2 was specified in the input data and the error was
added to the analytical temperature data points, T, according to

Tperws = T £ V=20 In R. (8)

Here, addition and subtraction of the random error had a 50-
50 chance of been chosen. The errors were assumed to be
additive and the same variance was prescribed for all tempera-
ture measurements.

This simple test of sensitivity was applied to the second
variant of the first test case discussed in this paper with the
unknown heat convection on the bottom boundary, while the
remaining three sides of the rectangle (AR = 1) were over-
specified. The input temperatures had intentionally introduced
random errors. The predicted values of k., had a maximum
local error of 4 percent when average perturbation was 0.01
percent of Ty, (Fig. 10). A maximum local error of 8.5 percent
was realized when average perturbation was 0.1 percent of T
It increased to 16 percent when the average perturbation was 1
percent of Ty,,. The maximum local error in predicted Acon,
reached 33 percent when the average perturbation of supplied
(measured ) boundary temperature was 10 percent.of the maxi-
mum temperature in the field. At the same time, it can be
seen (Fig. 10) that the average error in the predicted Ay is
approximately the same magnitude as the average level of the
perturbations (errors) introduced in the boundary temperatures.

Sensitivity to Errors in the Input Fluxes. A similar re-
sponse of this inverse BEM code was obtained when the random
errors were intentionally introduced in the input heat fluxes
(according to a formula similar to Eq. (8)) on the three over-
specified boundaries (Fig. 11). For all practical purposes, there
was no net bias in the simulated input measurement errors. For
example, when an input error of 0.01*Q,.., Was introduced, the
net bias in the integrated boundary heat flux averaged over each
boundary was 5 X 107® or 0.05 percent of the unperturbed
average heat flux on that boundary. By comparing Figs. 11 and
10, it can be seen that the average error in the predicted values
of heony is somewhat higher in the case with input errors in heat
fluxes than in the case with input errors in temperatures. It is
remarkable that the level of average error and the peak error in
the predicted A, are of the same order of magnitude as the
average errors and the peak errors in the input values of heat
fluxes on the over-specified boundary.

In these test cases, Tikhonov’s regularization was found to
provide better results compared to SVD. Table 1 lists the opti-
mum Tikhonov’s regularization parameters, Tmxu, that were
found using numerical experimentation on two different com-
puters for two different levels of BEM discretization and then
utilized in the inverse BEM code. Since Tikhonov’s regulariza-
tion acts as an artificial sink of energy, Martin and Dulikravich
(1996) demonstrated that higher values of 71xy lead to a rapidly
increasing bias in the integrated computed heat fluxes. This
could be improved significantly by increasing the amount of
over-specified data. Figure 12 demonstrates improved results
when each boundary was discretized with 40 panels on a higher
precision computer (Table 1).

Conclusions

It has been demonstrated how a simple modification to any
existing BEM analysis algorithm for the solution of Laplace’s
equation can transform it into an inverse non-iterative determina-

Table 1 Various levels of intentional errors in the over-specified boundary heat fluxes and the corresponding Tikhonov’s
regularization parameters used in the BEM inverse problems: (¢) on a PC with 10 boundary elements per side resulting
in a condition number of matrix = 7, and (b) on the Cray with 40 boundary elements per side resulting in a condition
number of matrix = 14

o 0.00010nax 0.0010ax 0.01Qmax 0.03Q nax 0.1Qmax
Trikn On the Cray 1% 107 1 x 1073 1 x 107 5% 1074 1% 1072
T ON a PC 5% 1077 5 x 107* 5 x 107? 5 x 1072 2 x 107!
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Fig. 12 Sensitivity of the predicted distributions of hcon ON the bottom
boundary for different standard deviations of the intentionally introduced
errors in over-specified fluxes on the remaining three boundaries in the
first test case. Tikhonov's regularization and forty panels per side were
used.

tion code for unknown distributions of steady convective heat
transfer coefficients. This approach is applicable to arbitrarily
shaped two and three-dimensional solids where at least part of a
boundary can be over-specified with both temperatures and heat
fluxes. The code is very fast and robust since it requires inversion
of a single fully populated matrix. The inversion must be per-
formed using an algorithm suitable for almost singular matrices.
This method is relatively insensitive to the errors introduced in
the boundary measurements of temperature while somewhat more
sensitive to the errors introduced in the boundary measurements

334 / Vol. 120, MAY 1998

of heat fluxes. It should be noted that this method for determining
unknown steady distribution of heat convection coefficients is
inexpensive, since it requires only one temperature probe and one
heat flux probe. These two probes can be moved from point to
point on accessible boundaries, thus obtaining the over-specified
thermal boundary conditions.
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