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Abstract—Fluid flow influenced by electric and magnetic fields has classically been divided into two
separate, simplified categories: electro-hydrodynamics (EHD) studying flows under the influence of
an electric field with free electric charges and no magnetic field, and magneto-hydrodynamics
(MHD) studying flows under the influence of a magnetic field and no free electric charges or electric
fields. This division was necessary to reduce the extreme complexity of the coupled system of
Navier-Stokes, Maxwell’s and constitutive equations describing combined electro-magneto-
hydrodynamic (EMFD) flows [G. S. Dulikravich and S. R. Lynn, Unified electro-magneto-fluid
dynamics (EMFD): introductory concepts. Int. J. Non-Linear Mechanics 32,913-922 (1997)]. In this
paper, the unified EMFD theory is compared with classical EHD and MHD models. This reveals
the inconsistencies and shortcomings of classical formulations and allows discussion of the relative
importance of terms describing the electro-magnetic force, electric current and heat transfer.
© 1997 Elsevier Science Ltd.
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NOMENCLATURE

electric charge mobility coefficient, kg A s?
magnetic flux density vector, kg A~ 's™?
rate of deformation tensor, s !

electric charge diffusion coefficient, m?s~
electric displacement field vector, Asm ™2
internal energy per unit mass, m*s~?
total energy per unit mass, m*s 2
electric field vector, kgms *A™! or Vm~
electromotive intensity vector, kgms > A ™!
mechanical body force vector per unit mass, ms~
electromagnetic body force vector per unit volume, kgm™
acceleration due to gravity, ms~?

heat source or sink per unit mass, m*s”
magnetic field intensity vector, Am ™!
electric current density vector, Am~
electric conduction current vector, Am~
electric drift current vector, A m ™2

total magnetization vector per unit volume, Am~
magnetomotive intensity vector per unit volume, Am~
pressure, kgm ™ 's™2

total polarization vector per unit volume, Asm~
local free electric charge per unit volume, Asm™
total or free electric charge per unit volume, Asm™
heat flux vector, kgs ™3

position vector, m

entropy per unit mass, m*kg 'K "'s™?
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924 G. S. Dulikravich and S. R. Lynn
fluid stress tensor, kgm 's ™2
fluid velocity vector, ms™*

y
2 volume, m?

Greek symbols

& dielectric constant or electric permittivity, kg~ ' m™*s* A?

gy = 8.854 x 10712 vacuum dielectric  constant or electric  permittivity,
kg 'm 3s*A?

& = &/€o relative electric permittivity

K thermal conductivity coefficient, kgms *K ™!

Ay second coefficient of viscosity, kgm ~'s™!

o electric conductivity coefficient, kg ~' m™?s* A2

0 absolute temperature, K

) fluid density, kgm ™3

t viscous stress tensor, kgm ™ 's”?

™ electromagnetic stress tensor, kgm ™ 's ™2

U magnetic permeability coefficient, kgm A~ %52

o = 4w x 1077 magnetic permeability of vacuum, kgmA ~?s~?

U = W/ relative magnetic permeability

Iy shear coefficient of viscosity, kgm~'s™!

F=e—1 electric susceptibility

™M=p —1 magnetic susceptibility

d=1"d viscous dissipation function, kgm™'s™?

¥ =e—0s material free energy function, m?s~?

1. INTRODUCTION

The equations governing electro-magneto-fluid dynamic (EMFD) flows consist of the
Navier-Stokes equations of fluid motion coupled with Maxwell’s equations of electro-
magnetics and material constitutive relations. The field has traditionally been divided into
flows influenced only by electric fields and electric charges, and flows influenced only by
magnetic fields and without electric charges. The former are called Electro-Hydrodynamic
(EHD) flows and the latter Magneto-Hydrodynamic (MHD) flows [2]. Studies of EHD and
MHD flows have ranged in complexity from the experimentally-based [3] to more theoret-
ically-based [4]. Much more recently, rigorous theoretical continuum mechanics treat-
ments of EHD [5] and unified EMFD flows [6, 7] have been developed. These continuum
mechanics approaches are limited to non-relativistic, relatively low frequency phenomena
[8,9] up to approx. 10° Hz.

Part 1 [1] presented an overview of electro-magnetic theory with concentrated effort
placed on the field—material interactions of polarization and magnetization. The unified
EMFD theory [6,7] was also succinctly presented in Part 1. Presented in Part 2 is an
overview of classical EHD and MHD models. The mainstay of this paper, however, is
a comparison between classical EHD and MHD models and the unified EMFD theory. The
comparison concentrates on similarities and differences between electro-magnetic force,
electric current and heat conduction terms in the classical and unified models. Included in
this is a discussion of the physical meaning and relative importance of classical model terms
and recommendations for improving classical models. The inadequacy of simple super-
positioning of classical models to fully describe unified EMFD flows is also noted.

2. GOVERNING SYSTEM OF EQUATIONS

The full system of equations governing unified EMFD flow consists of the Maxwell’s
equations governing electro-magnetism, the Navier—-Stokes equations governing fluid flow
and constitutive equations describing material behavior. Maxwell’s equations are the
system of linear differential equations governing electro-magnetic fields. They are given as
[7, p. 504]
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Gauss’ law
V:-D= 4o (1)
Ampere-Maxwell’s law
D
_— — H=-J 2
ot v-H @
or
D B
——Vx==-J-VxM (3)
ot Ho
Conservation of magnetic flux
V-B=0 (4)
Faraday’s law
B
— +VxE=0 5
a TV ©)
Conservation of electric charges
990
— -J=0 6
ot +v-d ©)

Detailed descriptions of these equations can be found in any number of texts [10-12]. The
equations of motion governing EMFD flow are the Navier-Stokes relations into which
electromagnetic effects have been included. A rigorous derivation of these equations for
electro-magnetic fluids is completed by Eringen and Maugin [6, p. 129].

Conservation of mass

ap
—+ V- =0 7
ar T (pv) (7
Conservation of momentum
0
AOY L Ve(wpy — 0 — pE— £ =0 ®

where the electromagnetic force per unit volume is [6, p. 59]
0
!EM=qu+l><B+(VE)'B+(VB)'M+V'(QXB_)+E(BXB) )

Conservation of energy

P
D =
d(peo) <P> DB
AL . Yt ed — ph — . T Y L —
5 + V-(peey) —V-(t'v)+V-q—ph—p& Dr + M Dr J.-€=0 (10)

The fluid (material) constitutive equations complete the system of equations governing
EMFD flows and are given below. A rigorous derivation of these relations is given by
Eringen and Maugin [6,7]. As in Part 1 of this paper, it must be noted that the electro-
magnetic material properties of the fluid may be dependent on physical properties of the
flow, especially electro-magnetic frequency and temperature. With this in mind, the unified
EMHD free energy, polarization, magnetization, viscous and electromagnetic stress, ther-
modynamic pressure, electric conduction current and heat flux constitutive equations for
non-linear, relatively low frequency ( < 10° Hz) materials may be given as [6, pp. 177-178]

T:\P(II,IZsI:%Hsp_I) (11)
v ih g

P= —2p<6—11£+6—13(£'5)5> (12)
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oY oY
- — Y &-BB
m 2 <012B+6I3(é‘) BB > (13)
t= _pl‘*'L(P 1’ LL__,B, o, VG) (14)
o¥
P= 5t (15)

J. =018 + 0,4 & + 30°+ &) + (0,V0 + 55d - VO + g¢d” - VO)
+ (676 xB + ag(d- (€ xB) — (d- &) xB))
+ (6sVOxB + a10(d- (VO x B) — (d- V6) x B))
+0(B-&B+ 0,,(B-VOB (16)
= (K& + kod* & + k3% &) + (k,VO + k5d - VO + ked® - VO)
+ (k78 X B + kg(d* (& xB) — (d* &) x B))
+ (koVO x B + K10+ (VO x B) — (d - V6) x BY)

+ k11(B-&)B + x1,(B- VOB (17)
where
&=E+yxB (18)
I =¢-¢ (19)
I,=B-B (20)
= (&' B) 21

T=ool +a;d + oczd2 + 03EQRE + 1, BB + asVOIRVE
+ og(ERd - &)s + a(ERA* - &)s + ag(VORL - V)
+ ao(VORA? - VO)s + a1o(d W — Wd) + o« W-d-W
+ (@7 W — Wed?) +oy3(W-d- W —W2-d-W)
+ 01 4(ERVO)s + 01 s(W- EREW)s + a1 (ERQW - E)s
+ 0 /(W- ERQW?: &)s + o154 (ERVO — VOIRE)
+ a;3(ER®VI — VORE) d + a1 W+ (R VO — VIR E)s (22)

W =W, = ¢;B (23)

IIQ-

In the above relations the tensor d® is the product of the rate of deformation tensor
d’ = d-d. Additionally, note that the material coefficients g;, k;, and a; are functions of the
jointinvariants d, &, B and V0 [6, p. 13, 178]. Finally, the subscript s attached to brackets in
equation (22) indicates symmetrization.

Most classical models consider only isotropic materials. This assumption will be con-
sidered here as well. Under the isotropic assumption, all tensor quantities in the electric
conduction current and heat conduction relations and most in the stress relation become
zero. The reason for removal of cross-product and tensor quantities in the linear, isotropic
constitutive relations is that the order of the integrity basis for the governing constitutive
relations has been lowered [6, pp. 154, 173]. This leads to the linear constitutive relations
for relatively low frequency materials and may be given as

wowy (e L (24)
T T\ T
v
=—2pa—£’—so iFé (25)
a M
m=—2p2" / (26)

2p-—B=—2=" _B
P m+ M
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t=—pl+1p 'd 0 =—pl+2ud+ Atr(d] (27)
oV

P= 5,1 (28)

J.=0& + V0O (29)

q = K™& + kV0 (30)

where the coefficients y&, ¥, u,, 4, 0, 6°, k®™ and « are functions of p and 0.

It can be seen from equations (16) and (17) that the electromagnetic field is not the only
cause of electric current and the temperature gradient is not the only source of heat
conduction as is commonly assumed. The electric field, magnetic field and heat conduction
may couple to produce electric charge motion and heat transfer. These couplings are called
phenomenological cross effects and may be placed in four general categories: (1) ther-
moelectric, (2) galvanomagnetic, (3) thermomagnetic, and (4) second order effects [6, pp.
161-163]. These categories are based on the source of the effect and each will be described
separately.

2.1. Thermoelectric effects

Thermoelectric effects are caused by couplings between the temperature gradient and the
electric field. Reducing the current and heat conduction equations to their thermoelectric
terms yields

J. = (04V0 + 054 VO + g6d* - VO) €2Y)
q =18 +1:d- & +x3d*- &) (32)

A temperature gradient producing an electric current is referred to as the Thomson effect
while an electric field producing heat conduction is termed the Peltier effect. These two
effects together are known as the Seebeck effect and form the basis for thermocouples. Also
note that the first term in equation (16) and the fourth term in equation (17) are not true
cross effects; they are the Ohmic charge conduction and Fourier heat transfer, respectively.

2.2. Galvanomagnetic effects

When the electric and magnetic fields are not parallel, electric current and heat conduc-
tion are induced in the material. These sets of effects are termed galvanomagnetic. Reducing
the full current and heat conduction equations to their galvanomagnetic effects yields

J. = (6,8 xB + o4(d* (£xB) — d- &) xB)) (33)

q = (k78 xB + Kg(d- (& xB) — (d- &) xB)) (34)

Electric current induction from non-parallel electric and magnetic fields is called the Hall
effect. In analogy, heat conduction produced by non-parallel electric and magnetic fields is
called the Ettingshausen effect [6, pp. 161-163].

2.3. Thermomagnetic effects
When the temperature gradient and the magnetic field are not parallel, electric current
(Nernst effect) and heat conduction (Righi-LeDuc effect) are induced in the material. These
effects are termed thermomagnetic. Reducing the full conduction current and heat conduc-
tion equations to their thermomagnetic effects yields
J. = (0oVOxB + 710(d* (VO xB) — (d-VO) xB)) (35)

q = (kgVOxB + 1c;0(d" (VO xB) — (d-V0) x B)) (36)
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2.4. Secondary effects

Finally, secondary effects are caused by non-orthogonality between the electric field and
magnetic field and the temperature gradient and magnetic field. The electric current and
heat conduction equations with only secondary effects are shown below.

Je =01(B-&)B + 7,,(B- VB 37)
q=x1(B-&)B + k1,(B- VOB (38)

3. CLASSICAL ELECTRO-HYDRODYNAMICS

As mentioned previously EHD flows are those in which magnetic effects may be neglected
and charged particles are present. One of the implied assumptions is that the flows are at
non-relativistic speeds. There are cases, particularly in astrophysical MHD, where this
assumption cannot be made [12]. The other major assumption made in classical EHD is
that only a quasi-static electric field is applied so that the magnetic field, both applied and
induced, may be neglected. Atten and Moreau [13] present a detailed coverage of classical
EHD modeling and discuss the relative importance of terms in the force and electric current
through stability analysis. In order for this assumption to apply the fluid must contain
electrically charged particles. With these assumptions, three Maxwell’s equations govern
the flow [2].

V:D =g, (39)
VxE=0 (40)
04,
Z40 J= 1
P +V-J=0 41)

Modifications to the Navier-Stokes relations come from the electro-magnetic force on the
fluid from which all magnetic field terms have been neglected. With classical EHD assump-
tions the electro-magnetic force in the unified EMFD theory in equation (9) becomes

™ = ¢.E + (VE)-P (42)

This is not the form of the electro-magnetic force usually seen in classical EHD formulations
[1]. Through the use of thermodynamics, equation (42) and the material constitutive
equation of state, the electro-magnetic force is usually manipulated into the following
equivalent forms [4, pp. 59-63; 6, pp. 505-507]

E? 1 O
£EM _ = 2z 2 [ Lo
f 9oE —=-Ve + 3 V<E p< 6p>0> (43)
or as
E? (0e 0 0e
ffM = goE —=(— | VO + 2 V[E} =
Phs =5 <ae >,,V *3 V<~ <8p >9> 49

Equation (44) is the most common electro-magnetic force formulation in classical EHD.
The three terms in the equation are the electrophoretic, dielectrophoretic and electrostric-
tive terms, respectively. The electrophoretic force or Coulomb force is caused by the electric
field acting on free charges in the fluid. It is an irrotational force except when charge
gradients are present [14]. The dielectrophoretic force is also a translational force, but is
caused by polarization of the fluid and/or particles in the fluid. A dielectrophoretic force will
occur where high gradients of electric permittivity are present. This condition will be true in
high temperature gradient flows, multi-constituent flows, particulate flows [15] or any time
the electric field must pass through two contacting media of different permitivities [16].
Grassi and DiMarco [17] treat the dielectrophoretic force as it applies to bubbly flows and
heat transfer. Poulter and Allen [14] note that the dielectrophoretic force produces greatest
circulation when the dielectric permitivity is inhomogeneous and non-parallel with the
applied electric field. The last force, the electrostrictive force, is a distortive force (as opposed
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to the previous translational forces) associated with fluid compression and shear. The
electrostrictive force is usually smaller than the -phoretic forces, but is present in high
pressure gradient flows, compressible flows and flows with a non-uniform applied electric
field. In hydrodynamically bounded systems, the electrostrictive force plays no part due to
its irrotational nature [14]. Pohl [15] describes this phenomenon in greater detail.

Classical EHD modeling derives directly from the unified EMFD theory. The same can
be said of the constitutive current relation. From the unified EMFD theory the electric
current, assuming material isotropy and linearity, is given by the relation

J =qov + a& + ¢°V0 (45)

This is not the form seen in classical EHD models however [2]. Classical EHD modeling
typically defines the electric current as simply the first two terms of equation (45) : the
convective and conductive current, respectively. However, more advanced classical models
define the electric current as [6, p. 562]

J = qo¥ + 6E + qobE — 9Vq, (46)

At first glance equation (45) seems not to match equation (46), or, seems to imply that the
temperature gradient is directly related to the electric charge gradient. This may be shown
to be true as the last two terms in equation (46) come from the Einstein—Fokker relation-
ships, derived from studies of Brownian motion [18, p. 264-273], which relate any concen-
tration gradient to a mobility (qobE) and a diffusion (2Vq,). A more heuristic proof of this
relation can be obtained by expanding the material equation of state, which by linear theory
relates pressure, temperature and density, in a Taylor series around density and pressure.
Then, because the electric current is desired, we consider only electric field and charge
contributions to the pressure. Thus, the gradient of velocity becomes an equivalent electric
charge gradient and the gradient of pressure becomes an equivalent of the electrophoretic
force (both multiplied by constants). By performing a unit analysis on the constants, it can
be seen that the constant multiplied by the charge gradient is equal to the charge mobility
coefficient, b, and the constant multiplied by the charge gradient is equal to the charge
diffusion coefficient, 2. By either de Groot and Mazur’s rigorous non-equilibrium thermo-
dynamics method or method described above, equation (45) may be shown to be equivalent
to equation (46). Newman [19] also provides a detailed discussion of the concepts of
diffusion and mobility. The second, or diffusive term, is often neglected where limited free
charges are available [20].

The final equation describing classical EHD flow is the heat transfer constitutive relation.
This is the one area where classical EHD theory does not match the unified EMFD theory
with EHD assumptions. By introducing classical EHD assumptions in the unified EMFD
theory the following relationship is obtained for heat transfer

q=KE + x,V0 47

This relationship, however is not the one commonly seen in classical EHD models. These
models usually neglect the contribution of heat transfer from the electric field so that
equation (47) becomes

q =K,V 48)

This relation is Fourier’s law of heat conduction. Here, an inconsistency must be noted that
although classical EHD modeling seems to neglects heat transfer induced by the electric
field and electric current, Joule heating J. * & from equation (10), is usually included in the
EHD analysis.

4. CLASSICAL MAGNETO-HYDRODYNAMICS

The classical modeling of magneto-hydrodynamics makes the non-relativistic assump-
tion just as in classical EHD theory. However, where classical EHD made the assumption of
quasi-electrostatics, classical MHD theory makes a quasi-magnetostatic assumption. Thus,
the direct electric field induces a magnetic field of much less magnitude than the applied
magnetic field. This assumption also implies that electric current comes primarily from
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conductive means and that there are no free charges in the fluid. With these assumptions
Maxwell’s equations become [2]

V-B=0 (49)
B
5 TVXE=0 (50)
VxH=J (51)
V-J=0 (52)

Another, perhaps more commonly used, MHD assumption is that the material is a perfect
conductor (¢ = oo) [7, p. 512]. This assumption makes the Joule heating J.* & in equation
(10) infinite as well. For Joule heating to remain finite requires the assumption that the
electromotive intensity vector is zero. This in turn gives a relation for the electric field in
terms of the magnetic field and velocity vector and may be shown as

E=—-vxB (53)

Substitution into equation (50) and into the Navier-Stokes equations allows the MHD
equations to be free of any applied or induced electric field.

The modifications to the Navier-Stokes relations come from the electro-magnetic force
on the fluid from which all induced electric field terms have been neglected. Otherwise, the
equations appear the same as in Section 2. With classical MHD assumptions the electro-
magnetic force in the unified EMFD theory becomes [2]

f=JxB +(VB)M (54)

The second term, source of dimagnetophoretic and magnetostrictive forces is typically
neglected in MHD. Thus, the electro-magnetic force for classical MHD becomes [2]

ffM —JxB (55)

An improvement in classical MHD modeling could be made by including the dimag-
netophoretic and magnetostrictive terms, especially in cases where MHD flow conditions
satisfy conditions analogous to cases where dielectrophoretic and electrostrictive effects are
important in EHD. By making classical MHD assumptions, the unified EMFD current
becomes

J=0,6+0,V0 +06,:&xB+ VOB +0,,(B-&B + 0,,(B-V6)B (56)
However, classical MHD theory usually defines the current as {7, p. 510]
J =0E + o(vxB) + ¢°V0 = 6& + ¢°Vh (57)

Here, 6” is the Seebeck coefficient [6, p.174]. It is seen to be equivalent to o, in equation (56).
Note that in some classical MHD formulations the Seebeck coefficient is not used [2].
Regardless, the classical MHD formulation neglects a significant number of effects. Im-
provements could be made to the classical MHD theory by including terms from equation
(56) depending on the details of the flow problem in question.

The final relation of comparison between the unified EMFD model and the classical
MHD model is the heat transfer. Once again in classical modeling, Joule heating is often
included in the energy relation, but the heat transfer constitutive relation remains the same
as in equation (48). In comparison the unified EMFD model with classical MHD assump-
tions is

q=118 +k,V0 + k:EXB + koVOxB + k1 (B- VOB + k,,(B-&) B (58)

As can be seen, the classical MHD modeling neglects many effects. Improvements could be
made by including the -strictive effects of equation (54) as well as cross-effects between
electric current and heat transfer.

Whereas the classical EHD model includes many of the important effects and matches the
unified EMFD theory very well, classical MHD formulations could be improved. Depend-
ing on the problem being studied, improvements in the force, current and heat transfer
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terms could be made. As in classical EHD modeling, it is important to be aware of the fact
that many force, current and heat transfer terms can be written in several different formats,
each of which is equivalent. It is therefore important to recognize the potential danger in
simply adding terms from different MHD models.

5. CONCLUSION

The objective of this paper was to survey sufficient background material to allow initial
implementation of a unified EMFD theory presented by Eringen and Maugin. To accom-
plish this the basics of electro-magnetic field theory was presented in Part 1 [1], with
emphasis placed on describing the causes and effects of material polarization and magnetiz-
ation. This paper presented the equations governing unified EMFD flows. The equations
governing flow characteristics are contained in Maxwell’s equations of electro-magnetic
fields, the Navier—Stokes flow-field equations and the constitutive relations for current, heat
transfer and material equation of state.

The essence of the paper is a presentation of classical models for EHD and MHD flows
compared with the unified EMFD theory. Both classical models assumed material isotropy
and linear constitutive theory which was shown often to be a valid assumption [6, 7]. It was
shown that classical EHD models matched nearly identically with the EMFD theory. The
classical equations for heat transfer were the only place where EHD and EMFD models did
not match. Finally, it was shown that even though the EHD and EMFD models matched,
they were often written in different forms, making them seem incompatible at first glance.

A similar comparison between the classical MHD model and the unified EMFD model
was performed. Unlike the comparison with EHD, the unified model did not compare well
with the classical model. Dimagnetophoretic and magnetostrictive terms were not included
in classical MHD modeling of force. Being defined as first order effects [6, 7] these terms
should be considered depending on the characteristics of the particular flow being analysed.
Further, classical MHD theory was shown to neglect several cross-effect terms in the
formulation of the electric current. Classical MHD theory did, however, include all first
order effects in the electric current formulation.

Finally, because many of the terms in electro-magnetic force, electric current and
heat transfer may be written in different forms, it is important to recognize the danger of
simply adding of terms from classical models without fully understanding their meanings.
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