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Three-Dimensional Aerodynamic Shape Optimization
Using Genetic and Gradient Search Algorithms
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Two hybrid optimization methods used for preliminary aerodynamic design are introduced. The first is a gradi-
ent method based on Rosen’s projection method and the method of feasible directions. The second technique is a
genetic algorithm that uses elements of the Nelder—Mead simplex method to aid in search direction determination,
as well as gradient methods to handle constrained problems. These methods are applied to three-dimensional shape
optimization of ogive-shaped, star-shaped, spiked projectiles and lifting bodies in a hypersonic flow. Flowfield anal-
yses are performed using Newtonian flow theory and, in one case, verified using a parabolized Navier-Stokes flow
analysis algorithm. Three-dimensional geometrical rendering is achieved using a variety of techniques including
beta splines from the computer graphics industry. In a comparison to the gradient-based method, the hybrid
genetic algorithm is shown to be able to achieve impressive convergence on highly constrained problems while

avoiding local minima.

Nomenclature
f{x) = objective (or cost) function
fit = cost function array for population
g;(x) = inequality constraint function
hi(x) = equality constraint function
M = population matrix
n = number of design variables
Nag = number of active inequality constraints
Rah = number of active equality constraints
ng = number of inequality constraints
ny = number of equality constraints
Rpop = number of population members (designs)
s = search direction vector
x = vector of design variables
Xy = vector of design variables’ lower boundaries
Xy = vector of design variables’ upper boundaries
o = line search parameter

Introduction

N integral part of a system’s development very often includes
the determination and design of the shape of some surface. The
surface may be the exterior of some mechanical component, or it
may be the interior of a duct system, for example. Geometric shape
design may be performed through a trial-and-error process by an
experienced designer and periodically tested experimentally to de-
termine whether the design is adequate. Recently, computer assisted
design and computer aided manufacturing hardware and software
have provided a new approach to engineering design and develop-
ment. Products that have been created using this new technology
are generally superior in their performance and efficiency. The cost
associated with experimental data acquisition has been brought to a
minimum because most of the design’s analyses can be performed
computationally.
Shape design generally affords a special degree of difficulty. De-
termination of a surface’s geometry so that some dependent pa-
rameter(s) is satisfactory involves a certain degree of intuition. The
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designer often needs some personal experience to predict whether
the aesthetics of some shape will be functional. In an attempt to
reduce the need for a designer’s intuition, this study presents a tool
to assist in the geometric shape design process. This tool is essen-
tially an optimization procedure. The subjects of the optimization
process are a set of design variables that uniquely define the three-
dimensional surface of a body. The values for these variables need
to be determined so that the whole geometry becomes better accord-
ing to some criteria. This tool allows the designer to begin at some
initial design, and then to achieve a more optimal design without
further input.

The optimization processes presented in this study were chosen to
be applied to the external geometries of bodies in a hypersonic flow.
This flow regime was chosen because the flowfield solutions are
not highly expensive; however, the optimization algorithms should
be equally applicable to any fluid dynamics problem. The geome-
try of the hypersonic vehicle is optimized such that some chosen
quantity is improved. This quantity generally is influenced by the
aerodynamic forces on the vehicle and is thereby dependent on the
geometry of the body.

Optimization of hypersonic bodies with axisymmetric cross sec-
tions has been performed in the past.!~* Optimization of arbitrary
three-dimensional hypersonic vehicles was made feasible’~7 by the
use of an inexpensive Newtonian flow analysis method (a method
that will also be used in this work) for determining aerodynamic
forces. Generally, these studies used rank-two update optimization
processes that could not operate well on highly constrained prob-
lems. Other works have concentrated on optimization of small re-
gions within a larger configuration, such as nose shape,? airfoils,’
wing size,'” and scramjet engine integration.!! This study presents
two methodologies, both of which are hybrid techniques of existing
methods. The second method uses a genetic algorithm in conjunc-
tion with other methods to handle constrained problems.

Optimization Problem Statement

In the most general sense, optimization is the process of achieving
the best outcome of a given operation while satisfying a set of given
constraints. The cost (or objective) function is the term applied to
this outcome that needs to be improved (or optimized). In a com-
putational sense, this cost function is expressed as a scalar value
and it is mathematically dependent on a set of design variables. The
best solution of an optimization problem would be the set of design
variables such that the cost function reaches its global minimum
value. The existence of constraints placed on design variables can
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dramatically alter the nature, complexity, and solution method of an
optimization problem. A set of design variables that does not violate
any constraint is said to be feasible, whereas one that does violate
a constraint is said to be infeasible. If a constraint is violated, or on
the verge of violation, it is known as an active constraint.

The general constrained optimization problem can be mathemat-
ically stated as

minimize: f(x) x={x;, xq,...,x,} x:xeR" (1)
such that

X, <x<xy @

gix) <0 J=12,...,n, 3)

hi(x) =0 k=1,2,...,n @

Hybrid Gradient Optimization

Standard gradient-based optimization techniques involve succes-
sively applying the following series of operations, which constitute
one design cycle: 1) determine a search direction s in which to pro-
ceed from the current design, 2) perform a one-dimensional line
search to determine a distance o along s that achieves an adequate
reduction in f (x), 3) update the current design by

eV — x(wld + as (5)

and 4) return to step 1. The presence of constraints on x can make de-
termining s challenging especially when one or more constraints of
mixed types (equality and inequality) are active. The hybrid gradi-
ent optimization scheme presented here is a simple conglomeration
of two popular optimization techniques that are individually effec-
tive for certain constrained conditions. By using them together, the
hybrid scheme is quite effective for handling both inequality and
equality constraints.

The scheme begins by initially setting s = —V f. If there are no
active constraints, then a line search is performed in this steepest
descent direction and the design cycle ends with updating the design
by Eq. (5). In the unconstrained case, s can also be determined
using a conjugate direction or a higher-order rank-two procedure
such as the Davidon—Fletcher-Powell update method.'? If ,,, > 0,
then s is computed by utilizing the method of feasible directions'3
(MFD). The MFD is particularly effective for determining a search
direction when inequality constraints are active. The resulting search
direction will be a compromise between reducing the cost function
and moving away from each active constraint boundary. However, if
there are active equality constraints (n,, > 0), then the appropriate
search direction should not attempt to move away from the active
equality constraint boundaries, but rather follow them. Therefore,
after s has been determined (either by using the steepest descent
direction or by the MFD), the search direction is projected onto a
design subspace tangent to any active equality constraint boundaries.
This projection operation is taken from Rosen’s projection method!?
(RPM). The projection is performed by

sncw — [P]snld (6)
where
P=I-NNTN)"'NT @)

N = [Vh|Vhy|--- VA i=12.. 05 @®

Once s has been determined, the design cycle proceeds with a
line search to obtain a, and finally with the design update given by
Eq. (5). All gradients are computed using divided difference, and the

line search is based on the golden section minimization procedure. '3
No design is accepted from the line search unless it is feasible.

Hybrid Genetic Optimization

Description of the Genetic Algorithms

Genetic algorithms (GA) are nongradient methods!>!* that offer
a promising answer to complex optimization problems. In general,
a GA is broken into three major steps: evaluation, crossover, and
mutation. An initial population of complete design variable sets is
analyzed according to some cost function. Then this population is
merged using a crossover and mutation methodology to create a new
population. This process continues until a global minimum is found.
Generally, the design variable set that corresponds to the current
minimum point will be representative of the most successful features
of previous generations of designs in the optimization process. The
GA can be exceptional at avoiding local minima because it tests
possible designs over a large domain in the design variable space.

To begin the genetic evolutionary process, an initial population
(of designs) must be defined. Each population member (design)isin
itself an entire complete set of design variables. Each member in this
initial population can be specified meaningfully by performing in-
verse design of aerodynamic shapes.'> !¢ However, commonly, only
the first member is specified and the rest are generated randomly.
The population matrix contains the npop design vectors augmented
row-wise as

T

Pop. member, Xy
Pop. member, x]
M= : =] . &)
Pop. member, x'{mp

Once the initial population has been constructed each member is
evaluated for what is referred to as its fitness, which is defined as the
negative of the cost function. Thus, a fitness vector is established as

—fxy)
—fx2)

fit = (10)

=1 (xmy)

Next, population members are selected for crossover based on
their fitness. That is to say, design sets corresponding to lower cost
functions possess a better chance for being selected for the crossover
process. To merge the two parent design sets, each design variable of
both parents is usually coded into what is referred to as bit strings.
These bit strings are binary (base,) representations of the design
variables’ values as percentages of their allowed values defined by
their upper and lower bound constraints.””-'* When the crossover
procedure is complete, a mutation procedure is conducted in which
every bit of every design variable of every child design is subjecttoa
chance for being toggled. At this point the fitness of each child desi gn
is evaluated followed again by crossover and mutation. This cycle
is continued until the best fitness design reaches some acceptable
value, or until it does not change after many iterations.

The best design is carried directly forward into the next design
cycle (called elitism) without crossover or mutation. This best desi gn
can still be selected for crossover. Elitism ensures that the value for
the best fitness does not worsen from one generation (design cycle)
to the next. However elitism might lead to narrowing of the choices
and convergence to a local minimum.

GA and Constraints

The classical GA' can handle bounds (boundary constraints) on
the design variables, but it is inherently incapable of handling equal-
ity or inequality constraint functions. Previous implementations of
the GA have involved problems posed in such a way as to eliminate
constraint functions, or to penalize the cost function when a con-
straint is violated. These treatments of constraints reduce the chance
of arriving at the global minimum.

The method used for satisfying constraints during the genetic
optimization process in this study utilizes the restoration move given
in RPM. To restore the design to a location x™* lying along the
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constraint boundary, a restoration move is required from x° so as to

reduce the values of the violated constraints to zero. This restoration
move is defined as

XV — xold . N(NTN)flga(xnld) an

where g, is a vector containing the values of the violated constraints
and N contains only gradients of the violated constraints. When the
constraints are nonlinear, Eq. (11) must be applied iteratively. Also
if the restoration direction given by (x™% — x¢) will immediately
worsen any active constraint, then the restoration direction is pro-
jected tangent to them using Eq. (6). This restoration is performed
until all violated constraints are simply active. Whereas implement-
ing feasible searches is not a method of transforming the classical
GA into a true constrained algorithm, it can effectively lead the GA
to constrained solutions. This is because, before a new generation
of designs is produced, all of its parent designs have been proven to
be feasible. By doing so, the GA can be altered so that it can handle
nonlinear constraint functions, which is not at all common for the
classical GA.

If an entire set of newly generated designs has been analyzed
without any improvement to the best current design, then a search
direction is determined according to the Nelder—Mead method.?
This search direction is projected tangent to any constraints that
will be immediately violated. A line search is then performed in this
search direction. The use of the nongradient Nelder—-Mead search
direction provides a reasonable direction in which to pursue when
the GA has otherwise yielded no improvement in the design cycle.

Geometry Treatment

The external geometry of the hypersonic vehicle configuration
constitutes the design variables. Therefore, the entire geometry must
be represented by a single vector of scalar quantities. In this study,
the method for describing the three-dimensional vehicle geometry
was done in several ways depending on the type of problem consid-
ered. However, in all cases the surface nodes did not move axially
along the length of the body. All points were grouped onto cross-
sectional planes, and the total length of the vehicle was always
preserved. Each surface point location was specified as to how it
can vary on its cross section. Examples of different kinds of point
motions include Cartesian and polar motion, and motion according
to a chosen spline technique. '’

There is a parametric piecewise curve representation method that
uses what are called beta splines. These beta splines?' have been
used for geometric computer modeling and are closely related to the
more common v splines and B splines or Bernstein polynomials.
A beta spline curve is specified by a set of points called control
vertices. The positions of these vertices completely define the shape
of the dependent curve (beta spline), although they generally do not
lie on it. The vertices are an ordered sequence of points that form
what is referred to as the control polygon. The beta spline utilizes a
piecewise representation, to achieve local control, by defining each
segment as a function of only a few adjacent vertices. Specifically,
each curve segment can be regarded as a weighted average of four
local vertices. Let

Gi(u) = {x"(”) (12)
yi (1)

denote the ith parametric two-dimensional beta curve segment,
where u is a nondimensional curve following coordinate that varies
from 0 at the beginning of the segment to unity at the end of the
segment. In the case of a cubic beta spline, this segment is dependent
on four neighboring vertices according to

1
Gi(u) = Z by (B1, Pos WVisr O=u<l 13)

r=-2

where V, ., is the (i + r)th control vertex position vector. The scalar
weighting factors in Eq. (13), b, (B1, B2; u), are called basis func-
tions. These basis functions depend on the domain parameter u and

two shape parameters 8, and f,. Each basis function is itself defined
as a cubic polynomial,

3

br(Br. Briw) =Y ;. (B, B! (14

j=0

In Eq. (14), there are 16 unknown constants, c; (8, f2), where
O0<u~<l1,j=0123andr = -2,—1,0, and 1. These
constants are fixed quantities (provided 8, and 8, are fixed), which
can be found by imposing the following three connectivity boundary
conditions on any two neighboring segments:

G 1(0) =G;(1) (15)
dG;.,(0) , dG;(1)
an =g an (16)
de,-+1(0)_ ,d%G; (1) dG; (1)
wr PiTae TRy, an

The first boundary condition [Eq. (15)] enforces simple connectivity.
The second boundary condition [Eq. (16)] is derived from enforcing
continuity of the unit tangent vector at the joint of two segments. The
last boundary condition [Eq. (17)] comes from imposing continuity
of the curvature vector (and thus curvature) at the connecting point
of two adjacent segments.

The shape parameter f, is referred to as the bias parameter. For
purposes of the present study, the bias parameter was set to unity.
The other shape parameter, $,, is called the tension parameter and
should always be positive. For high values of §,, the beta curve will
be strongly attracted to the control vertices, and in the limit, will be
identical to the control polygon. In this study, 8, was also fixed at
unity.

Implementing beta splines for the control of the geometry in this
study was accomplished by specifying the number of control vertices
on each of the x, y parallel planes. The locations of the control
vertices are defined to be the design variables to be optimized.

Results

A single computer program was produced that performed the
three-dimensional hypersonic vehicle shape optimization. Two op-
timization techniques were included: the hybrid gradient and the
hybrid genetic techniques. Also, two analysis methods were in-
cluded: modified Newtonian impact theory (MNIT) and a parabo-
lized Navier—Stokes (PNS) solver. Either optimizer could use either
flow solver at any point during execution.

In most of the cases that follow (except for verification case 1,
which did not utilize the optimizers), two inequality constraints were
imposed, in addition to any other constraints that are mentioned. It
is convenient to explain them here. The first, which will be called the
no twist constraint, simply prevents the optimizer from evaluating
a design that has an overlap in the cross-sectional geometry. The
value of the inequality constraint function is equal to the area that is
twisted or pinched off, which should be less than or equal to zero.
The second will be called the minimum thickness constraint. This
constraint is defined as a tolerance of 3 mm, minus the shortest
distance from any surface node to any other surface node or panel
center. This constraint effectively keeps any part of the geometry
cross section from becoming too jagged or spiked.

Verification Test 1: Half-Sphere-Cone Analysis

The accuracy of our MNIT code was compared to the results
from a series of hypersonic wind-tunnel experiments?? that were
performed on three-dimensional models called half-sphere-cones.
Aerodynamic measurements were taken for a wide range of angles
of attack, for several different values of Mach number. This test
case attempts to duplicate these experimental measurements using
the MNIT flow solver.

One particular set of experimental data was chosen for compari-
son. The geometry of the chosen half-sphere-cone is showninFig. 1.
The radius of curvature of the hemispherical nose measured 0.365in.
The diameter of the semicircular rear plane measured 2.43 in. The
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Fig. 2 Computed and experimental lift and drag coefficients: ——,
computed lift coefficient; A, experimental lift coefficient; ———, computed
drag coefficient; and m, experimental drag coefficient.

total length of the model measured 4.0 in., and the planform area was
6.025 in.2. This model was subjected to a flow at a Mach number of
12.6; the Reynolds number (based on model length) was 4.9 x 10°.
These test conditions were duplicated and analyzed using the
MNIT flow solver. The MNIT analyses were performed for angles
of attack ranging from —60 to 60 deg, stepping every 10 deg. Figure 2
displays MNIT computed and experimental values for lift and drag
coefficients. These coefficients use planform area and a dynamic
pressure of 2320.78 psf for normalization. The computed results
shown in Fig. 2 show good agreement with the experimental data,
although MNIT represents an oversimplified model of physics.

Verification Test 2: Wave Drag Minimization

This test case is intended to validate the operation of the opti-
mization techniques. In this exercise, the geometry of axisymmetric
body was optimized to reduce wave drag at zero angle of attack. Op-
timal bodies of revolution that minimize drag have previously been
analytically determined. Two such solutions are known as the von
Kdrmadn and Sears—Haack bodies.?® These two bodies yield the min-
imum wave drag under two different sets of assumptions. The von
Kérmdn body assumes that the body terminates with a flat plane,
that the base area in this plane is known, and that the total length of
the body is specified. The Sears—Haack body assumes that the body
is pointed at both ends (a spindle), that the total volume is known,
and that the total length of the body is given. In our test case only
the front-half of this body is of interest.

The hybrid gradient optimizer was used to determine computa-
tionally the body of revolution that minimizes wave drag at Mach =
10 and an altitude of 18 km. The MNIT was used for the flowfield
analyses. Initially, the body was specified to be a 10-m long, 15-
deg angle right circular cone. The design variables for this exercise
were specified to be the radii of the body at 10 cross sections. Each
design variable (the cross-sectional radii) was allowed to vary from
0to 10 m. During the optimization process, the total volume of the
body was constrained (with an equality constraint) not to change
by more than 1.0 m* from its initial value. In addition, the no twist
and minimum thickness inequality constraints were imposed. The
optimization process converged to the bulged axisymmetric body
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Fig. 3 Profile comparison of initial, optimized, and analytically opti-
mal geometries: W, initial cone; o, optimized body; —, von Kirman
ogive; and - — —, Sears—-Haack spindle.
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Fig. 4 Profile comparison of initial, optimized, and analytically opti-
mal geometries: total length and center of aerodynamic pressure speci-
fied; spherical nose, length, and rear area were fixed: m, initial; o, opti-
mized; and —, analytic.

called an ogive that reduced the drag by 42%. Figure 3 displays
plots of the profiles of the initial and final (optimized) bodies. The
base area of the optimized body, and the total volume (fixed) were
used to compute von Kdrmén and Sears—Haack bodies. The profiles
of these analytically optimal bodies of revolution are also plotted in
Fig. 3. Inspection of Fig. 3 shows the computed optimized body to
be in excellent agreement with the analytic bodies.

Verification Test 3: Specified Center of Pressure

In this exercise, an initial body was optimized to minimize drag
at zero angle of attack using the hybrid gradient optimizer and the
MNIT flow solver. The initial body is a right circular cone with a
spherical nose. The initial profile of the body was linear and tangent
to the spherical nose.

The optimization problem was to find the optimal body that min-
imizes drag such that the total length of the body was fixed, the
base area and radius were fixed, the radius of curvature of the nose
was fixed, and the aerodynamic center of pressure Xcp Was specified.
The center of pressure was preserved using an equality constraint.
The design variables were the radii of the nine cross sections between
the spherical nose and the base. The spherical nose was described
by 10 fixed cross sections.

The analytic solution to this problem has been previously
determined' using Newton impact theory assumptions. The opti-
mization process converged to the body shown in Fig. 4, which also
shows profiles of the initial, the optimized, and the analytically op-
timal body. This figure shows an excellent agreement between the
computed and the analytically optimum bodies.

Exploratory Case 1

In case 1, an initial body was optimized to minimize wave drag
at zero angle of attack using the hybrid gradient optimizer and the
MNIT flow solver. The initial shape was a right circular cone de-
scribed earlier. The shape of the body was optimized holding its
total length fixed. Total volume was constrained to remain constant
(using an equality constraint), and the no twist and the minimum
thickness inequality constraints were imposed. The geometry was
described by 6 cross-sectional planes with 40 nodes on each plane.
All of the surface nodes on the first cross section moved together
radially and were controlled by one design variable. On the other



40 FOSTER AND DULIKRAVICH

Fig. 5 Optimized star-shaped body: drag minimized using hybrid gra-
dient technique; initial geometry was a 15-deg circular cone, 391 design
variables, Mach = 10, and altitude = 18 km.
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Fig. 6 Convergence history for the nonlifting body.

five planes, all of the surface nodes had two degrees of freedom
except for the seam points that were allowed to move only verti-
cally (in the y direction) in the symmetry plane. The total number
of design variables was 391. Figure 5 shows the final optimized
body. The final configuration reduced drag by 77% over 75 design
cycles and called the flow solver 60,001 times. The execution took
4282 s on a Cray C-90 computer with a single processor. Figure 6
displays the hybrid gradient optimizer convergence history for this
case.

The initial geometry and the final optimized geometry were then
analyzed using the PNS flow solver.?* The size of the computational
grid was 240 circumferential cells x 30 radial cells x 200 longitu-
dinal cells. The freestream temperature, density, and Mach number
were specified to be 218 K, 0.1206 kg/m?, and 10, respectively. A
nonequilibrium gas model and Wilkes mixing rule were used in the
PNS flow analysis. The total drag of the optimized body, as com-
puted by the PNS flowfield solver, was found to be 53% lower than
the drag of the initial conical geometry.

The predominant characteristic of the optimized geometry is the
deep channels that formed along the length of the body. Star-shaped
hypersonic projectile shapes have been studied experimentally in the
past.2>26 Russian researchers?” determined that star-shaped bodies
are optimal (have lowest drag) at high Mach numbers and at alti-
tudes below 90 km because of their shock capturing characteristics.
Another characteristic of the optimal body shown in Fig. 5 is the
needled nose. The conical shape of the nose was enforced because
geometry of the first cross section was specified to be dependent on
one design variable: radial distance from the axis. To reduce drag,
the optimizer could only reduce the inclination angle of these pan-
els by reducing the radius of the first cross section and adding the
resulting lost volume by increasing the size of the spikes on the aft
body. Aerodynamic bodies that have needled noses have also been
studied.?®? The fact that the nose was driven by the optimizer to

Fig. 7 Optimized lifting body: drag minimized using hybrid gradi-
ent technique; initial geometry was a 15-deg circular cone, 240 design
variables, Mach = 10, and altitude = 18 km.

a slender cone rather than to a wide cone is interesting in light of
these previous studies.

Exploratory Case 2

An initial body was optimized to maximize the lift to drag ratio
at zero angle of attack using the MNIT flowfield solver. For this
case, the initial shape was specified to be a 15-deg right circular
cone, identical to the one in exploratory case 1. The shape of the
body was optimized holding its total length and volume (equality
constraint) fixed. The no twist and minimum thickness inequality
constraints were also enforced. There were 40 points on each of
6 cross-sectional planes. Every surface node was specified to vary
radially on its cross-sectional plane. The hybrid gradient optimizer
was executed for 40 design cycles that spent 1458 CPU seconds
on a Cray C-90 and required 19,961 objective function analyses.
Figure 7 shows the final optimized body having L/D = 1.29. This
geometry is cambered and has ridges that have formed on its upper
surface. The optimizer cambered the body so that a greater surface
area on the underside faced the freestream so as to increase the lift,
and formed ridges on top of the body so that downward pressure
was minimized. Yet the body still has an ogive appearance, which
helps to reduce overall drag.

Exploratory Case 3

In this case, everything was the same as in exploratory case 2
(including the constraints), except that the geometry for this case
was entirely described using beta splines. Therefore, the design vari-
ables for this case were specified to be the locations of the beta spline
control vertices, and the actual geometry surface was generated by
computing the beta splines, which depend on the control vertices.
Only one-half of the geometry was optimized, and the other half
was mirrored across the vertical plane of symmetry where the slope
of the geometry was specified to be perpendicular to the plane of
symmetry. Initially, the geometry was modeled using only one beta
spline on each half cross section. This modeling required 6 x 4 =24
design variables for the entire geometry. The hybrid gradient opti-
mizer was used until convergence was reached, at which point the
converged geometry was redefined using two beta splines on each
half cross section, and the optimization process was restarted. This
redefined geometrical model required 6 x 8 = 48 design variables
for the entire geometry. Once again, when convergence was reached,
more degrees of freedom were added to the problem. This entire cy-
cle was repeated twice more: first with 6 x 24 = 144 design variables
and finally with 6 x 40 = 240 design variables for the entire geom-
etry. Figure 8 shows the convergence history for the entire process.
Figure 9 shows the converged geometry for the final stage of the
procedure. The final lift to drag ratio was L/D = 1.77, and the en-
tire optimization process required a total of 5288 objective function
analyses and a total of 141 CPU seconds on a Cray C-90. The results
from this case demonstrate that the use of beta splines in geometry
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Fig. 8 Convergence history of hybrid gradient technique: number of
beta splines progressively increased; ¢, number of design variables
(NDV) =24; O, NDV =48; A, NDV = 144; and x, NDV = 240,

Fig. 9 Optimized geometry (lift/drag maximized) using 240 design
variables and the hybrid gradient technique.

definition can lead to an improved design costing fewer objective
function analyses. Because fewer design variables were used at first,
the optimizer was able to quickly determine the general features of
the optimal design. After progressively adding degrees of freedom
to the geometry, the final solution had a comparatively high L/D
and was smooth and realistic looking.

Exploratory Case 4

This case is exactly the same as exploratory case 3 (including
the constraints) except the hybrid genetic optimizer was used for
the entire execution and the geometry was only redefined once. The
initial shape was modeled by one beta spline on each half cross
section (6 x 4 = 24 design variables). This case was executed for
600 design cycles requiring 15,287 objective function analyses and
2660 CPU seconds on a Cray C-90. After convergence was reached,
the geometry (Fig. 10) was redefined using two beta splines on each
half cross section (6 x 8 = 48 design variables) and the optimization
process was continued for an additional 129 design cycles requiring
3122 objective function analyses and 2355 CPU seconds. The final
optimized geometry is shown in Fig. 11, depicting a shoveled or
spatulate nose typical of a low-drag geometry on hypersonic wa-
veriders. The fact that the geometry did not completely smooth out
to such a shape probably is due in large part to only having six
cross-sectional planes to vary. An even more shoveled nose may
have been produced if more planes were allowed to vary clustered
near the front of the geometry.

The final value for the lift to drag ratio was L/ D =2.4527. This
value for L/D is higher than that of any other case in this study.
Interestingly, this case is modeled with the fewest number of geo-
metric design variables (48 for the entire body, using beta splines).
This case shows the ability of the hybrid genetic optimizer to ef-
fectively find optimal designs. Note that the point at which more
degrees of freedom were added to the problem and the point at
which the entire execution was stopped were chosen by inspection
of the convergence history. Unlike gradient methods, the hybrid
(or any) genetic optimization technique does not generally exhibit

Fig. 10 Optimized geometry (lift/drag maximized) using 24 design
variables and the hybrid genetic technique.

Fig. 11 Optimized geometry (lift/drag maximized) using 48 design
variables and the hybrid genetic technique.

0 5000 10000 15000 20000
Number of Objective Function Analyses

Fig. 12 Convergence comparison of both hybrid techniques: — —,
hybrid gradient [number of design variables (NDV) = 24, 48, 144, 240],
———, hybrid genetic (NDV = 24); and ¢, hybrid genetic (NDV = 48).

smooth convergence characteristics. Rather, they may show slow
(or no) improvement on the design over many design cycles; then
suddenly dramatic improvement may occur. The implementation of
a Nelder-Mead search direction calculation, as was done in the cur-
rent hybrid genetic method, can significantly improve convergence
regularity. Even so, there is no way to know whether convergence
has actually been reached or whether a large design improvement
is only a few design cycles away, when using most nongradient
methods.

Figure 12 displays the decrease of the cost functions for this
case and exploratory case 3 plotted together against the number
of objective function analyses. This figure shows that the hybrid
gradient optimizer initially reduces the cost function with fewer cost
function analyses; however, the hybrid genetic optimizer quickly
surpasses the gradient method and obtains designs that have a higher
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L/D than any design that the gradient method ever achieves. This
indicates that the hybrid GA avoided a local minimum and that the
gradient method could not.

Conclusions

Results from this study have indicated that hybrid nongradient
methods can be effectively applied to difficult engineering problems.
A hybrid GA that has been shown to achieve convergence rates
comparable with more standard gradient techniques was developed.
Furthermore, the hybrid GA was able to explore design configura-
tions that gradient methods would not. The hybrid GA presented
was also able to simultaneously adhere to inequality and equality
constraints.

When the hybrid GA is applied to shape optimization in which
the objective function depends on aerodynamic properties computed
from a flow analysis, it is advantageous to describe the variable ge-
ometry using local control spline techniques. The use of beta splines
was shown to effectively lead to optimized geometry configurations
when either technique was used.

Both the MNIT and the PNS flowfield analysis methods can be
used with either of the optimization techniques. It was found, how-
ever, that the PNS flow solver could be used in the optimization
cycle only in restricted cases. During the course of the optimiza-
tion procedure, intermediate design geometries that may cause ar-
eas of recirculation in the flowfield need to be analyzed. The PNS
flow solver will become unstable and fail during the flow analysis
for such geometries. Therefore, additional geometrical constraints
might be required to keep intermediate designs adequately smooth
so that flow analyses will maintain stability. Alternatively, the PNS
flowfield solver can be used to verify the final results that are ob-
tained using the MNIT flow analysis method, as was done in this
study.

The MNIT flow solver was used extensively in this study. How-
ever, because of its simplicity the MNIT does not account for some
of the important physical phenomena that actually occur in the flow-
field. As a result, the optimizer may arrive at a design that would be
nonsensical if all of the physical phenomena were taken into con-
sideration. The optimizer is not dependent on the flow solver that
is utilized, but will search for an optimal design regardless of the
accuracy of the procedures used to compute the objective function.
For this reason it would be desirable to use a flow solver that ac-
counts for the true physical phenomena in the flowfield, such as a
full Navier-Stokes flowfield solver, with an optimizer that requires
the fewest number of objective function analyses. Nevertheless, as a
preliminary design tool, the hybrid techniques presented show great
promise in finding optimized solutions to constrained problems.

From the results in this study, it can be seen that the internal
design update logic of the hybrid genetic optimization method is
much more expensive in CPU time than that in the hybrid gradient
method. However, the hybrid GA evaluates the objective function
considerably fewer times. Therefore, if a very expensive flow solver,
such as a full Navier-Stokes flow solver, were utilized then the
hybrid genetic method might be superior as far as CPU expense is
concerned. It has been seen that the hybrid genetic method can also
arrive at designs that the gradient method cannot, because the GA
is very effective at avoiding local minima. For these reasons, hybrid
genetic optimization techniques, such as the one presented in this
study, are becoming widely used to solve difficult multidisciplinary
engineering problems.
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