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Inverse Determination of
Boundary Conditions and
Sources in Steady Heat
Conduction With Heat
Generation

A Boundary Element Method (BEM) implementation for the solution of inverse or
ill-posed two-dimensional Poisson problems of steady heat conduction with heat
sources and sinks is proposed. The procedure is noniterative and cost effective,
involving only a simple modification to any existing BEM algorithm. Thermal bound-
ary conditions can be prescribed on only part of the boundary of the solid object
while the heat sources can be partially or entirely unknown. Overspecified boundary
conditions or internal temperature measurements are required in order to compensate
for the unknown conditions. The weighted residual statement, inherent in the BEM
formulation, replaces the more common iterative least-squares (L2) approach, which
is typically used in this type of ill-posed problem. An ill-conditioned matrix results
from the BEM formulation, which must be properly inverted to obtain the solution
to the ill-posed steady heat conduction problem. A singular value decomposition
(SVD) matrix solver was found to be more effective than Tikhonov regularization for
inverting the matrix. Accurate results have been obtained for several steady two-
dimensional heat conduction problems with arbitrary distributions of heat sources

where the analytic solutions were available.

Introduction

The integrity of energy-producing or -consuming devices de-
pends upon maintaining an acceptable operating temperature by
the proper removal of generated heat. For example, Joule heat-
ing generated inside electronic components strongly depends
on the frequency of the alternating electromagnetic field and
the local material properties. Another example of such domain-
distributed heat sources is the microwave heating of food and
materials processing. In the case of buried nuclear or chemical
toxic waste, the heat generated by ongoing reactions will vary
throughout the burial site. In general, the internal heat genera-
tion may lead to local overheating, potentially serious equip-
ment failures, and environmentally disastrous consequences. In
order to understand the steady thermal field in these problems,
a boundary value problem is often governed by the Poisson
equation. A well-posed problem requires either temperature,
heat flux, or convective heat transfer coefficients specified over
the entire boundary of the solid region. Well-posed Poisson
problems also require the specification of heat source intensities
throughout the domain.

However, surface measurements and continuous monitoring
of the heat sources throughout the solid are often impractical.
This is because of the intrusive nature of a large number of
sensors. In addition, using even a small number of sensors may
be impossible to achieve in practice because of highly volatile
environments (combustion chambers ) or because of the prohibi-
tively small space available for their placement (computer
chips). Thus, in many cases we are forced to solve an ill-posed
boundary value problem where no data are available on parts
of the boundary or when the heat sources are partially or entirely

Contributed by the Heat Transfer Division for publication in the JOURNAL OF
HEAT TRANSFER. Manuscript received by the Heat Transfer Division April 1995;
revision received March 1996. Keywords: Computer Codes, Conduction, Numeri-
cal Methods. Associate Technical Editor: S. Ramadhyani.

546 / Vol. 118, AUGUST 1996

unknown. It would be highly desirable to develop a nonintrusive
monitoring technique capable of utilizing overdetermined ther-
mal measurements where they are accessible to the designer.
The overspecified boundary conditions would then be used to
predict temperatures, heat fluxes, and convective heat transfer
coefficients on the inaccessible boundaries. This objective is
termed the steady inverse heat conduction problem (SIHCP).

We have developed a noniterative algorithm that can reliably
and efficiently solve inverse (ill-posed) boundary condition
problems governed by the Laplace equation in two-dimensional
multiply connected domains including temperature-dependent
material properties (Martin and Dulikravich, 1993, 1994; Duli-
kravich and Martin, 1994). An extended version of this method
was also successfully used in solving ill-posed problems in
two-dimensional elasticity (Martin et al.,, 1994). In the latter
publication, no boundary conditions for traction and deforma-
tion were known on parts of the boundary while both traction
and deformation vectors were specified on the remainder of the
boundary of the multiply connected domain.

In this paper, the problem formulation is conceptually differ-
ent from the more common unsteady inverse heat conduction
problem (UIHCP) (Beck et al., 1984). The major concern when
attempting to solve the UIHCP computationally has been with
the automatic filtering of noisy data in the discrete thermocouple
measurements. All measurement data errors, as well as numeri-
cal round-off errors, are amplified by the typical UIHCP algo-
rithms. These numerical methods are usually formulated in the
least-squares sense where the overall error between the com-
puted and measured temperatures is minimized (Kagawa et
al., 1995). Among others, the method of regulizers, discrete
mollification (Murio, 1993) against a suitable averaging kernel
and other filtering techniques have also been implemented in
order to smooth the extrapolated boundary values. To date,
many of the UTHCP solutions were performed for specific ge-
ometries and cannot be readily extended to complex geometries.
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In fact, most attention has been focused on the one-dimensional
UIHCP. Another basic concern is that relatively few UIHCP
techniques used in engineering provide a quantitative method
for determining what effect their smoothing operations have on
the accuracy of the estimates.

The theory behind our STHCP method is based on the Green’s
function solution method, commonly referred to as the Bound-
ary Element Method (BEM). It is an integral technique that
generates a set of linear algebraic equations with unknowns
confined only to the boundaries. For well-posed problems, the
resulting solution matrix can be solved by Gaussian elimination
or any other standard matrix inverter. When an ill-posed prob-
lem is encountered, the matrix becomes ill-conditioned. We
have shown that the proper solution to this matrix provides
accurate results to various SIHCPs. This method has been
shown to suppress the amplification in measurement errors
(Martin and Dulikravich, 1994) in the input data while both
minimizing the variance in the output and preventing output
bias. The approach is somewhat similar, at least in theory, to
those delivered by Backus and Gilbert (1970) and Lanczos
(1961). These authors have discussed techniques that allow
one to selectively discard eigenvalues and eigenvectors of a
particular system of equations that tend to magnify errors.

Numerical Formulation

This paper elaborates on a simple, robust, and fast numerical
solution to the ill-posed two-dimensional Poisson equation us-
ing the BEM. The algorithm is applicable to complex, multiply
connected, two and three-dimensional geometries. The BEM
(Brebbia, 1978) is based upon a Green’s function solution pro-
cedure. It has certain distinct advantages over other more com-
mon numerical methods. First, the analytic solution to the partial
differential equation, in the form of the Green’s function, is
part of the BEM solution. Therefore, high accuracy is expected
with the BEM because introducing the Green’s functions does
not introduce any error into the solution. In addition, the BEM

Nomenclature

does not, like the Finite Element Method (FEM), neglect the
interelement continuity terms. Third, the degrees of freedom of
the system are reduced such that unknowns are strictly confined
to the boundaries of the domain. Most importantly, the nonitera-
tive nature of the BEM eliminates stability and convergence
problems.

The governing partial differential equation for steady-state
heat conduction in a two-dimensional solid with a constant
coefficient of thermal conductivity, and arbitrarily distributed
heat sources or sinks per unit area is

kVT(x) + g(x) =0 (1)
This equation can be nondimensionalized by introducing
T - Tmin i
u=——/@—#—- b= & (2)
(Tmax - Tmin) k(Tmax - Tmin)

where [ is a characteristic length. The nondimensional form of
Eq. (1) then becomes

Viu(x) + b(x) =0 (3)

This elliptic partial differential equation can be subject to the
Dirichiet boundary conditions, 4 = i7;, on the boundaries Iy,
the Neumann boundary conditions, du/0n = g, on the bound-
aries I';, and, when a boundary is exposed to a moving fluid,
the Robin (convective heat transfer) boundary conditions,
—k(Bul/dn) = h(& — Ump)3, ON the boundaries I';. When an
ill-posed boundary condition problem is encountered, the
boundaries I'y have both ¥ = &, and ¢ = g, specified, while
nothing is known on boundaries I's, that is, # = unknown and
gs = unknown.

Boundary Element Method. When a partial differential
equation is formulated numerically, an approximate solution,
which is, in general, not the exact solution, must be used. There-
fore, error, often called the residual, is introduced into the prob-
lem. The weighted residual statement minimizes this error by

[A] = coefficient matrix multiplying a
vector of unknowns tion

n = local outward unit normal direc-

o = standard deviation
0? = variance

A,.. = Fourier sine coefficients
b = nondimensional internal heat
source function
{B} = vector of nodal nondimensional
heat sources
B,.. = Fourier cosine coefficient
[C] = SVD matrix whose columns are
an orthonormal basis that spans
the range of [A]
[D] = SVD matrix whose columns are
an orthonormal basis for the null-
space of [A]
E = error
{F} = vector of known sources and
boundary conditions
g = internal heat source per unit
domain
[G] = BEM coefficient matrix multi-
plying nodal fluxes
h = convective heat transfer coeffi-
cient
[H] = BEM coefficient matrix multi-
plying nodal potentials
[I] = identity matrix
J, = Bessel function of integer order n
k = coefficient of thermal conductiv-

ity
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Ai = local outward unit normal vector
N = number of nodes
[P] = BEM coefficient matrix multi-
plying nodal sources
g = nondimensional flux
{Q} = vector of nodal nondimensional
fluxes
R = random number with uniform dis-
tribution between 0.0 and 1.0
T = temperature
u = nondimensional temperature or
potential
{U} = vector of nodal potentials
w = weighting function
x = real space coordinate (x;, x)
y = coordinate of integration (y,, y2)
Y, = Bessel function of integer order

I

n
I" = boundary contour
6 = Dirac delta function
@ = circumferential angle
A = Tikhonov regularization parame-
ter
Unm = roOts of the characteristic equa-
tion
p = nondimensional radius

T = singularity threshold
Q! = domain

Subscripts

a = inner circular boundary
amb = ambient fluid quantities
b = outer circular boundary
int = internal temperature measurement
Jj = column index of coefficient
matrix A
max = maximum value of temperature
min = minimum value of temperature
opt = optimum value
T = temperature
vc = domain cells
1 = Dirichlet boundary condition
2 = Neumann boundary condition
3 = Robin boundary condition
4 = overspecified boundary
conditions
5 = nonspecified boundary condition

Superscripts

* = fundamental Green’s function
T = transpose of a matrix
—1 = inverse of a matrix
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setting the weighted sum of the residuals over the entire domain
and in the boundary conditions to zero. For the Poisson equa-
tion, the weighted residual statement appears as

fn (Vuly) + b(y)w(x, y)dQY)

0 s
+ [ ) - 2y —’%—y—)drm

r
- fr (q(y) = q(y)w(x, y)dT'(y) =0 (4)

This statement is the starting point of most numerical formula-
tions. The difference among them lies in how the weighting
function is formulated and what approximating function is used.

In the BEM, the fundamental Green’s function solution,
which will be represented by u*, replaces the weighting func-
tion, w. It satisfies the following Green’s function solution equa-
tion with a unit impulsive heat source and homogeneous bound-
ary conditions:

(3

The Dirac delta function, §(x — y), has the following property:

0
fnf(Y)5(X —y)dQ = {

f(x)

The nondimensional steady heat conduction equation Eq. (3),
enters into the first integral of Eq. (4). The nondimensional
heat flux is defined as ¢ = du/On. After integrating the weighted
residual statement (4) by parts twice, retaining the Cauchy
principal value of the boundary integrals, and using the proper-
ties of the Dirac delta function (Eqs. (5) and (6)), the following
Boundary Integral Equation (BIE) is obtained (Brebbia and
Dominguez, 1989):

Viu*+6(x—y)=0

when x is outside €
L (6)
when x is inside

c(x)u(x) + J.rq*(x, y)yu(y)dl’

J.r w*(x, y)g(y)dl' + L w*(x, y)b(y)dt  (7)

The fundamenta! solution for the two-dimensional Poisson

equation is
wr o= L (——
27 Ix — ¥l

The boundary integral is singular when the observation point,
x, is on the boundary. Therefore, these singular integrals must
be evaluated in the sense of the Cauchy principal value. The
integration over the boundary, T, is divided into an infinitesimal
semicircular contour, I',, about the singular point plus the re-
maining contour, I' — T'. After taking the limit ¢ = 0, a free
term, c(x)u(x), results. For two-dimensional problems, c(x)
— 0.0 when x is outside the domain, c(X) = 1.0 when x is
inside the domain, and ¢(x) = 6/2m when X is on the boundary,
where @ is the internal angle at the corner between two neigh-
boring boundary elements.

If the temperature gradient is known at some location in the
domain, the following BIE can be derived:

(8)

YVu(x) + J‘ Vg*(x, y)u(y)dl'
T

= f Vu*(x, y)q(y)dTl’ + f Vu*(x, y)b(y)dQ  (9)
r Q

The boundary was discretized into N linear, isoparametric,
boundary elements connected at N boundary nodes. In addition,
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N, internal points existed where temperature data were speci
fied. Since the boundary elements were isoparametric, the func
tions u and g varied linearly between their values at the end-
points (nodes) of each boundary element. Each boundary ele-
ment, T';, was integrated numerically using a standard Gaussian
quadrature integration formula. Boundary elements containing
a singularity at one end-point were integrated analytically. A
set of N + N, boundary integral equations resulted, one fo
each boundary node plus one for every internal temperal
measurement. [n order to evaluate the field source integral, thej
domain, €2, was discretized into N, quadrilateral, isoparametric
bilinear cells, €;, sharing both domain and boundary nodes 8
the vertices of these quadrilaterals. ‘
The coefficients matrices [H], [G]. and [P} were computed
by integrating the fundamental solution over the linear boundz
elements and over the bilinear domain elements. The resulting
discretized form of the BIE can be represented in matrix forn

as follows (Dulikravich and Martin, 1995):

[H1{U} = [G1{Q} + [P]1{B} (10]

For a well-posed boundary value problem, every point o
the boundary is given one Dirichlet, Neumann, or Robin-typ
boundary condition, no internal temperature measurements ey
ist, and the heat source vector {B} is entirely known. Thes
boundary conditions are then multiplied by their respective ¢
efficient matrix, collected on the right-hand side and added
[P}{B} to form a vector of knowns, {F}. The left-hand sid
will remain in the standard form [A]1{X}, with the matri
[A], having N unknowns and N equations. This well-pose
system of linear algebraic equations can be solved for the ud
knowns on the boundary by any standard matrix solver such
Gaussian elimination of LU factorization. ‘

If the boundary conditions in the example above are partial
unknown or not properly applied, if internal temperature mes
surements are included in the analysis, or if part or all of the he
source function is unknown, the problem becomes ill-posed. ]
solution may still be obtained by multiplying the known quan
ties in the vectors {U}, {Q}, and {B} by their respectiy
coefficient matrix columns and collecting them into the ved
of knowns. The unknowns form a single vector, {X{
multiplied by a highly ill-conditioned coefficient matrix, [4
which is, in general, not square.

Singular Value Decomposition. Singular Value Decod
position (SVD) methods (Press et al., 1992; Throne and Olse
1994; Sykulski, 1995) are widely used for dealing with sets§
algebraic equations that are either singular or very close]
singular. The goal of the SVD is to choose a solution vecy
{X} that minimizes the error function ]

E =||{F} - [A]{X}

which is the distance from the point { F} to the point [A]{}
in the column space. Any M X N matrix [A] can be written
the product of an M X N column-orthogonal matrix, [C],
N X N diagonal matrix [S] with positive singular values, &
the transpose of an N X N orthogonal matrix [D].

0 0
0

SN

Sy
[A]=[C]| O {D]
0

The singular values, si, $2, ..., Sy, ar€ the eigenvalues o
matrix [A]7[A]. For a well-conditioned matrix, these vaid
will be roughly of the same order of magnitude. As the il
becomes more ill-conditioned, that is, more singular, these f
ues become more dispersed. Formally, the condition number
a matrix is defined as the base 10 logarithm of the ratio betwes

the largest of the s;’s to the smallest of the s;’s.
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The SVD explicitly constructs orthonormal bases for the null-
space and range of a matrix [A]. If the matrix [A] is singular,
then there is some subspace of { X }, called the nullspace, that
is mapped to zero, that is, [A]{X } = {0}. The LU factoriza-
tion and Gaussian elimination techniques may give a formal
solution to an ill-conditioned set of equations, but the solution
vector { X } will have highly oscillating components. When this
solution vector, { X }, is multiplied by the matrix [A], a very
poor approximation to the vector { F} will be the result.

Eliminating very small singular values has the effect of re-
moving those algebraic terms that, because they are dominated
by noise and round-off error, corrupt the solution. In order to
determine which singular values are to be truncated, we must
choose a parameter, 7, as a singularity threshold. Any singular
value, whose ratio with the largest singular value is less than
this singularity threshold, is zeroed out. This can be understood
as follows: If 5;/ sy < T, then 1/5; = 0.

Since [C}] and [D] are each orthogonal in the sense that
their columns are orthonormal, the solution vector can be easily
found as

{X} = [D][diag(1/sp]([C]"{F}) (13)

Tikhonov Regularization. Another type of single-parame-
ter minimization where the solution vector { X } minimizes the
weighted sum of the norm of the error vector plus a penalty
term was defined by Tikhonov (1977) as

E=|{F} - [AI{X} + NI{X}|

We find a minimum error norm by differentiating this equation
with respect to each component of the unknown vector, {X },
and setting the result equal to zero. After substituting the singu-
lar value decomposition and solving for the unknown vector
{X }, the resulting formulation is as follows:

{X} = [DIUASIT(S] + NID '[ST{C} (F} (15)

Tikhonov regularization is a generalization of least-squares
truncation, but instead of simply eliminating terms associated
with small singular values, they are weighted by a factor (1
+ M/s?). The Tikhonov regularization parameter, \, plays an
important role. A low value drives the residual term [A]1{X }
— {F} smaller, approaching the least-squares solution. Because
of the destabilizing effect of the small singular values, the solu-
tion for an ill-conditioned matrix oscillates erratically. Larger
Tikhonov regularization parameters act as a filter to gradually
reduce the effect of the singular values because s;/s.,, are less
than the regularization parameter, N. Thus, the optimal choice
of the regularization parameter provides a balance between the
accuracy and the smoothness of the solution. Tikhonov sug-
gested that this parameter can be found based upon knowledge
of the input measurement errors (Beck et al., 1985). The opti-
mum value of A\ should be chosen so that the variance in the
output vector is at its minimum.

(14)

Analytic Test Cases. The two-dimensional BEM algorithm
was verified against the analytic solution for the heat conduction
equation within an annular region. If the boundary conditions
and the heat generation in the annular domain are axisymmetric,
b = b(p), then the temperature distribution is

1
u(p) = —f [; f b(p)pdp:|dp +colnp+c¢ (16)

In case of a constant heat source function (b = constant) the
analytic solution of Eq. (16) is
pz
u=—b;+cllnp+cz (17)

where the constants of integration ¢, and ¢, can be found after
applying the boundary conditions.
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The temperature distribution within an annular domain with
an arbitrary heat source distribution, b = b(p, ) was also
needed as a test case. For this problem, the inner circular bound-
ary of the annular domain had a Dirichlet boundary condition,
u(p,) = 0, while the outer circular boundary was adiabatic.
We can obtain an eigenfunction set written in the form of the
Helmholtz equation satisfying the homogeneous boundary con-
ditions. After separation of variables and applying the single-
valuedness condition, the analytic result for the temperature
field in the annular domain is

u(p,9) =3 %

n=0 m=)

Jn(;ulnmpb)

Yn nm
Yn(/lfnmpb) (# p)]

[Jn(/‘bnmp) -

X [A,, sin nf + B,,, cos n8] (18)

The Fourier coefficients, A, and B,,, may be found knowing
that the eigenfunctions form an orthogonal set. Here, J, and Y,
are the Bessel functions of integer order n, and y,,, are the roots
of the characteristic equation (Dulikravich and Martin, 1995):

L(unm Z—) Y. m) — J;wmm(um%) =0 (19)

Results

Our inverse BEM algorithm governing the Poisson equation
was tested against the analytic solution for an annular, homoge-
neous, isotropic, planar region between two concentric circles
with nondimensionalized radii p, = 0.5 and p, = 1.2 subject
to axisymmetric nondimensional thermal boundary conditions
(u, and u;) and constant nondimensional heat generation func-
tion, b.

Effects of Discretization. In the first test case no heat
sources, (b = ), were applied. Equation (17) gives an analytic
solution for the well-posed problem, u, = 0.5 and u, = 1, that
results in the analytic values of g, = —1.134 and ¢, = 0.4976.
The outer boundary was then overspecified with both constant
nondimensional temperature and flux boundary conditions (u,
=1, g, = 0.4976) taken from the analytic solution of the well-
posed problem, while nothing was specified on the inner circular
boundary. Each outer and inner circular boundary was discret-
ized with a variable, N, = N, = M/2, isoparametric linear
boundary elements connected between the same number of
nodes. Various levels of discretization were employed such that
M/2 = 12, 24, 36, 48, 72, 84 and 144. Each BEM solution
matrix was square, (M X M), all had very similar ranges of
singular values and the condition number of each matrix was
between 7 and 8. The variances in the output temperatures
(computed on the inner boundary),

(20)

M2
U% = 2 (uj - umean)2
j=1

where e, 15 the mean value, were examined for a range of
singularity thresholds, 7, and a range of Tikhonov regularization
parameters, A, varying between 1 and 107'. The idea is to find
the optimum value, 7o OF Aoy, that simultaneously minimizes
the output variance and the bias.

The computed nondimensional temperature and flux distribu-
tions on the inner circular boundary were very accurate, ap-
proaching the analytic solution with the increasing level of dis-
cretization. Figure 1 illustrates the effect of the user-specified
singularity threshold, 7, on the computed nondimensional tem-
perature variances on the inner circular boundary for a range
of discretization levels. The bias (difference between computed
Upmean and the analytic solution) in the results approached zero
as the level of discretization increased while the output variance
reached a minimum at about M/2 = 36 linear boundary ele-
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Fig. 1 Variances in the output (computed inner boundary) nondimen-
sional temperatures as a function of the SVD singularity thresholds, 7. A
range of M/2 boundary elements were used to discretize each circular
boundary of the annular region.

ments per circular boundary. This bias was, therefore, attributed
to the fact that linear elements were used to model the circular
geometry. The level of discretization was found to have no
effect on 7. The effective range of 7 that produced the mini-
mum variance and bias for all levels of discretization was 0.004
=7 = 0.08.

On the other hand, the level of discretization had some influ-
ence on Tikhonov’s regularization scheme. After the BEM ma-
trices were integrated and the singular value decomposition
computed, an iterative quadratic optimization algorithm was
employed in order to determine \,,. The value of A was allowed
to vary while the cost function

f( )\) = wvarU%' + Whias ( Umean — uanalytic ) 2 (21 )

was minimized. Here w,,, and wy, are user-specified weighting
coefficients for the variance and the bias. With wy, = Wy, =
1, the optimum Tikhonov regularization parameter was usually
found in 5 to 10 computationally inexpensive iterations.

Results With Input Data Noise. The major concern of
researchers working on inverse problems is with the sensitivity
of their algorithms to errors in the specified boundary condi-
tions. In order to verify that our STHCP technique did not am-
plify the input data errors, random Gaussian noise was intro-
duced into the temperature function supplied to the outer circu-
lar boundary. The same annular geometry was used for this
purpose and the heat generation was included as a constant, b
= 1. For the temperature boundary condition on the outer
boundary a uniform random real number, R, between 0 and 1,
was generated using the RANF subroutine on the Cray C-90
computer. Using this value as the normalized probability density
function, a noisy temperature boundary condition on the outer
circular boundary was determined from the following equation:

u(8) = wpe = V=207 1n [R(8)] (22)

The sign was determined by generating another random number
with a 50/50 chance of being +/—. Here, u,. = u, = 0, is the
mean value of the temperature boundary condition on the outer
circular boundary and ¢? is the variance. With u, = u, = 0 and
b = 1 the analytic solution of the well-posed problem was
obtained from Eq. (17) with ¢, = 0.3398 and ¢, = 0.298 yield-
ing a maximum nondimensional temperature, u,, = 0.06248,
reached at the nondimensionalized radial distance p = 0.8244.
The analytic solution also gives g, = 0.4296 and g, = —0.3168.
For the inverse problem, no boundary conditions were specified
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Singularity Threshold (1)

Fig. 2 Variances in the output (computed inner boundary) nondimen-
sional temperatures and heat fluxes as a function of the SVD singularity
threshold parameter, 7, for various levels of input standard deviation, o

on the inner circular boundary while specifying u, = 0 and ¢,
= —0.3168 on the outer circular boundary. Each circular bound-
ary was discretized with M/2 = 36 boundary elements. Ten
rows of quadrilateral cells discretized the circular annular do-
main.

Our SIHCP BEM program was then tested with a variety of
input nondimensional temperature standard deviations, o, on
the outer boundary. The ill-conditioned solution matrices were
solved using the SVD algorithm and Tikhonov’s regularization
scheme. In order to determine 7., and and Aopt for each case.
Figs. 2 and 3 were generated to illustrate the behavior of these
parameters. Each figure shows the output variance in tempera-
ture versus the range of possible 7’s and \’s between 10 ~'® and
1. Notice that 7, is not a function of the input o, but Nopt 1S.

Output Variance in Temperature o2

I L L T T I T T L) T ] L ¥ T
10"° 1070 10°°

Tikhonov's Regularization Parameter 3

T
10°

Fig. 3 Variances in the output (computed inner boundary) nondimen-
sional temperatures and heat fluxes as a function of the Tikhonov’s regu-
larization parameter, A. The curves are shown for various levels of input
standard deviation, o.
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The optimum SVD threshold, 7, which occurs when the
variances in the output (inner circular boundary) nondimen-
sional temperatures and heat fluxes are minimized, remained
relatively constant and independent of all levels of input stan-
dard deviations. The input standard deviations, between 0 =< o
= 0.1, corresponding to errors from 0 up to 100 percent or
more, yielded a minimum output variance when the singularity
threshold, 7., was 0.04 =< 7 = 0.08. The value of A, was
found by the iterative optimization process described earlier.

With the optimum SVD threshold and Tikhonov’s regulariza-
tion parameters known, Figs. 4, 5, and 6 were generated to
depict the influence of the input percent errors supplied to the
outer boundary conditions in temperature (solid lines) and the
percent errors computed by the program as the inner boundary

o = 0.0001

Percent Error

T 1 ] 1 ] 1
o 2 3 4 5 6
Circumferential Location (Radians)
a
6 =0.0001

Percent Error

-1.0~ Y ‘-

-1.54 VI
| ] I 1 I

0. 1 2 3 4 5 6
Circumferential Location (Radians)
b

Fig.4 Circumferential distribution of specified (input) percentage errors
of nondimensional temperature on the outer circular boundary (full line)
and computed (output) percentage errors in nondimensional tempera-
ture (dotted line) and heat flux {dashed line) on the inner circular bound-
ary: (@) using the SVD algorithm, and (b) using Tikhonov’s regularization.
Input standard deviation was o = 0.0001.
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¢ =0.001

Percent Error

1 I 1 I T 1
0o 1 2 3 4 5 6
Circumferential Location (Radians)

Percent Error

I T | | l 1

0 . 1 2 . 3 . 4 5 . 6
Circumferential Location (Radians)
Fig.5 Circumferential distribution of specified (input) percentage errors
of nondimensional temperature on the outer circular boundary (full line)
and computed (output) percentage errors in nondimensional tempera-
ture (dotted line) and heat flux (dashed line) on the inner circular bound-

ary: (@) using the SVD algorithm, and (b) using Tikhonov’s regularization.
Input standard deviation was ¢ = 0.001.

temperatures (dotted lines) and fluxes (dashed lines). These
figures, generated for different values of input o, serve to prove
that neither the SVD nor Tikhonov’s methods amplified the
noise supplied in the input measurement data. The SVD was
less oscillatory and more accurate than Tikhonov’s scheme. We
repeated these tests by introducing input noise into the outer
boundary heat flux data to see if there would be any difference,
but similar results were found.

In addition, global energy conservation requires that the inte-
grated heat flux through the unspecified boundaries equals the
sum of all fluxes entering and leaving the domain through the
specified and overspecified boundaries plus any heat generated
inside the domain.
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Fig.6 Circumferential distribution of specified (input) percentage errors
of nondimensional temperature on the outer circular boundary (full line)
and computed (output) percentage errors in nondimensional tempera-
ture (dotted line) and heat flux {(dashed line) on the inner circular bound-
ary: (a) using the SVD algorithm, and (b) using Tikhonov’s regularization.
Input standard deviation was o = 0.01.

0s ZJ. (Vus-As)dl
rv
: (23)
=- {Z (f (Vi + #)dT) +f bdﬂ}
i=1 r; Q
Inour case, b = | and Q, = Qs = 27wp.ga = —7{2ppq, +
b(p} — p2)} = —1.35. Again, a series of tests were performed

for the same range of input standard deviations and the biases
in the net heat fluxes on the unspecified boundary were com-
puted with the SVD and Tikhonov methods.

The choice of Tikhonov’s regularization parameter, X, was
found to affect Q, strongly, although the amount of input stan-
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dard deviation did not affect Q, directly. Figure 7 readily shows
that larger values of X yielded a greater error in Q,. Obviously,
Tikhonov’s regularization introduces artificial dissipation,
which affects the physics of the problem by reducing the global
amount of heat transfer. Since larger \,,’s are required for
higher input variances, the results obtained with Tikhonov’s
regularization become increasingly biased as the input measure-
ment data becomes more corrupted and noisy. A comparison
between Figs. 3 and 7 indicates that this artificial dissipation of
heat can become unacceptably large when using very noisy
mput data.

On the other hand, the SVD did not exhibit this behavior.
Once the threshold parameter was small enough, the net heat
flux, Q,, became equal to the correct value and remained un-
changed for all smaller values of 7.

We conclude from these observations that the SVD technique
is more robust and reliable than Tikhonov’s regularization since
the latter can mislead the observer into thinking that a highly
biased result is correct because it appears to be smooth. With
the SVD, the user will immediately recognize if the chosen
value of the threshold parameter, 7, is wrong since the computed
temperatures and heat fluxes will be highly oscillatory. In addi-
tion, since the correct value of Qs is known in both well-posed
and ill-posed problems, the value of 7, can be determined from
this information after only 2—3 repetitive trials by starting with
an initial guess 7 < 0.1. This is an easier procedure than with
Tikhonov's method where A is found iteratively by simultane-
ously minimizing the variance and the bias. Even with this value
of Aoy Tikhonov’s method will create results that have a nonzero
bias, while the SVD approach offers a zero bias.

Results With an Arbitrary Heat Source Function. Our
BEM algorithm was then tested against the complete analytic
solution (Eq. (18)) for the same geometry, but with the nondi-
mensional heat generation taken as a function of both the nondi-
mensional radius, p, and azimuthal angle, §. Specifically, we
used the following expression:

b(p, 6) = sin [" — Pa n] sin 6 (24)
P — Pa

thus creating a variable heat source distribution on the upper

-0.6

)
©
1

Net Heat Flux (Q,
o
1

-1.2 4

10° 10° 10* 10° 107 10" 10°
Tikhonov's Regularization Parameter ()
Fig. 7 Variation of the integrated net heat flux, Q,, through the unspeci-
fied inner circular boundary as a function of Tikhonov’s regularization

parameters, A. The nondimensional analytic result for the net heat flux
is Q, = —1.35.
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Fig. 8 Contours of constant error levels in computed nondimensional
temperatures compared with the analytic results of the Poisson equation
on an annular domain with p, = 0.5, p, = 1.2 and b = sin {[(p — p.)/(ps
— p.)1#} sin : (@) error in numerical results obtained with the BEM for
the direct problem (u, = 0.0, g, = 0.0); (b) error in numerical results
obtained with the BEM for the inverse problem (u, = 0.0, g, = analytic,
U, = unknown, g, = unknown)

half of the annular domain and an equal distribution of the heat
sinks on the lower half of the annular domain. For the well-
posed problem, the nondimensional temperature u, = 0 was
specified on the inner circular boundary while the outer circular
boundary was kept adiabatic, g, = 0. Both inner and outer
boundaries were discretized with 36 linear isoparametric bound-
ary elements and the annular domain was discretized with 36
% 10 quadrilateral cells. Accuracy of the numerical results ob-
tained with our BEM analysis code for this well-posed test
problem is very good (Fig. 8(a)). Next, the inner circular
boundary heat fluxes were taken from the analytic solution (Eq.
(18)) and supplied as overspecified boundary conditions to-
gether with nondimensional temperature on the inner circular
boundary. No boundary conditions were specified on the outer
circular boundary. This SIHCP was solved using our BEM code.
The largest percentage errors found in the domain of the com-
puted non-dimensional temperature field were less than 0.6 per-
cent (Fig. 8(b)). Notice that the errors in both the direct (well-
posed) and inverse (ill-posed) problems were nearly identical.
The errors may seem to be somewhat larger near the boundaries
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because the singular fundamental solution is distributed over
the boundary. A higher order integration scheme would alleviate
this problem.

Results With Interior Temperature Measurements. The
BEM approach to solving inverse (ill-posed) boundary condi-
tion problems is also capable of using internal temperature mea-
surements at isolated interior points. To demonstrate this on the
same annular geometry, only the temperature u, = O was speci-
fied on the inner circular boundary. No boundary conditions
were specified on the outer circular boundary. Instead, analytical
values for temperatures at various locations within the domain
were used as additional input data. Nondimensional tempera-
tures (i, = 0.0496), corresponding to the analytical values at
p = 1 for Poisson’s equation with the boundary conditions u,
=0,u, =0, and b = 1, were specified at a finite number
of circumferentially equidistantly spaced points in the annular
domain. Each circular boundary was discretized with M/2 =
36 linear isoparametric boundary elements. A singularity thresh-
old of 7 = 0.06 was used. Figure 9(a) illustrates the isotherms
computed by the BEM algorithm when only four circumferen-
tially and equidistantly spaced internal temperatures were uti-
lized. The errors in the predicted temperature on the outer circu-
lar boundary are significant. This is understandable since the
resulting BEM equation set contained 76 equations (36 X 2 +
4 = 76) and 108 unknowns. The isotherms in Figs. 9(b) and
9(c) result from using 6 (36 X 2 + 6 = 78 equations) and 9
(36 X 2 + 9 = 81 equations) equidistantly spaced internal
temperature input points, respectively. From these figures one
notices that our algorithm produced very good results when at
Jeast 9 temperature measurements were used at equidistantly
spaced locations within the annular domain while only tempera-
ture was given on one circular boundary.

Detection of the Heat Generation Inside an Annular Disk.
In order to verify that the BEM is capable of finding the internal
heat generation field given overspecified boundary data, we
used the annular disk geometry described earlier with axisym-
metric boundary conditions, u, = u, = Oand b = 1. The resulting
analytical values for the nondimensional heat fluxes on the outer
and inner circular boundaries were g, = —0.3168 and g, =
—0.4296, respectively.

These fluxes were then used as the overspecified boundary
conditions on the outer and inner circular boundaries in order
to predict the value of the heat generation field. The accuracy
of the numerical solution was determined by how the internal
region was discretized. The outer and inner circular boundaries
were discretized with 36 linear isoparametric elements. When
the annular domain (disk area) was discretized with 36 quadri-
lateral cells circumferentially, having only one cell between the
outer and inner circular boundaries, the results were excellent.
The heat generation field was predicted with an average error
less than 0.01 percent. Similar results were found when the heat
generation field was linearly varying, b(p) = (p — pa)/(ps —
p.). But, when the domain was discretized with two or more
radial rows of quadrilateral cells, the results produced errors
that were, at worst, in error by about 30 percent. This is because
the assembled BEM matrix had at least twice as many unknowns
as it had equations. The results were significantly improved
whenever internal temperature measurements were included in
the analysis. For example, when the domain was discretized
with two rows of quadrilateral cells, a single row of 9 known
internal temperatures produced results that averaged an error of
less than 0.1 percent.

Further results have shown that whenever the temperature
field is entirely known everywhere in the domain, the resulting
solution matrix, [P], is both square and well-conditioned. After
inversion of this matrix, the unknown heat source vector { B}
can be found with an accuracy comparable to the well-posed
(forward) problem, where {B} is known and the temperature
field is the objective of the computation.
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Fig. 9 Computed curves of constant nondimensional temperature in the
annular region for the SIHCP with b = 1.0, u, = 0.0, u, = unknown, and
local temperature measurements provided at: (a) four, (b) six, and (c)
nine circumferentially equidistantly spaced points at p = 1.0

Conclusions

The BEM has been shown to provide stable and accurate
solutions to several simple ill-posed problems of the Poisson
equation where the boundary conditions or heat source functions
were partially unknown and partially overspecified. Further-
more, this technique does not iterate to minimize a global func-
tion based upon the residual between the overspecified and
computed boundary values. The magnification of errors in mea-
surement data, the need for mollifiers to smooth the intermediate
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predictions, and the influence of regularizers on the physics of
the problem have been eliminated. It was found that Singular
Value Decomposition (SVD) technique is more reliable than
Tikhonov’s regularization for this class of ill-posed problems.
This method can be readily extended to the solution of three-
dimensional (Martin and Dulikravich, 1995) inverse (ill-posed)
boundary condition problems governed by the Laplace and Pois-
son equations and to unsteady heat conduction problems involv-
ing the detection of unknown boundary conditions and initial
conditions.
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