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Acceleration of Iterative Algorithms on
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A family of new methods has been developed to accelerate the convergence rate of iterative algorithms for ob-
taining a steady-state solution as an asymptetic limit of an unsteady second-order partial differential equation or
a system of such equations. It was assumed that a central differencing has been used for spatial discretization.
The new acceleration methods are based on the sensitivity of the future residual at every grid point to the change
in the solution vector components at the neighboring grid points used in the local discretization approximation.
The acceleration parameters introduced in the methods have been optimized with the objective to minimize the
future global residual. The new sensitivity-based methods have been applied to finite difference codes for two-
and three-dimensional, laminar, incompressible flow Navier-Stokes equations; two-dimensional, turbulent, in-
compressible flow Navier-Stokes equations; and two-dimensional, compressible flow Euler equations. The new
sensitivity-based acceleration methods demonstrated superior performance in all test cases that involved severe
grid clustering and grid nonorthogonality and included laminar and turbulent flows with closed and open flow

separation.

I. Introduction

Q accurately and reliably resolve details of field problems

where variables experience very sharp gradients, it is neces-
sary to use locally highly clustered grids. Nevertheless, implicit and
explicit iterative algorithms for the integration of systems of nonlin-
ear partial differential equations suffer from a slow convergence rate
on such grids. This is because local time steps required for stability
are proportional to the local grid spacing. Several attempts have been
made to accelerate the convergence of such algorithms using local
time stepping,'-? implicit residual smoothing,> multigriding,*~7 and
preconditioning.*~!" The multigrid method is effective in reducing
low- and high-frequency errors yielding impressive convergence
rates. The preconditioning methods are very powerful in alleviat-
ing the slow convergence associated with a stiff system for solving
the low-Mach-number compressible flow equations. However, these
methods have not been shown to perform universally well on highly
clustered, nonorthogonal, three-dimensional grids.

Optimum extrapolation techniques represent an entirely differ-
ent type of convergence acceleration algorithms that belongs to the
general class of Krylov subspace methods. One such technique is
the minimal residual method (MRM), which uses an equal opti-
mal weight for the corrections to every equation'! in a system of
partial differential equations'? that is solved. The general nonlin-
ear minimal residual (GNLMR) method,!>1 allows for an identi-
cal sequence of optimized relaxation parameters to be applied to
each component of the solution vector in a system that is solved.
The distributed minimal residual (DMR) method'3~!7 allows each
component of the solution vector in a system of equations to have
its own sequence of optimized relaxation parameters. The applica-
tion of the DMR method requires that solutions from three or four
consecutive iterations be stored. This is an improvement over the
general minimal residual (GMRES) method,'® which requires stor-
ing a large number of solutions. However, none of these methods
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have been shown to accelerate the iterative convergence rates for
arbitrary systems of partial differential equations on highly clus-
tered, nonorthogonal, three-dimensional grids.

Thus, the objective of the present study is to develop a numerical
method that is capable of accelerating the convergence of arbitrary
iterative algorithms for the integration of a general system of evolu-
tionary (hyperbolic or parabolic) partial differential equations. Our
objective is also to investigate the performance of the newly devel-
oped scheme on a variety of fluid dynamic problems with a special
emphasis on the acceleration of convergence on highly clustered
and nonorthogonal grids. A four-stage Runge-Kutta (RK) time in-
tegration method with local time stepping will be used as a basic
iterative algorithm, and spatial derivatives will be approximated by
a second-order-accurate central differencing' throughout the study.
Characteristic boundary conditions will be used at the inlet, and
nonreflecting boundary conditions will be used at the exit bound-
ary of the flow domain. We will be seeking accurate steady-state
solutions only.

II. Global Sensitivity-Based Minimum
Residual Method

A system of unsteady partial differential equations can be written
asR = —3Q/dt = L(Q) where Q is the solution vector, ¢ is the time,
L is the differential operator, and R is the residual vector. Conven-
tional iterative algorithms update Q by calculating the corrections,
AQ, without optimizing their influence on the future residual.

Our sensitivity-based minimum residual (SBMR) method'~23
uses the fact that the future residual at a grid point depends upon
the changes in Q at the neighboring grid points used in the lo-
cal finite difference approximation. The sensitivities are deter-
mined by taking partial derivatives of the finite difference ap-
proximation of R, (r = 1,...,rmax where rmax is the num-
ber of equations in the system) with respect to each component
of Qns (m = 1,..., M, where M is the number of unknowns;
and s = 1,...,S, where S is the number of surrounding grid
points directly involved in the local discretization scheme). This
information is then utilized to effectively extrapolate Q so as to
minimize the future residual. Nine grid points (Fig. 1) are used to
formulate the global SBMR method for a two-dimensional prob-
lem when using central differencing,’ compared with 19 grid points
(Fig. 1) for a three-dimensional case. This approach is different from
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Fig.1 Grid points involved in two-dimensional and three-dimensional
SBMR.

our earlier DMR5~!7 method where the analytical form of R was
differentiated.

Suppose that we are performing an iterative solution of an ar-
bitrary evolutionary system using an arbitrary iteration algorithm.
Suppose we know the solution vectors @' and Q**" atiteration levels
t and ¢ + n, respectively. Here n is the number of regular iterations
performed by the original nonaccelerated algorithm. Then AQ be-
tween the two iteration levels is given as @'*" = Q' + AQ. Using
the first two terms of a Taylor series expansion in the artificial time
direction, the residual for each of the equations in the system after
n iterations is -

M N IR
R = R:+ZZEQ—'AQM m

Notice that the total number of equations in the system is the same
as the total number of unknown components of @, that is, rmax =
M. If we introduce convergence rate acceleration coefficients
ay, oy, . . ., ap multiplying corrections AQ; ¢, AQ2s, ..., AQus,
respectively, the future solution vector component QU**! at the
grid point s can be extrapoiated as

Wt = Qr L+ AQms @)

m,s

This can be applied at every grid point in the domain, but it results
in a huge system having imax x jmax X kmax x M unknown ac-
celeration coefficients a. If each of the various « is assumed to have
the same value over the entire domain D, the number of unknown «
is reduced to M. We call this pragmatic approach the global SBMR
method.'¥~23 It requires solution of a much smaller M x M matrix.
The future residual at the iteration level (¢ + n) + 1 can, therefore,
be approximated by

N

M
R(l+n)+| =R + Z [a aR:‘ AQ ] (3)
r - r m P Qm . m,s

Subtracting Eq. (1) from Eq. (3) yields

M
R£‘+")+l — R:+" + Z(am — Daym @)
m
where
N
3R! .

Arm = __—r_AQ 5
"= 50, "

The various optimum « are determined such that the sum of the
L-2 norm of the future residuals over the entire domain D will be
minimized:

2 4
rmax a[R§t+n)+l] rmax 3R}'+n)+l

D r

for m = 1,..., M. With the help of Eq. (4), the system (5)
becomes

rmax

Z Z{R;+n+XM:a,m(am—1)la,l =0
P m -

r

rmax

M Z
Z ZIR:+H+Zarm(am— l)la,z =0
P m -

L r

-]

—rmax M T
Z [Rj*" + Za,,,,(a,,, - 1)}a,M =0
m -

r

InEq. (6), the various R and a are known from the preceding iteration
levels. Since each « is assumed to have the same value over the
entire computational domain, Eq. (6) gives a tractable system of M
simultaneous algebraic equations for optimum «, a3, ... . apy:

B L)

x(@—D+ -+ [Z (rmzaxaruarl)il(au -D

D r

P[5 ()]

x (= 1)+ + [Z (Zaruarz)](au -1

D r

= — Z (,mzu R;.Ma,z)
D r

(Sl (S

x (@ = 1)+ + [Z (Zaruaru)](au -0

D r

= - Z (f R;+na,M)
D

r

)]

For the general case of a system composed of M partial differ-
ential equations with M unknowns, the system (7) will become a
full M x M symmetric matrix for M unknown optimum . For
the rest of this study, the global SBMR method'*?® will be called
SBMR method to differentiate it from its descendants, such as line
SBMR (LSBMR), plane SBMR (PSBMR), or alternating direction
plane SBMR (APSBMR) methods, that will be designed for special
purposes.

III. Line SBMR Method

Itis plausible that for nonuniform computational grids and rapidly
varying dependent variables optimum o should not necessarily be
the same over the whole computational domain. A modification
of the SBMR method called line sensitivity-based minimal resid-
ual (LSBMR) method was developed to allow various « to have
different values from one grid line to another. The resulting sys-
tem will have, for example, jmax x M unknown a, which is quite
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tractable, although it is more complex to implement than the SBMR
method. The LSBMR formulation?~2? will be explained using the
two-dimensional, incompressible flow Navier—Stokes equations as
an example. The original RK algorithm uses Chorin’s artificial
compressibility method?* that adds an artificial pressure-based un-
steady term to mass conservation. The system has three equations
(rmax = 3) and three unknowns (M = 3). These are pressure p
and the local velocity vector Cartesian components u and v. The
acceleration coefficients for those unknowns are «,, o, and a,, re-
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for j = 1,..., jmax. For a given j = const grid line, &/ appears
only in RUF™+I(G, j—1), REYM*1(, j), and RU*™+1(i, j+1) when
using central differencing in the j direction. Therefore, summation
over the entire domain leaves only the terms o/=2, o/}, @/, a/*1,
and /*? summed along each j = const grid line. Thus, oneach j =
const grid line, the M values of various constant « are determined
so as to minimize the L — 2 norm of the future global residual
summed over the entire domain D. The minimization results in
(jmax) x M algebraic equations for the same number of unknown

spectively. If the grid lines are clustered in the j direction, then optimum o
each j = const grid line will be assigned its own set of constant imax
a. .The residual at a.grid point (i, j') ir?corpora'tes various « at the 22 Z R“*"’“(z )3Rf'+")+'(i, i—D
neighboring grid points plus the point itself (Fig. 1). For the given dal,
Navier-Stokes system, this yields i=lr=1
i+1 imax
i ')R(t+n)+l(l j)
RU+m+L _ R' + Ap,, ._la;—l +2 R(:+n)+1( ~)‘
' \—,Z-l 91’\ o ; 2_:1
+ IR, Ap; ja ol + : AP'/’HO‘j+l L (t+m+1 ARV, j+ 1) |
,}p‘ YV p ")P».'+l 8. 14 +2 [R t+n)+ ( +1)r—’___ =0
i+1
dR! aR! ;
— Auy joro) ! -Auy, )
y=i-l Similar equations result for j = 1,..., jmaxandm = p, u, v. In
: this example the simultaneous system of Eq. (9) yields a block pen-
1 i+1 ' " p 3 .
AR, Au it 4 Z aR; Av. gl tadiagonal matrix equation for (jmax) x 3 optimum o where each
Ay jy1 ARG & Lovs - =% block is a 3 x 3 matrix. In the general case of a two-dimensional
r= system having M partial differential equations, the block pentadi-
IR g ) agonal system (9) will have blocks of size M x M. For example
+ ~ Av, o] i Avy, j+1a‘{+':| (8) of pressure, when m = p, the terms inside the summation sign of
vy j Vs, j+1 Eq. (9) can be written as follows:
W+l 5
R(l+n+l)(i ] _ l)aRSH- * (l' J — 1)
r ’ ,) i
dap
oy 1)+‘z’“fak'<z;—1)A 1-2+i‘°R(’f“)A "+ZW(”_I)A N
- 5, a ¥, o 'y, O
r(l'j s=i-1 apv] 2 Pri=2 s=icl OP\J 1 Psi1 smiol 3!’:! Pri P
i+1 i+l i+1
ARG, j—1) AR\, j—1) AR, j— .
= —_——— Au, j-2 —Y—Au, a”+ Au‘»af
-;1 s j-2 i +\_Z:1 Iy -1 it \_.Z—l duy j e
i+l i+l i+l .
ARI(E, j—1) 2 AR, j—1) 1 AR, j— 1) :
Av, o™t 4 Avg ol 4+ —l = Ay, &/
L .\';l av’} 2 ” \'le ()u,] 1 ! ’ .\';l (()’U_\-'/’ o B
i+1 ..
ARG, j—1)
—_— AP 10
R('+"+l)(i, j) 8R5l+")+f (lv ])
dap
r i+l . i+l ]
IR, J) | IR, ]) IRI(, j) i+l
RIG, j)+ —I " Ap, el + psiotd + Ap; ja),
’ .\*;l 317.\-,,‘—1 T .\';1 3[’;, I ’ s;l 3[)‘ j+i j+
'il‘ ARG ) . 'Z: AR )y iy i ARG J) i
= Uy, Us, j u —— AU j+1Q
y=i-=1 au" i oo y=i- Du‘/ ’ ! y=i—1 au-"vj‘H e
i+l i+l i+l ..
ARL(, j) it IR, j) j AR, J) 1
Vs, Uy, j v + —"'_A s j !j)
L +,\';l 811\} ! ~ la +\—Zl— Ov\l ! .\‘=IZ—1 8v,r,j+l vJ-Ha -
R -
aR' (@, /)
x —L——Ap,; D
L.\';l ap" !
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with a similar expression for the (i, j + 1) grid line and similar
expressions form =y andm = v.

Substituting these equations into Eq. (10) and collecting like terms
with the «,,, «,,, and a, coefficients, we can construct the first row of
each block in the block pentadiagonal matrix. Similar expressions
form = uandm = v give the second and third row of each block, re-
spectively. The overall structure of the block pentadiagonal matrix is

where

j

ap

{a/} = ai
o

and { F/} is the vector of terms that do not contain various . The row
elements of the blocks [A], [B], [C], [D], and [E] are coefficients
ofai=2, ai~! o/, ai*!, and a/*?, respectively. Each column of the
blocks [A], [B], [C], [D], and [E] corresponds to o, e, and a,,
respectively.

Application of the LSBMR method to a three-dimensional prob-
lem would result in a large, unstructured sparse block matrix rather
than a block pentadiagonal matrix as for the two-dimensional
LSBMR. For this reason it is simpler and more economical to
use the plane SBMR (PSBMR) and alternating direction SBMR
(APSBMR) methods for three-dimensional problems. The PSBMR
method assumes that each grid plane has its own set of various a.
Suppose that the j = const grid plane has a fixed set of various a.
Then the PSBMR method yields

imax kmax rmax

aR(H—n)-H(i ] ~1 k)
Grm+l; r : :
22 E E [R, @.j—-1kK ]

i=1l k=1r=1

[RMH(!. R G, j.k)]

da,

imax kmax rmax

ARG, j + 1, k)
@+m)+lee r M :
+2§ E E [R, (4, j+1K ]

i=1k=1r=1
=0 13)

form =1, ..., M. A variation of the PSBMR method, called APS-
BMR (alternating direction plane SBMR) method can be used by
applying the PSBMR method alternately on the j = const and
k = const planes. This could be useful when the grids are clustered
in both j and k directions.

IV. Computational Results

A. Two-Dimensional Flows

Convergence histories of the basic four-stage RK scheme with
local time stepping and four acceleration methods [implicit resid-
ual smoothing! (IRS), DMR, SBMR, and LSBMR] were compared
for a steady, incompressible, viscous flow in a two-dimensional
straight channel and a U-shaped turnaround channel. The inlet pres-
sure was iteratively computed by enforcing characteristic boundary
conditions, whereas at the exit boundary, we used nonreflecting

boundary conditions®>?¢ since there was a recirculating flow at the
exit of the U-shaped channel. No artificial dissipation was used in
any of these test cases. The original RK algorithm used Chorin’s
artificial compressibility method.* The Courant-Friedrichs-Lewy
number (CFL = cAt/Ax? = 2.8, where c is the equivalent speed
of sound'®!7) and the von Neumann number (¢ = vA¢/Ax? = 0.4,
where v is the kinematic viscosity) had maximum possible values

¢y (0 (EY 1( t@) [ (F')
y (@) (Fi~?)
[AI"] (B7Y] (€] (D] (BN Co {(FI=)
[A/]  [B)] [C] (D] [E/] @/} 3 =1 (F)) (12)
[Aj+l] [Bj-H] [Ci+]] [Di+l] [Ej+|] (af‘*‘l} (Fi+h)
. {a./'+2) [Fj+2}
i [Aj""‘x] [Bjmax] [ijax] 1 {aimax} {ijax}

for the four-stage RK scheme in all test cases discussed in this paper
to maximize the performance of the basic RK scheme.

First, laminar flow in a straight channel with mild symmet-
ric grid clustering towards the walls [maximum cell aspect ratio
ARpax = (Ax/AY)max = 100] was tested. The LSBMR method
was applied every freq = 100 iterations by utilizing information
from two iterations, n = 20 iterations apart. It was found to converge
faster than the SBMR method with freq = 30 and n = 10 (Fig. 2).
This was an expected result since the LSBMR method allows various
different optimum « in the clustered grid region (Fig. 3) rather than
enforcing fixed acceleration parameters over the whole computa-
tional domain as required by the SBMR. The computational results
compared??? with analytical solutions to within machine accuracy.
Convergence histories in terms of computational time consistently
mirrored the convergence histories in term of the number of iter-
ations. Both SBMR and LSBMR methods outperformed the RK
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2 8 N ba
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6 XN — SBMR(30/10)
= Sl — LSBMR(100/20)
s -8 AMER
I N, B v
- N €
S -0 \ TN S
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\ i A .:'7.:
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Fig. 2 Convergence histories for a straight channel incompressible
flow (Re = 1.6 x 10°,L/H = 5,60 X 60 grid cells, ARmax = 100, 3 = 5,
CFL = 2.8, and o = 0.4).
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Fig. 3 Evolution of optimum acceleration parameters for LSBMR
method applied to a straight channel laminar incompressible flow: a) in
a clustered grid region and b) in a coarse grid region.
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Fig. 4 Grid nonorthogonality effect on RK, SBMR, and LSBMR
convergence: a) a nonorthogonal clustered grid and b) sensitivity to
nonorthogonality angle.
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CFL = 2.8, and o = 0.4).
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Fig.8 Convergence histories for a straight channel incompressible tur-
bulent flow (Re = 1.6 x 105, L/H = 10, 60 x 120 grid cells, AR gy =
1000, 3 = 5,CFL = 2.0, and o = 0.4).

scheme over a range of grid nonorthogonality angles (Fig. 4). Both
methods depended on the user-specified frequency freq of their ap-
plication (Fig. 5) and on the number of iterations, n, that separate the
iteration levels contributing the information (Fig. 6). When the grid
clustering was increased to A Ry, = 10,000, the convergence rates
clearly slowed down for all methods tested (Fig. 7). The LSBMR
method, however, maintained a considerably faster convergence es-
pecially when combined with the simple time-step scaling® (TSS)
method. When this method was used, the continuity equation was

cpu time (seconds)
Fig. 9 Convergence histories for a straight channel incompressible

turbulent flow (Re = 1.6 x 105, L/H = 10, 60 x 120 grid cells,
ARmax = 10,000, 3 = 5, CFL = 2.0, and o = 0.4).
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Fig. 10 Convergence histories for a U-shaped channel incompressible
flow (Re = 2 x 10,129 x 80 grid cells, AR, = 200, 8 = 10, CFL =
2.8, and o = 0.9).

scaled such that J At in the clustered regions had the same order of
magnitude as that in the coarse grid regions. Here J is the determi-
nant of the local Jacobian transformation matrix between the physi-
cal (x, y) and the curvilinear nonorthogonal boundary-conforming
computational (£, n) coordinate system, while Az is the local time
step computed using standard formulation.?’ '

The convergence acceleration schemes were then tested for a tur-
bulent flow? with Reynolds number Re = 1.6 x 10° in a straight
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Fig. 11 Convergence histories for the compressible flow Euler equa-
tions (M, = 0.05).
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Fig. 12 Convergence histories for the compressible flow Euler equa-
tions (Mo = 0.675).

channel. Convergence histories for AR, = 1000 demonstrated
(Fig. 8) that the LSBMR method consistently outperformed other
acceleration schemes. When the grid clustering was increased to
ARmax = 10,000, the LSBMR converged consistently faster than
all other acceleration schemes (Fig. 9). It is interesting to notice that
TSS did not have any effect when applied to the basic RK scheme,
but it achieved impressive acceleration (Fig. 9) when applied
together with the LSBMR method. The acceleration methods were
also tested for situations with flow separation that stretches through
the exit plane.?223 We computed laminar flow in a U-shaped chan-
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Fig. 13 Convergence histories for the compressible flow Euler equa-
tions (M = 0.675) with smaller artificial dissipation.
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Fig. 14 Convergence histories for a straight square duct incompress-
ible flow (Re = 2 x 10%,24 x 20 x 20 grid cells, and ARpax = 127).

nel with computational grid symmetrically clustered towards the
channel walls. With AR,., = 200, the LSBMR method offered
the fastest convergence (Fig. 10). In this test case the RK with
CFL = 2.8 was faster than the RK-based IRS, although performance
of the IRS was maximized by finding its coefficients using numerical
experimentation.

Performance of the SBMR method was next evaluated against
the DMR method and the RK scheme for inviscid compressible
flows. Convergence rates of existing algorithms are very stow when
integrating compressible flow equations at low Mach numbers!s
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Fig. 15 Convergence histories for a straight square duct incompress-
ible flow (Re = 2 x 103,24 X 20 X 20 grid cells, and AR nax = 318).
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Fig. 17 Evolution of optimum acceleration parameters for APSBMR
method applied to a laminar incompressible flow in a straight square
duct (3 = 5, ARmax = 318, freq = 100, and n = 10).

because of the excessive stiffness of the system. We used a second-
order-accurate one-sided differencing at the boundary points. A
combination of second- and fourth-order artificial dissipation' was
used in a fully conservative form to eliminate even-odd decoupling.
A flow tangency boundary condition was employed on the solid
boundaries. The test geometry was a straight channel with the com-
putational grid composed of 64 x 32 cells clustered towards the
bottom wall having a circular arc bump.* Grid cells in the main
stream direction were clustered in the constant height sections of
the channel towards the leading edge and the trailing edge of the
arc, whereas a uniform grid spacing was used in the arc section. Inall
test cases, both SBMR and DMR methods were applied after every
30iterations. The DMR method combined two consecutive iteration
steps, whereas the SBMR method used the results of n = 5 iteration
levels apart except for the case of inlet Mach number M, = 0.675
where the results of n = 10 levels apart were used. The convergence
histories for M,, = 0.05 (Fig. 11) are equally impressive for both
SBMR and DMR methods. They reduced the number of iterations
and the computing time by 84% for this stiff system. The actual
CPU time overhead per iteration for the SBMR method was found
to be 8.8%, whereas it was 2.4% for the DMR method for the test
cases done here. The transonic (M, = 0.675) test case required an
artificial dissipation five times larger to stabilize the solution with
a shock wave.?? Convergence of the basic RK iteration scheme was
much faster than for the low subsonic case (Fig. 12), and no con-
vergence acceleration was obtained by either the SBMR method or
the DMR method. When the artificial dissipation was reduced,?**
the SBMR method performed better than the RK scheme (Fig. 13).
This was understandable since the present formulation of the SBMR
method did not account for the artificial dissipation terms. It used
various constant o at every grid point, and it was based on a central
differencing, thus violating proper domain of dependence in locally
supersonic flows.
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B. Three-Dimensional Flow

The performances of the SBMR, PSBMR, and APSBMR, meth-
ods were compared for a fully developed laminar incompressible
flow through a straight duct with a unit square cross section having
a length of 10 units. The grid was clustered symmetrically toward
the solid walls, and a uniform grid spacing was used in the axial x
direction. Chorin’s compressibility coefficient, 8 = 5, was used in
this case. At the inlet boundary, a fully developed three-dimensional
laminar velocity profile was given, pressure was computed from
characteristic boundary conditions, and a nonreflecting boundary
condition was used at the exit boundary.?*?6 The SBMR method
was applied after every 50 iterations utilizing the results n = 10
iteration levels apart. The convergence histories for A Rypax = 127
(Fig. 14) and A R, = 318 (Fig. 15) demonstrated that the PSBMR
and especially the APSBMR method reduced the computing time by
about 50%, although optimum acceleration parameters for SBMR
rapidly stabilize (Fig. 16), whereas these parameters for APSBMR
in clustered and coarse grid regions continue changing (Fig. 17)
throughout the iterative process.

V. Conclusions and Recommendations

The sensitivity-based minimal residual method and its variations
were found to be applicable to a general system of time-dependent
second-order partial differential equations and systems of such equa-
tions. The performance of the SBMR and the LSBMR methods de-
pended on how frequently these methods are applied during the basic
iteration process. The performance also depended on the number
of iterations performed with the basic iterative algorithm between
the two iteration levels that are involved in the evaluation of the
change of the solution vector. In the case of two-dimensional in-
compressible viscous flows without a severe pressure gradient, the
SBMR and LSBMR methods significantly accelerated the conver-
gence of iterative procedure on clustered grids with the LSBMR
method becoming more efficient as grids become more clustered.
For a two-dimensional incompressible laminar flow, the SBMR and
the LSBMR methods maintained fast convergence for nonorthogo-
nal grids and for flows with closed and open flow separation. The
TSS method, used together with the RK scheme and the LSBMR
method, greatly enhanced the convergence rates when solving two-
dimensional incompressible laminar and turbulent flows through a
straight channel with highly clustered grids. The TSS method war-
rants further study since its performance with the basic RK scheme
deteriorated with the increase in grid clustering. The SBMR method
accelerated the convergence of inviscid, low-Mach-number, com-
pressible flows where the system was very stiff. However, the SBMR
method did not offer any convergence acceleration for a transonic
flow where there was a large amount of artificial dissipation that was
not incorporated in the sensitivity analysis. The APSBMR method,
a three-dimensional analogy of the LSBMR method, successfully
reduces the computational effort for solving a three-dimensional,
laminar flow through a straight duct without flow separation. The
general formulation of our new acceleration methods is applicable
to any iteration scheme (explicit or implicit) and it requires only
two iteration levels to be stored. Future research should explore the
possibilities for combining our methods with other iteration algo-
rithms and with other acceleration methods to achieve a cumulative
acceleration effect.
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