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AN INVERSE METHOD FOR FINDING UNKNOWN
SURFACE TRACTIONS AND DEFORMATIONS
IN ELASTOSTATICS

T. J. Martin, J. D. Halderman and G. S. Dulikravich

Department of Aerospace Engineering, 233 Hammond Building, The Pennsylvania State University,
University Park, PA 16802, U.S.A.

Abstract—We have developed a non-iterative algorithm for determining unknown deformations and
tractions on surfaces of arbitrarily shaped solids where these quantities cannot be measured or evaluated.
For this inverse boundary value technique to work, both deformations and tractions must be available
and applied simuitaneously on at least a part of the object’s surface called an over-specified boundary.
Our method is non-iterative only because it utilizes the boundary element method (BEM) to calculate
deformations and tractions on surfaces where they are unavailable and simultaneously computes the stress
and deformation field within the entire object. Inversely computed displacement and stress fields within
simple solids and on their boundaries were in exceilent agreement with the BEM analysis results and
analytic solutions. Our algorithm is highly flexible in treating complex geometries and mixed elastostatics
boundary conditions. The accuracy and reliability of this technique deteriorates when the known surface
conditions are only slightly over-specified and far from the inaccessible surfaces.

INTRODUCTION

The objective of our steady-state inverse elastostatics
problem is to deduce displacements and tractions on
any surfaces or surface elements where such infor-
mation is unknown. It is often difficuit and even
impossible to place strain gauges and take measure-
ments on a particular surface of a solid body either
due to its small size or geometric inaccessibility or
because of the severity of the environment on that
surface. With our inverse method these unknown
elastostatics boundary values are deduced from ad-
ditional displacement and surface traction measure-
ments made at a finite number of points within the
solid or on some other surfaces of the solid. Our
approach is robust and fast since it is non-iterative.
A similar inverse boundary value formulation has
been shown [1-5] to compute meaningful and accu-
rate thermal fields during a single analysis using a
straightforward modification to the boundary el-
ement method (BEM) non-linear heat conduction
analysis code and electric potential field.

It should be pointed out that the types of inverse
problems to be discussed in this paper are con-
ceptually different from a more familar inverse
shape design problem [6-8] and from the unsteady
inverse heat conduction problem [9-11]. These
methods are iterative and inherently unstable thus
requiring complex regularization algorithms[12].
Our inverse boundary value method is non-iterative
only because it uses the BEM. If finite difference,
finite element, spectral element or some other non-in-
tegral formulation is used instead of the BEM, our
inverse boundary condition method would become
iterative.
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The BEM is a very accurate and efficient tech-
nique [13, 14] that can solve boundary value problems
such as those governing heat conduction, electromag-
netic fields, fluid flow, elasticity and many other
physical phenomena. When analyzing steady-state
elasticity problems using the BEM, either displace-
ment vectors, u, or surface traction vectors, p, are
specified everywhere on the surface of the solid where
one of these quantities is known while the other is
unknown. When performing an inverse evaluation of
the steady-state elasticity problem using the BEM,
both u and p must be specified on a part of the solid’s
surface, while both u and p are unknown on another
part of the surface. Elsewhere on the solid’s surface,
either u or p should be applied. The surface section
where both u and p are specified simultaneously is
called the overspecified boundary.

ANALYTICAL AND NUMERICAL FORMULATION

The two-dimensional state of stress at a point is
defined using a second order symmetric stress tensor,
o. These stress components must satisfy the following
equilibrium equations [14] throughout the interior of
the solid body shown here in indicial notation,

doy,

!

+b,=0 wherej=1,2andk=1,2 (1)

where b, are the net body forces per unit volume.
The surface force tractions on the object are
denoted by the vector, p,, and the prescribed bound-
ary values of these tractions on the surface I', are

denoted by P,. Equilibrium at the boundary requires
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the satisfaction of the following stress boundary
conditions [14]

pi=oun =P 2

where n, is the unit outward normal vector to the
surface. The state of strain at a point within the solid
is denoted by the second order symmetric strain
tensor, . The strain—displacement relations for linear
theory can be written in indicial form as

1 uy _6&
€ = 2( 0x; + 6xk> ®
where u, is the vector displacement field. Let I', be the
portion of the boundary where the displacement
boundary conditions, U,, are prescribed.

The states of stress and strain for a solid body
are related through the stress-strain relations, also

called Hooke’s Law, which depend on the material
behavior

where E is the Young's modulus of elasticity, v is
the Poisson’s ratio and G is the shear modulus.
Lame's constants are related to E and v in the
following way,

Ev

A= TEna - (5a)
E
C=a+vy (56)

The principle of virtual displacements for linear
elastic problems can be written as [14],

0o,
9% p YurdQ=| (o —Pourdl
Q axj ry

+'[ (Uy —w)ptdl (6
r

where p¥ = n;o } are the surface tractions correspond-

€ 1 —=v 0 g . . . .
=11 > @ ing to the virtual displacements uf. We will assume
G (TELTY 1 0 Oy that the virtual strain—displacement relationships and
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Fig. 1. V.

ector displacement field from the well-posed analysis of a pressurized circular cavity within an

infinite plate.
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Fig. 2a. Contours of constant stresses, a.,, from the well-posed analysis of the pressurized circular cavity
within an infinite plate.

parts twice and ignoring for now the body forces, we The virtual displacement will be a fundamental
obtain solution satisfying the equilibrium equations
oot *
J_wukdn+j Pt dr +-[ purdr 997 L 8(x —L)=0 ®)
a 0x; r, r, a¢;

=j Uwpkdlr +J wplrdl. (7) whered is the Dirac’s delta function and represents
r, T a unit load at the point *“i” in the *“/” direction. In
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Fig. 2b. Contours of constant stresses, o .,, from the ill-posed analysis of the pressurized circuiar cavity
within an infinite plate.
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general, we can write for any point *i” and for each
direction “/”” a boundary integral equation

C;“;=f wpuikdl =J. peugdr ¢))
r r

where the term ¢, is obtained with some special
treatment of the surface integral on the left hand
side [14]. Explicit calculation of this value can be
obtained by augmenting the surface integral over the
singularity that occurs when the integral includes the
point “i”. Fortunately, explicit calculation is not
necessary as it can be obtained using the rigid body
motions. The fundamental solution for two-dimen-
sional isotropic plane strain case is

' le—aymNa -+ 0
" —87zG(l—v) Y r) Ox, 0x;

et
!

)

where 7 is the distance from the node to the point
of integration on the boundary and A is the
Kronecker delta.

The boundary I is discretized into N, flat surface
panels connected between N nodes. The functions u
and p are quadratically distributed over each panel
with adjacent panels sharing nodes such that there

will be twice as many boundary nodes as there are
surface panels. A transformation from the global
(x,y) coordinate system to a localized boundary
fitted ({) coordinate system is required in order to
numerically integrate each surface integral using
Gaussian quadrature. The displacements and trac-
tions are defined in terms of three nodal values and
three quadratic interpolation functions. The whole
set of boundary integral equations can be written in
matrix form as

[HI{U} = [GKP} an

where the vectors {U} and {P} contain the nodal
values of the displacement and traction vectors.
Each entry in the [H} and [G] matrices is developed
by properly summing the contributions from each
numerically integrated surface integral. The sur-
face tractions were allowed to be discontinuous
between each neighboring surface panel to allow
for proper corner treatment. The set of boundary
integral equations will contain a total of 2N equations
and 6N nodal values of displacements and surface
traction.

For a well-posed boundary value problem, at least
one of the functions, u or p, will be known at each
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X

Fig. 3a. Vector displacement field from the well-posed analysis of an annular pressurized disk.
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boundary node (either Dirichlet or von Neumann
boundary condition) so that the equation set will be
composed of 2N unknowns and 2N equations. Since
there are two distinct traction vectors at corner
nodes, the boundary conditions applied there should
include either two tractions or one displacement and
one traction. If only displacements are specified
across a corner node, special treatment is re-
quired {13].

For an ill-posed boundary value problem, both u
and p should be enforced simultaneously at certain
boundary nodes, while either uw or p should be
enforced at the other boundary nodes, and nothing
enforced at the remaining boundary nodes. For the
simple example of a quadrilateral plate with four
nodes, if at two boundary nodes both u=U and
p = P are known, but at the other two nodes neither
u or p is known, the BEM equation set before any

€1 82 83 8 P,

| 8 82 Bn Bu P

T olen gn g 8w P, (12)
2y B Ba Bu P4

where each of the entries in the [H] and [G] matrices
is a 2 x 2 submatrix.

Straightforward algebraic manipulation yields the
following set

—hl2 —-g2 by —gu “z\
hy, —g»n by —g8u P2 4
hy, —gn by —gy u,

hy —go hu —8au Ps

- 3N

rearrangement appears as —-h, g, -h; g, U, f,
~h —h P f.
h, h, h, hy U, _ h21 g2 hzz 53] PI L = t‘z
hy hy hy by u, hal g3 h33 833 Ps rz
h]l h32 h33 h34 U3 - “ g“ ® g‘ﬂ ’ ’ )
hy hy, hy hy Uy (13)
o
3
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Fig. 3b. Vector displacement field from the ill-posed analysis of an annular pressurized disk: inner
boundary over-specified.
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The right-hand side vector {F} is known and
the left-hand side remains in the form [A}{X}. Once
the matrix [A] is solved, the entire u and p fields
within the solid can be easily deduced from the
integral formulation. The equation set [A}{X} = {F}
resulting from our inverse boundary value formu-
lation is highly singular and most standard matrix
solvers will produce an incorrect solution. Never-
theless, singular value decomposition (SVD)
methods [15] can be used to solve such problems
accurately, although the number of unknowns in
the equation set need not be the same as the number
of equations [16] so that virtually any combination of
boundary conditions will yield at least some solution.
Additional equations may be added to the equation
set if u measurements are known at locations within
the solid in order to enhance the accuracy of the
inverse steady boundary condition algorithm. A
proper physical solution will be obtained if the num-
ber of equations equals or exceeds the number of
unknowns. If the number of equations is less than the
number of unknowns, the SVD method will find one
solution, although it does not necessarily have to be
the proper solution from the physical point of
view [16]).

ACCURACY OF THE BEM ELASTOSTATICS
ANALYSIS CODE

We have used quadratic isoparametric interp-
olation functions for x and y coordinates and for u
and p on each of the boundary panels in our two-
dimensional elastostatics (plane strain) analysis code.
The accuracy of this code was tested on a rectangu-
lar tensile specimen that was 5.0 cm long by 1.0cm
wide. The long sides of the specimen was discretized
with five quadratic surface panels each 1.0cm in
length and the top and bottom sides had two panels
each 0.50 cm in length. The top and bottom of the
specimen were loaded with a uniform tensile stress of
P,=100Ncm~? The two vertical sides were
specified to have surface tractions of zero. The mid-
points of the side walls were fixed with a zero vertical
displacement (U,=0). The shear modulus was
specified to be G = 5.472 x 10 N cm ~? and Poisson’s
ratio was v = 0.345. The two-dimensional elastostat-
ics BEM code was solved for the displacement and
stress fields within the specimen. The computed y-
component of the displacement was uniform as
expected and had a linear variation from zero to
0.00117 cm at the ends. The analytic solution from
strength of materials gives a maximum displacement
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Fig. 3c. Vector displacement field {from the ill-posed analysis of an annular pressurized disk: outer
boundary over-specified.
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of 0.00125cm, although this is only a linearized
analytic solution and it is not exact. The x-com-
ponent of displacement varied linearly from 0 at the
centerline to a maximum deformation of
— 8.0 x 10~ *cm at the vertical side walls.

ACCURACY OF THE BEM INVERSE BOUNDARY
CONDITION CODE

The accuracy of the inverse boundary condition
code was verified for the same tensile specimen as that
of the previous test case. The boundary conditions
were ill-posed such that both the displacement and
traction vectors were known on the top, bottom and
left sides of the rectangular plate. Elsewhere on the
surface and on the right vertical side, no boundary
conditions were specified. The inverse elastostatics
BEM code predicted displacement and stress fields
that were in error by about 1.0% on average
compared to the numerical results of the previous
analysis.

PRESSURIZED CIRCULAR CAVITY WITHIN AN
INFINITE DOMAIN

The capability of the BEM in handling infinitely
large domains was demonstrated for the case of a
pressurized circular cavity. The wall of the cavity was
discretized with 12 quadratic panels. The internal
pressure was specified to be P, = 100 N mm " and the
radius of the cavity was r = 2.9745 mm. The shear
modulus was G =9.5 x 10* Nmm ~? and Poisson’s
ratio was v = 0.1, The x-displacements were fixed to
zero at two nodes located at 90 and 270° measured
from the x-axis. In addition, a single y-displacement

was fixed to zero at the boundary node located at 0°.
The stress analysis using the quadratic BEM pre-
dicted a radial displacement vector field shown in
Fig. 1 with a maximum deflection of 0.002 mm on the
boundary. Figure 2a shows a contour plot of lines of
constant stress o,,.

The results of this analysis were then used for the
boundary conditions prescribed on the ill-posed
problem. The second and fourth quadrant bound-
aries of the circular cavity were specified with both
displacements and tractions, while nothing was
specified on the first and third quadrant circular
boundaries. The inverse BEM elastostatics code pre-
dicted a displacement field that was in error by only
about 0.03% compared to the prevous well-posed
numerical analysis (Fig. 1). Figure 2b illustrates the
equal stress contours, o,,, obtained by the inverse
boundary value approach. The error between the
numerically computed stress field of the inverse ill-
posed problem and the direct well-posed problem was
on average 0.5%.

ANNULAR CIRCULAR DISK

The inverse BEM algorithm was then tested on an
infinitely long thick-walled pipe subject to an internal
gauge pressure. The shear modulus for this problem
was G = 8.0 x 10* Nmm ~2 and Poisson’s ratio was
v =0.25. The radius of the inner surface of the pipe
was 10mm and the outer radius was 25mm. The
inner and outer boundaries were discretized with 12
quadratic panels each. The internal gauge pressure
was specified to be P, = 100 N mm ~2, while the outer
boundary was specified with a zero surface traction.
The two-dimensional elastostatics analysis boundary
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Fig. 5a. Contours of constant stresses, o,,, from the well-posed analysis of an annular pressurized disk.

element algorithm computed the displacement and
stress fields within the circular annular domain.
Figure 3a illustrates the radial displacement vector
field with lengths of the arrows corresponding to the
scaled magnitudes of the local deformations. Figures
4, 5a and 6a are contour plots of constant values
of o,., o, and o, respectively that were com-
puted using the analysis version of our second-order

accurate BEM elastostatic code. The numerical
results of this well-posed boundary value problem
were then used as boundary conditions applied to the
following two ill-posed problems.

First, the displacement vectors computed on the
inner circular boundary were applied as over-
specified boundary conditions in addition to the
surface tractions already enforced there. At the same
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Fig. 5b. Contours of constant stresses, ¢,,. from the ill-posed analysis of an annular pressurized disk:
inner boundary over-specified.
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Fig. Sc. Contours of constant stresses, ¢,,, from the ill-posed analysis of an annular pressurized disk: outer
boundary over-specified.

time nothing was specified on the outer circular
boundary. Figure 3b shows the numerically com-
puted radial displacement vector field for this inverse
boundary value problem which was less than 1.0% in
error compared to the well-posed analysis. Figures 5b
and 6b are the contour plots of ¢, and ¢, respect-
ively, that were obtained with our inverse boundary
value code. These stresses averaged a much larger

error, about 3.0%, with some asymmetry in the
stress field, when compared with the analysis resuits
(Figs Sa and 6a). Next, the displacement vectors
computed on the outer circular boundary by the
well-posed numerical analysis were used to over-
specify the outer circular boundary. At the same
time nothing was specified on the inner circular
boundary. Figure 3c shows the displacement field and
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Fig. 6a. Contours of constant stresses, o,,, from the well-posed analysis of an annular pressurized disk.
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Fig. 6b. Contours of constant stresses, ¢,,, from the ill-posed analysis of an annular pressurized disk:
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Figs 5c and 6c are the contour plots of o, and
o, respectively, as computed by the inverse BEM
technique. The inner surface deformations were in
error by less than 0.1%, while the stresses averaged
less than a 1.0% error as compared to the analysis
results.

Note that there is a large discrepancy in the error
magnitudes between these two inverse problems. It

seems that an over-specified outer boundary produces
a more accurate solution than one having an over-
specified inner boundary. It was also shown [1-5] that
as the over-specified boundary area or the resolution
in the applied boundary conditions were decreased,
the amount of over-specified data also decreases, and
thus the accuracy of the inverse boundary value
technique deteriorates.
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Fig. 6c. Contours of constant stresses, o, from the ill-posed analysis of an annular pressurized disk: outer
boundary over-specified.
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CONCLUSIONS

A new method has been developed that is capable
of directly determining unknown steady boundary
conditions (boundary surface tractions and defor-
mations) on surfaces of solids where such quantities
are unknown. This means that given any over-
specified boundary conditions (such as tractions and
deformations on surfaces where such data are readily
available), the algorithm computes the stress and
deformation fields within the solid and any unknown
tractions and deformations on surfaces where these
values are unavailable. A two-dimensional steady-
state BEM program has been developed to perform
automatic non-iterative determination of both trac-
tions and deformations on parts of the interior and
exterior boundaries of the solid. Numerical results
were in excellent agreement with the analytic values
in the regions relatively close to the over-specified
data, but deteriorated as the amount of over-specified
data was decreased. Our method is very fast since it
is not iterative. For a typical two-dimensional BEM
analysis or inverse boundary value run it consumes
only seconds on an advanced personal computer.
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