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This paper presents results of research involving the inverse thermal design of
coolant flow passage shapes in arbitrary, three-dimensional, internally cooled
configurations. A computer program has been developed to demonstrate this
methodology in which a thermal systems designer can simultaneously enforce the
desired temperature and heat flux distribution on the hot outer surface of the
object while enforcing either the desired temperature, desired heat flux or desired
convective heat transfer boundary conditions on the cooled interior surfaces of
the coolant flow passages. The program’s objective is to meet the overspecified
thermal boundary conditions of the outer surface by iteratively altering the
geometries of the coolant passages. This is achieved with an automatic,
constrained optimization algorithm that minimizes the difference between the
user-specified and the intermittently computed hot outer surface heat flux
distribution. A quasi-Newtonian gradient search algorithm was used for the
optimization. A simple method for escaping stationary points was employed and
involved the switching of the objective function when the optimization process
stalled at a local minimum. The analysis of the steady-state, non-linear heat
conduction within the solid was done using the boundary element method.

Key words: Boundary element method, nm-linear optimization, inverse shape
design, quasi-Newtonian algorithm.

1 INTRODUCTION has made it possible to approach the design problem

differently and to solve it more efficiently and with
The design of turbines within turbojet and turbofan greater accuracy. During the past several years, we have
engines introduces a unique set of requirements for developed a fully automatic inverse thermal design
high performance, endurance, light weight and compact method'™® based on the boundary element method
size. To meet these requirements, turbines must operate (BEM),lO which allows a thermal cooling systems
at elevated temperature and pressure levels and must use designer to determine the proper sizes, shapes and loca-
air as a coolant to be capable of withstanding large tions of arbitrary coolant fluid passages within internally
numbers of thermal cycles. high heat fluxes and thermal cooled configurations. The methodology has been suc-
stress levels. An engineer who might wish to reduce the cessfully demonstrated on simple two-dimensional geom-
high thermal plastic strains that cause cracks to form in etries,'' ' on realistic coated and non-coated turbine blade
the coolant passage walls of a turbine blade must simul- airfoils'  and on scramjet combustor struts.'* Elementary
taneously try to maximize the heat transfer out of the examples of three-dimensional design applications involved
blade to avoid melting. This thermal design problem a coolant passage in a rocket nozzle periodic wall section’
could be accomplished by allowing the engineer to and a three-dimensional gas turbine blade.'?

develop a coolant system geometry that satisfies a speci-
fic desired temperature field within the configuration.

The design of internal coolant flow passages within 2 THEORY
turbine blades is usually accomplished using approxi-

mate empirical methods, repetitive numerical analysis The mathematical model for steady-state heat conduc-
of intuitively modified coolant flow passage shapes and tion within an internally cooled solid object can be
expensive experimentation. The development of high represented by a boundary value problem over a mul-
speed computers and adequate numerical techniques tiply connected domain. The desired temperature fieid
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within a fixed configuration is intrinsically related to a
single set of well-posed thermal boundary conditions speci-
fied on the entire object’s surface. If additional boundary
conditions are enforced on parts or all of the object’s sur-
face, the over-specified boundary value problem might
not have a solution. The methodology presented in this
paper demonstrates that this problem may be solved by
iteratively altering the geometry of the configuration until
the over-specified thermal boundary conditions are appro-
priately satisfied. This steady state shape design inverse
problem is fundamentally different from the classical
inverse heat conduction transient problem where the small
changes in the initial data may result in erroneous solutions.
Steady-state heat conduction in a nonhomogeneous,
isotropic medium with a variable coefficient of thermal
conductivity is governed by the following partial differ-
ential equation in the region, (2, of a conducting solid

V- (MT)VT)=0 (1)

Here T is the temperature and A(T ) is the temperature-
dependent coefficient of thermal conductivity. This
equation represents a boundary value problem having
essential boundary conditions, T, and natural bound-
ary conditions, Qy, specified on the surfaces I', and T,
respectively. Equation (1) can be linearized by the appli-
cation of the classical Kirchoff’s transformation,'¢
which defines the heat function, ©, as
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Here, X, is the reference conductivity. Utilizing this
transformation, eqn (1) can be transformed into
Laplace’s equation and solved for the heat function,
O, instead of the temperature, T*

Vie=0 (3)

Results obtained for the heat function must be trans-
formed back into temperatures using the inverse of the
transformation given in eqn (2).

The Laplace equation can be accurately and most
efficiently solved using the BEM.!® By introducing an
approximation, u, to the exact solution, ©, an error
function or residual is produced in the domain and on
the boundary. The residual in the domain is given by
R =V?u The residuals in the essential and natural
boundary conditions are

R,=u—©, and R,=du/on—Q, (4)

respectively. These error functions have non-zero values
unless u is the exact solution. The weighted average of
the residual over the domain and on the boundary
may be set to zero by the weighted residual statement:

j w* ViudQ —J (g— Qo)u*dr’
Q r,

+J (u—0©p)g*dl' =0 (5)
I

where u” represents the weight function, which is usually
called the fundamental solution,'® while g = du/6n and
q" = Ou”/On where n is the direction of the outward
normal to the surface I'. After integrating by parts
twice, the boundary integral equation for Laplace’s
equation is obtained:

J quu*dQ+J u*qu=J g udl (6)
Q r r

The weight function is a Green’s function solution for
a point-source subject to the homogeneous boundary
conditions. For the three-dimensional Laplace equation
it is
1
= 7
4rr (7)

*

where r = | x; — X;|, X; is the position vector of the arbi-
trarily located observation point at which « and ¢ are to
be evaluated, and x; is the position vector of the point-
source location. The bounding surface T is discretized
into Ngp surface elements bounded by N end-nodes.
After discretizing the surface and utilizing the proper-
ties of the Dirac’s delta function, the boundary integral
equation (6) can be written as

Neo

Nep
c,~u,—+ZJ uq*dﬂ:ZJ qu™ dI; (8)
Jj=1 I“] Y

J=1

for each ith node. The term c; indicates the scaled inter-
nal angle'® formed by the neighboring panels meeting at
the ith surface node. It is produced when the first surface
integral of eqn (6) is integrated in the sense of Cauchy'’s
principal value. The functions u and ¢ are assumed to
vary bilinearly along each quadrilateral surface element
and, therefore, they can be defined in terms of their
nodal values and interpolation functions. The whole
set of equations for the N nodal values of u and g can
be expressed in matrix form as

H{U} = [GHQ} ©)

where {U} = (U, Uy,...,Uy) and {Q} =
(Q1,Q,...,0Qn,) are vectors containing the nodal
potentials and surface panel fluxes, respectively, while
the terms in the {H] and [G] matrices are assembled by
properly adding the contributions from each surface
integral. After the [H] and [G] matrices are formed, all
boundary conditions are applied and a set of linear
algebraic equations, [A]{X} = {F}, is constructed.
Known or specified surface potentials, U;, and fluxes,
Q,, are multiplied by their respective [H] or [G] matrix
row and assembled on the right-hand side of the
equation set, thus forming the vector of knowns {F}.
All unknown potentials or fluxes are assembled on the
left-hand side of the equation set and are represented
by a coefficient matrix [A] multiplying a vector of
unknown quantities {X}.

The integration for each surface panel in eqn (8)
was performed with three-point Gaussian quadrature.
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Whenever the surface panel integral inciuded a singu-
larity at one of the quadrilateral’s vertices, a localized
transformation'’ was performed to eliminate the singu-
larity, and the order of the Gaussian quadrature was
automatically increased to a five-point integration.

3 THE OPTIMIZATION TECHNIQUE

The complexity of the analysis of the temperature field
in an irregular, three-dimensional, multiply connected
domain calls for the use of a relatively simple, but
robust and fast, optimization technique for con-
strained, non-linear optimization. The Davidon—
Fletcher—Powell (DFP) quasi-Newtonian algorithm'®
was implemented because it requires a relatively low
number of objective function evaluations and because
of its ability to converge quickly near minima. This opti-
mization procedure is iterative in nature and involves
repetitive solutions of the thermal field within the solid
configuration. A first-order numerical approximation
was used to compute the gradients of the objective func-
tion, and the univariant line search was handled using
quadratic polynomial fitting.

The primary goal of the optimization procedure is the
minimization of the objective function f(x), where x
contains the Ny, design variables which make up the
geometry of the internal coolant passages. During the
optimization process, local minima can occur and hait
the process before achieving an optimal solution. In
order to overcome such a situation, a simple technique
has been devised.'* In this approach, whenever the opti-
mization stalls, the formulation of the objective function
is automatically switched to some other valid formu-
lation. The new objective function provides a departure
from the local minima and further convergence towards
the global minima.

Specifically, the objective of the optimization pro-
cedure is to minimize the difference between the specific
heat fluxes, Q**, and the calculated values, 0% at the
outer boundary. Thus, the objective function can be
mathematically formulated in the sense of the normal-
ized least squares of the global error:

N
2 : ( stpec _ ;:aIC)Z
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(10)
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or as a local normalized error at each panel on the outer
boundary:

N (Q§pec_ g:aIC)Z

fx) =Y~ -

S (QF)] +e

(11)

Here, € is a very small user-specified parameter to avoid
division by zero.
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In summary, the optimization procedure consists of
the following steps:

(1) The geometry of the outer surface of the turbine
blade is assumed fixed.

(2) The desired temperature and heat flux profile are
specified on the hot outer surface of the turbine
blade. The temperature is used as a Dirichlet-
type boundary condition on the outer surface,
while the outer surface heat fluxes are used in
the objective function formulation of the optimi-
zation procedure described previously. In addi-
tion, boundary conditions such as temperature,
heat flux must be specified on the three-dimen-
sional coolant passage surfaces. Their configura-
tions are, as yet, unknown.

(3) The user may specify almost any type of equality
or inequality constraints to the program as a
subroutine. Such constraints could be allowable
minimum or maximum wall thickness, mini-
mum distance between multiple coolant passage
walls, minimum or maximum cross-sectional
areas of the coolant channels, material proper-
ties, etc.

(4) The user supplies an initial guess for the design
variables that define the geometry of the three-
dimensional coolant flow passages.

(5) The BEM is used to solve for the temperature field
within the current configuration. Since the tem-
perature boundary conditions are specified on
the outer surface, the BEM algorithm automati-
cally computes the heat flux distribution on that
surface. The computed heat flux distribution is,
in general, not the same as the user-specified
desired heat flux distribution.

(6) An objective function is formulated using the
computed and user-specified outer surface heat
fluxes. Note that the use of heat fluxes in the
objective function is not a requirement nor a
limitation. The user is free to develop any objec-
tive function or set of weighted objective func-
tions that may utilize not only boundary values
such as temperature and heat flux, but also con-
vective heat transfer coefficients and ambient tem-
peratures, temperatures at points within the solid,
thermal stresses and strains and many other func-
tions of the temperature field.

(7) The optimization procedure automatically per-
turbs the design variables in order to minimize
the objective function while satisfying the
constraints. In order to minimize this function
properly and efficiently, a feasible and descent
line search direction is found by computing the
gradient of the function. This requires one
thermal field analysis using the BEM per design
variable. Once the line search direction is
obtained from the DFP update formula, a
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univariant suboptimization procedure minimizes
the objective function along that direction.

(8) The optimization continues to the next cycle,
beginning with step 5.

4 VERIFICATION OF THE NON-LINEAR
BOUNDARY ELEMENT FORMULATION

The accuracy of the BEM analysis program for the non-
linear heat conduction in a 1-0m long by 0-1 m high by
0-1m wide parallelepiped was verified. The rectangular
box was discretized with 42 square surface panels each
measuring 0-1m by O-1m. Four sides of the object
were kept adiabatic (Qp = 0) and the remaining two
opposite sides were subject to different temperatures
(Thoy = 100K and T,yq = 0K). The temperature-depen-
dent thermal conductivity was given as a polynomial
function:

MT)=X(AT "+ B+ CT+DT*+ET?  (12)

In our test A\, =1-0W/mK, B=10, and 4=D =
E =0. Temperature data were collected for various
degrees of non-linearity given by the parameter C. The
results shown in Fig. 1 were compared with the one-
dimensional analytic solution:!®

C C
ST +T= (Thm +3 Thzo,)

¢ (= = zhot)
— | 1+ = (Thot + T, ) —_—
< 2 i cot) (Zcold — Zhot)

X (Thot - Tco]d) (13)

Figure 1 shows that the non-linear BEM results com-
pared very well with the analytic solution, averaging
an error of less than 0-5%.
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Fig. 1. Comparison of temperature distribution in a paralle-
lepiped with different degrees of thermal dependency of heat
conductivity coefficient.

Fig. 2. Initial configuration for a three-dimensional inverse
shape design: a super-elliptic off-center cavity in a sphere.

5 INVERSE DESIGN OF A SUPER-ELLIPTIC
CAVITY WITHIN A SPHERE

This test case was used to demonstrate the fully three-
dimensional inverse design capability® of the optimiza-
tion algorithm with the BEM thermal field analysis
scheme. The geometry consisted of a unit sphere with
an off-centered cavity of a three-dimensional super-
elliptic shape given by

Sr i RiCrais 19
a b c

Seven design variables are derived from this equation:
the center of the super-elliptic cavity (x,,),,z,). its
semi-major axes (a,b,c) and the super-elliptic expo-
nent, n. The outer spherical surface and the internal
super-elliptical cavity (Fig. 2) were discretized with 64
isoparametric quadrilateral panels, respectively. A tem-
perature of 100K was specified on the outer surface
and 50K on the inner super-elliptic surface. The normal

Fig. 3. Final converged configuration for a three-dimensional
inverse shape design: a centered spherical cavity in a sphere.
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Fig. 4. Convergence history of the objective function for the
cavity-in-the-sphere design.

temperature derivative specified on the outer surface was
taken from the analytic solution (37 /8n = 59-3K/m)
corresponding to the desired (target) configuration
consisting of a centered spherical cavity with radius of
0-5m. The material properties were assumed such that
the thermal conductivity A, =1-0W/mK, A=D=
E=0,B=10,and C =001K"™".

The initial guess for the design variables was: x, =
02m, y,=02m, z,=02m, a=03m, b=04m,
z=05m, and n=40. The DFP optimization algo-
rithm nearly reached the fully converged sphere-
within-a-sphere configuration (Fig. 3) in 50 optimiza-
tion cycles with the remaining objective function value
of 0-32%. The convergence history (Fig. 4) of the
composite objective function shows a spike at the 30th
iteration, indicating an automatic cost function switch
from global to local (eqn (10) to eqn (11)). The entire
optimization required 647 calls to the BEM analysis
routine and consumed approximately 2235s of CPU
time on an IBM 3090 computer.
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Fig. S. Initial configuration for a three-dimensional turbine
blade with surface discretization.

6 INVERSE DESIGN OF A COOLANT PASSAGE
WITHIN A TURBINE BLADE

This example involved the application of the inverse
design technique to a three-dimensional turbine blade
of realistic shape.'> The turbine blade was given a
single internal coolant flow passage. The blade inner
surface was generated at each radial cross-section by
first determining the mean thickness curve from the
local blade airfoil geometry. At each blade cross-section
this mean thickness curve was then reduced by a fraction

1679.44
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1517.89
1437.11

1356.34
1275.56
1194.79
1114.01
1033.23
952.459
871.683
790.907
710.132
620.356
548.58

467.805
387.029
306.253
225.478
144702

Fig. 6. Specified distribution of temperature on the outer surface of the three-dimensional blade.
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Fig. 7. Specified (desired or target) configuration of the coolant
passage inside the three-dimensional turbine blade.

of its total length from the leading and trailing edges, p;.
and p,., respectively. At each blade cross-section, the
local blade airfoil inner contour was then constructed
by defining a wall thickness function versus the blade
airfoil outer contour-following coordinate, s. The local
wall thickness was defined to be a fraction of the
straight line distance from a point on the blade airfoil
outer contour to the corresponding point on the
reduced mean thickness curve. The wall thickness, t(s),
was approximated by a Chebyshev polynomial'® of

Temp. Flux (W/m?)
581753
532064
502375
472686
442097
413308
383619
353830
324241
294552
264863
235174
205486
175796
148107
116417
86728.4
57039.4
27350.3
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degree n, given as
R SCLMEES
=
where the Chebyshev coefficients are
o =25 e (22122)]
k=1
) Cos(vru— Dk - 1/2))

(16)
n

and

P;(s) = cos (j arccoss) (17)

The polynomial of eqn (15) can be truncated to a
lower degree m < n due to the nature of the Chebyshev
approximation. Thus, the design variables that made up
the coolant passage geometry consisted of m Chebyshev
coefficients for each cross-section of the blade in addition
to the two quantities, p,. and p,., that determine by what
fraction the mean thickness curve is reduced from the
trailing and leading edges of each local blade airfoil.

The outer surface and the initial guess to the inner
surface geometry of the three-dimensional turbine
blade are shown in Fig. 5. The outer surface of the
blade was generated by creating airfoil sections of
the blade at each of the five locations measured radially
from the turbine axis. Each turbine blade section between
two consecutive radial cuts was discretized with 20 clus-
tered quadrilateral flat surface panels around its outer
surface in addition to the same number of quadrilateral
flat surface panels on its inner surface. There were also

Fig. 8. Specified (desired or target) distribution of heat fluxes on the outer surface of the three-dimensional blade.
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Fig. 9. Geometric evolution of thickness distributions on individual cross-sections of the three-dimensional blade.

20 quadrilateral flat panels covering the biade root
cross-section and 20 quadrilateral flat panels covering
the blade tip cross-section. This means that the blade
wall thickness at the root and at the tip sections was
discretized by single rows of flat quadrilateral panels.
Consequently, we used a total of 200 flat quadrilateral
surface panels connected between 200 nodes at the
panels’ vertices.

The desired temperature was prescribed along the
outer surface of the turbine blade according to a
simple formula:

T(s) = Toin + (Tiax ~ Tinin) [°°S<2m>] |

18
Smax ( )

with Tpin = 500K and T, = 1000 K at the blade root

section. Each of them was increased by 50K at each of
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Fig. 10. Convergence history of the objective function for the
three-dimensional turbine blade wall thickness optimization.

the four remaining consecutive sections so that their
values at the blade tip section were Tp;, = 700K and
Trax = 1200K. The three-dimensional blade surface iso-
therms are illustrated in Fig. 6. In addition, a desired
constant temperature was specified on the inner sur-
face, Tipner = 300K. The reference coefficient of ther-
mal conductivity was A, =23-0W/mK and the
parameters of eqn (12) were 4 = D =FE =0, B= 10,
and C = 0-01K™".

Next, a desired (target) configuration for the three-
dimensional coolant passage geometry was generated
(Fig. 7). The BEM was run once for this configuration
with the desired temperature boundary conditions
described above. The computed outer surface heat
fluxes (Fig. 8) were then used as the desired (target)
over-specified boundary conditions for the optimiza-
tion process’s objective function.

Figures 9(a)—(e) illustrate the evolution of the
coolant passage geometry throughout the optimization
process. Each figure represents a consecutive cross-
section of the turbine blade showing nodes on the
outer surface of the airfoil shape, the initial guess
geometry (finely dotted line), several intermittent
contours depicting the coolant passage cross-section
geometry after every 10 iterations (dashed lines) and
the target configuration (solid line). The final con-
figurations are almost geometrically equivalent to the
target configurations. The optimization process was
completed after 46 iterations with the objective func-
tion reducing from an initial value of 74% to its
final value of 864% (Fig. 10). A single objective
function automatic switch occurred at the 14th itera-
tion. The objective function declined very rapidly
initially and then levelled off to a rather slow rate of
decrease. This is typical of most optimization pro-
cedures. Although the program was terminated at the
46th optimization cycle, the process could be resub-
mitted in order to refine further the coolant passage
geometry. The entire optimization process required
2996 calls to the BEM analysis routine and consumed
approximately 2550s of CPU time on a Cray C-90
computer with a single processor.

7 SUMMARY

The concept of inverse design of three-dimensional con-
figurations subject to overspecified thermal boundary
conditions has been found to be feasible. Future
research possibilities in the field of three-dimensional
shape inverse design using the presented methodology
could be directed toward complex design tools involv-
ing thermal convection, radiation and conduction as
well as thermal stress-deformation field analysis and
electromagnetic field problems. The same optimization
procedure with boundary integral analysis described
herein can be used for problems governed by Poisson’s
equation. This work is presently being extended into
unsteady, fully three-dimensional, non-linear heat con-
duction involving latent heat, multiple coolant passages
and multiple domains with different properties.
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