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Abstract

A new method to accelerate the convergence of iterative schemes for the numerical integration of systems of partial differential
cquations has been developed. The basic idea is that the residual at a grid point depends on the values of the solution vector at
the neighboring grid points used in the local discretization approximation. Thus, the new acceleration method is based on the
sensitivity of the future residual to the change in the solution vector at the neighboring grid points with the objective to minimize
the future residual. The result is a set of optimum iterative relaxation parameters for the entire flow field or for each individual
grid line. The method is easy to implement in the existing codes. We have applied it to a finite difference code for
two-dimensional incompressible Navier—Stokes equations. Test cases involve laminar and turbulent flows with severe grid
clustering and flow separation. The results are compared with those of a basic explicit Runge—Kutta (RK) time-stepping iterative
algorithm and with the implicit residual smoothing (IRS) and the distributed minimal residual (DMR) acceleration techniques.
The new acceleration scheme is shown to be superior to these methods especially on highly-clustered grids.

1. Introduction

One of the consistent goals in computational fluid dynamics is to improve the efficiency of numerical
techniques by reducing the total computing time required by an iterative algorithm. One of the
successful, explicit techniques used to integrate Euler and Navier—Stokes equations is the Runge—Kutta
(RK) explicit time-stepping algorithm [1]. Several attempts have been made to accelerate the
convergence of this method. Some of the more successful acceleration methods are based on local time
stepping [1], implicit residual smoothing [1, 2], enthalpy damping [1], multi-griding [2] and precondi-
tioning [3].

Here, we plan to elaborate on an optimum extrapolation technique in order to find optimum
relaxation parameters for iterative algorithms. An extrapolation procedure based on the power method
and the minimal residual method (MRM) was successfully applied [4] to the multi-grid algorithm. The
MRM uses equal optimal weights for the corrections to every equation in a system of partial differential
equations that is solved, but it has not been shown to accelerate the scheme without multi-griding. The
distributed minimal residual (DMR) method [5-8] based on the general non-linear minimal residual
(GNLMR) method [9, 10] allows each component of the solution vector in a system of equations to
have its own sequence of optimized relaxation parameters. The DMR method was found to be capable
of reducing the computation time by 10-75% depending on the test case and grid used. It is an
improvement over a well-known general minimal residual (GMRES) method [11] which requires a
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large amount of computer memory. All these optimum extrapolation methods belong to the general
class of Krylov subspace methods.

A new convergence acceleration algorithm based on the sensitivity of future residual to flow variables
at the surrounding grid points is presented in this paper [12-16]. The new method was tested on
uniform and highly-clustered computational grids and for both low and high Reynolds number flows
including flows with separation. It was found to perform consistently better than the IRS and the DMR
acceleration methods.

2. Incompressible Navier—Stokes equations

The two-dimensional, incompressible Navier—Stokes equations with Chorin’s artificial compressibility
method [17] can be written in conservative vector form as

oQ@ oE OoF
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where 7 is the time, Q is the solution vector, E and F are the inviscid flux vectors, H is the vector of
viscous terms and S is the vector of source terms. Thus
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Here, U and V are the contravariant velocity components, u and v are Cartesian velocity components,
p is the pressure, ¢ and 7 are the curvilinear, non-orthogonal, boundary conforming grid coordinates, J
is the determinant of the Jacobian transformation matrix, J = det(3(&,m)/d(x, y)), and B is the
user-specified artificial compressibility parameter [17). The term 3(p/JB)/dr was added to the mass
conservation to make the entire system non-singular. Adding the non-physical term, 9(p/JB)/ a7, does
not affect the steady-state solution since all the time derivative terms vanish as the solution converges to
a steady-state.

3. Implicit residual smoothing (IRS) method [2]

Residual smoothing permits the use of higher values of Courant—Friedrichs-Lewy (CFL) number
thus accelerating the convergence. The implicit form of the residual smoothing for a two-dimensional
case can be written as

[1-8%])[1-e57]R=R 3)

Here, R is the original unsmoothed residual, R is the smoothed residual, 82 is the second-order
differential operator and ¢ is a user specified coefficient so that

1 CFL )2 ]
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Here, CFL* is the Courant-Friedrichs—Lewy number for the unsmoothed scheme and CFL is the
modified Courant-Friedrichs—Lewy number. The IRS is applied at each stage of the RK scheme. It was
found that the computing time was increased by a factor of three if the IRS is applied at every iteration

together with the current four-stage RK time-stepping. For the test cases investigated in the paper, the
IRS was applied after every 10 iterations for optimum performance.
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4. Distributed minimal residual (DMR) method [5-8]
This method extrapolates the solution at iteration level ¢+ 1 from the previous N iteration levels.
Specifically, the DMR is presently formulated as

n+1

=0T+ e1s0 T80T o ] Y
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Here, w’s are the iterative relaxation parameters (weight factors) to be calculated and optimized, 8§Q’s
are the corrections computed with the non-accelerated iteration scheme, N denotes the total number of
consecutive iteration steps combined when evaluating the optimum w’s and M stands for the total
number of equations in the system that is being iteratively solved. The DMR method calculates
optimum o’s to minimize the L — 2 norm of the future residual of the system integrated over the entire
domain. The present formulation of the DMR uses the same values of the N X M optimized relaxation
parameters at every grid point, although different parts of the flow field converge at different rates.

5. Sensitivity-based minimal residual (SBMR) method [12-15]

Conventional iterative algorithms update the flow variables by calculating the amount of corrections
without optimizing their influence on the future residual. The SBMR method evaluates the sensitivity of
the residual to the solution vectors at surrounding grid points and calculates the optimum amount of
corrections necessary to minimize the overall future residual. The basic idea is that the residual at a grid
point depends on the values of the solutions vector @ at the neighboring grid points used in the local
finite difference approximation. The rate at which the residual, R, (m =1, . .., M: number of equations
in the system to be iteratively solved), changes with Q (s =1, ..., S: number of neighboring grid points
involved in the local discretization scheme) is dR,,/9Q,. These sensitivities can be determined by taking
partial derivatives of the finite difference approximation of the residual with respect to the solution
vector Q.

Suppose we know the flow variables @ at iteration level ¢ and ¢ + n where n is the number of regular
iteration steps performed by the original non-accelerated code. Then, the changes in the components of
Q between the two iteration levels in case of the two-dimensional, incompressible Navier—Stokes
equations involving mass, x-momentum and y-momentum conservation equations (2) are given as

Ap,=(p.)"" = (p)"  Au,=)"" @), Au=@)"-@), (6)

Using the first two terms of a Taylor series expansion in the artificial time direction, the residual for
each of the equations in the system given by Eq. (2) after n iterations will be

n dR,, R, R,
R, =Rm+[§‘, W Aps:|+|:§ — Au5]+[z = Avj:| (7)
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If we introduce weighting factors ,, , and q, to corrections Ap, Au and Av, respectively, the future
solution vector components can be estimated as

(p, =(p,)' +a, Ap,
(uS)(t+n)+l = (uS)t + au AuS (8)

@) = () + a, v,

)(t+n)+1

Subsequently, the future residual at (¢t + n) + 1 can be approximated by

RU™T =R + [2 R (ap, a,,)] + [Z T2 (au, au)] + [2 o (aw, a,,)] )
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For now, each of the a’s is assumed to have the same value over the whole domain, D. Therefore, Eq.
(9) can be written as

Rf:,+")+l =R;n + lig aR

ap,
Subtracting (7) from (10) we have

oR,, R,
Aps]a + I:Z av'" Aus]au + [E 6vm Avs]av (10)
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The a’s are determined such that the L-2 norm of the future residual over the entire domain D will be
minimized. In general, this means that

M
6(2 (Rf:,+n)+l)2> M aR(r+n)+1
m=1 _ (t+n)+1 m
E da _22 [2 R, da ]
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where ¢ stands for each primitive flow variable. For simplicity, let us denote the known bracketed terms
in Eq. (11) as a,,,a,,, and a,, so that

Ry =R " +a,,(a,~ 1) +a,,(e,~-1)+a,,leq—1) (13)

Substituting (13) into (12) gives the following equations for optimal global a’s pertinent to the system
given by Eq. (1).

3 T
% Z,l{ '+"+am,,(ap—1)+am(au—1)+am(au—1)}am,,_ =0
=" -
2| 2RI +a,,(e,— 1) +a,la, 1) +a,(a, - 1)a,, |=0 (14)
D Lm=1 .
i -
> Z Ry +a,,(a,~ 1) +a,,(a,~1)+a,,(a,—D}a,, =0
D m= _

In Eq. (14), R’s and a’s are known from the past iteration resuits. Since each « is assumed to have the
same value over the entire computational domain, Eq. (14) gives a system of three simultaneous
algebraic equations for a,, a, and «,.
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In the general case of a system (1) composed of M partial differential equations, there will be M
constant optimum values of a. This means that the system (15) will become a full M X M matrix for M
unknown optimum a’s. Also, each summation in the system (15) which in this example ts from m =1 to
3, will become a summation from m =1 to M.

Each application of the SBMR creates significant disturbances in the eigenvalues of the iterative
matrix. Thus, the optimum values of a’s are determined and applied only periodically followed by a
number of iterations with the basic non-accelerated algorithm. This serves as a form of smoothing since
too frequent application of the SBMR can lead to instabilities and divergence.

6. Line SBMR (LSBMR) method [15, 16]

The SBMR method calculates the optimum weighting factors « for corrections to the flow variables
during the iteration procedure. Since the previous formulation assumes these factors to be constant over
the whole computational domain, it should be classified as global SBMR method {12,14]. For
non-uniform grids and rapidly-varying flow variables, optimum a’s should not necessarily be the same
over the whole computational domain. A modified formulation (line SBMR or LSBMR) will be
elaborated upon to allow these a’s to have different values [15, 16] from one grid line to another. The
formulation will be explained using the two-dimensional, incompressible Navier—Stokes equations.

Let the grid be clustered in the j-direction and let each j = constant grid line have its own set of
constant o’s. The residual at a point (i, j) incorporates a’s at the neighboring grid points plus the point
(i, j). For the system given by Eq. (1) this results in

i+1 ¢ I3 3

oR . oR . oR .

(t+nm)+1 _ pt m -1 m m j+1
R, "‘Rm+5=2i_l [8PS i Aps,j—lair + ap,., > ap, Aps.j+laP ]

i+1 t t t

aR . oR . R .
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:;_1 [aus,j—l Au:./—lau aus'j Aus,]au aus,,-+1 AuS.j+1 a’y,

i+1 t t :
dR . dR ) aR .
m j—1 m j m j+1
+ S=§i_1 Izav”_l Avg ;_yay,  + o, Av o, + 3, 0t Av, ;. ay, ] (16)

On each j = constant grid line, three values of constant a’s are determined in such a way as to minimize
the L —2 norm of the future global residual.

aRH—l aRt+1 aRH—l
2%(1{‘1“—————60“, R A

i

P ;’ aaP

aRt+1 aRr+1 aRH—I
) Rr+1 1‘ +Rz+1 2, +Rt+1 3. =0 17
%( ' dal, * bal 8l (17)
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If jmax is the total number of j = constant grid lines, then substituting Eq. (16) into (17) results in
(jmax-jmin + 1) X 3 algebraic equations for the same number of unknown a’s. For a given j = constant
grid line the three values of o’ appear only in R,'(i, j—1),R.''(i, j) and R, '(i,j+1). The
summation over the entire domain in Eq. (17) leaves the terms only with &’ %, a’ ™", a’, @’"" and a’™*.
At the solid walls (j =jmin and j=jmax) the velocity components are zero and no corrections are

needed resulting in a’™" = /Mt = o /M = o /™ = (. For the sake of computational simplicity we used
a/™" = /™" and a "= ai,m“_l. In this example the simultaneous system of Eqgs. (17) yields a

block penta-diagonal matrix equation for (jmax-jmin + 1) X 3 optimum a's where each block is a 3 X 3
matrix. In the general case of a two-dimensional system (1) having M partial differential equations, the
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block penta-diagonal system (17) will have blocks of M X M size. In the case of a three-dimensional
system (1), the system (17) becomes a block septa-diagonal matrix.

7. Computational results

Computational results are given for a steady, incompressible, viscous flow in a two-dimensional
straight channel and U-shaped turn-around channel. Convergence histories of the basic four-stage RK
scheme with local time-stepping, and four acceleration methods (IRS, DMR, SBMR and LSBMR) were
compared for two different Reynolds numbers with several grid clusterings. For the laminar flow
examples, a fully developed parabolic axial velocity (u) profile and zero lateral velocity (v) were
specified at the inlet of the channel. In the rest of the flow domain the initial guess for the pressure,
v-velocity and u-velocity components were p=0,v=0 and u= 1.0 x 107, respectively. The inlet
pressure was iteratively computed by enforcing characteristic boundary conditions at the inlet for both
laminar and turbulent flows. At the exit boundary we used non-reflecting [18, 19] boundary conditions
since there was a recirculating flow at the exit of the U-shape channel. Both velocity components were
set to zero at the channel walls. Wall pressures were computed from the normal momentum equation.
No artificial viscosity was used in any of the test cases.

One of the basic objectives of the present study is to develop a method that is capable of accelerating
iterative convergence rates on clustered computational grids. For a straight channel, uniform grid
spacing was used in the flow direction clustering the grid symmetrically towards lower and upper solid
walls. Maximum grid cell aspect ratio (Ax/Ay) occurs on the upper and lower solid boundaries. For
different degrees of clustering, the maximum cell aspect ratio on the solid wall was specified and then
the grid spacing was increased towards the center of the channel using a geometric progression

Ay;., =c Ay, (18)

The factor ¢ was calculated to satisfy the given maximum cell aspect ratio, AR,,,,, and the channel
height, H. For a U-shaped channel, a clustering function [20] of the following type was used

K +17]G-8)(1-8)
(K+25)[K_1] — Kk + 28
g (25+1){1+[K+l]y_6)/(l_5)} (19)
k—1
and
L H
X=——""T"" YE T (20)
imax-imin jmax-jmin

Here, 6 = 0.5 was used to have grid lines symmetrically clustered towards the upper and lower walls.
For 129 x 80 grid cells, k = 1.066 was used to obtain the maximum grid aspect ratio AR ,, = 40, while
x = 1.00774 was used for obtaining AR, =200.

The first example is for a low Reynolds number (Re = 1600) laminar flow with a mild grid clustering
(maximum cell aspect ratio AR, = 10). For the IRS in this case it was found that ¢ = 2.5 produced the
fastest convergence. The DMR and the SBMR methods were applied once after every 30 iterations,
while the LSBMR method was applied once after every 100 iterations. The DMR method combined
three consecutive previous iteration results, while the SBMR and LSBMR methods utilized results from
two solutions at 10 and 20 iteration steps apart, respectively. The IRS reduced the number of iterations
by 44%, while the DMR, LSBMR and SBMR methods reduced the number of iterations by 53%, 65%
and 79%, respectively (Fig. 1). For this mild grid clustering, the LSBMR method was not as efficient as
the SBMR method, but better than the existing IRS and DMR methods. Computing time overheads for
the SBMR and the LSBMR methods were negligible, while those of the IRS and the DMR methods
were not. In terms of computing time reduction, 34%,49%, 65% and 78% of savings were achieved by
the IRS, DMR,LSBMR and SBMR methods, respectively. Thus, convergence histories versus
computational time consistently mirror the convergence histories versus number of iterations.
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Fig. 1. Convergence histories for a 2-D straight channel flow Fig. 2. Convergence histories for a 2-D straight channel flow
(L/H =5, Re = 1600, 60 x 60 grid cells, AR_, =10, =5, (L/H =35, Re =1600, 60 x 60 grid cells, AR _, =100, g8 =5,
CFL=2.38, 0 =0.4). CFL=2.8, 6=0.4).

As the maximum cell aspect ratio increased to AR,,,, = 100, the LSBMR method converged faster
than the SBMR method (Fig. 2). This was an expected result, since the LSBMR method allows
different optimum a’s in the clustered region rather than enforcing fixed acceleration parameters over
the whole computational domain. To access the accuracy of our algorithm, the computational results
were compared with analytical solutions. Fig. 3(a) shows the relative error in pressure drop at different
axial locations. Considering the constant axial pressure gradient, dp/dx, was of the order of 10~ for
this Reynolds number, we found that the absolute error in the pressure drop was close to machine zero.
In Fig. 3(b), axial velocity error is of the order of 107" and shows symmetrical distribution about the
channel center line which demonstrates that the mass flow is conserved at each cross section. The
analyti::sal value of the v-velocity should be zero everywhere and the computed values were of the order
of 1077,

Further increase in maximum cell aspect ratio (AR,,,, = 10 000) slows down the overall convergence.
However, the LSBMR method maintains a faster convergence, while other schemes fail to accelerate
the basic iteration method (Fig. 4). The history of acceleration coefficients of the LSBMR method
demonstrate that the acceleration coefficients in the fine grid region are much larger (Fig. 5(a)) than
those in the coarse grid region (Fig. 5(b)). It should also be noticed that all the acceleration coefficients
approach the same value as the solution converges to the machine accuracy.

The convergence acceleration schemes were then tested for a high Reynolds number (Re=1.6
million) turbulent flow in a straight channel. For this high Reynolds number case, we used the
Baldwin-Lomax [21] turbulence model and non-reflecting boundary condition was used at the exit of
the channel to predict pressure at the exit plane. The inlet flow was assumed to be fully developed,
although unlike for the laminar flow cases, the turbulent inlet velocity profile cannot be given
analytically. The inlet axial velocity profile was initially assumed to be of the 1/7 power of y/8 and the
initial guess for pressure and velocity components throughout the domain were the same as for the
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Fig. 3. SBMR method: Relative errors in pressure drop (a) and axial velocity component (b) at different x-locations: i = 1 inlet;

i=61 exit (Re = 1600, AR, =100, Freq = 30, n = 10).

laminar flow examples. We often predicted pressure peaks at the inlet corners when the inlet velocity
profile was specified and kept fixed. These pressure peaks were found to be sensitive to the specified
inlet velocity profile and their magnitudes increased as the grid became more clustered. Unfortunately,
these pressure peaks significantly slowed down the convergence. To circumvent this problem, the inlet
velocity profile was slightly modified after each iteration by replacing it with an average of the
computed velocity profiles at several immediate locations downstream from the inlet. With this minor
modification, the pressure peaks at the inlet corners were quickly eliminated and convergence and
robustness of the code significantly improved. With this grid clustering, several grid points could be
located within the laminar sublayer. The LSBMR method used the results at 30 iteration levels apart
and & = 0.5 was used for the IRS. Convergence histories for AR, ,, = 1000 demonstrate (Fig. 6) that the
LSBMR method consistently outperformed other acceleration schemes. When the maximum cell aspect
ratio was increased to AR_,, = 10000, the LSBMR converged consistently faster than other schemes
(Fig. 7).
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As an example of a complex flow with a separated region inside the computational domain, a flow in
a U-shaped channel was calculated. The geometry of the channel was discretized with 129 x 80 grid cells
that were symmetrically clustered towards the channel walls. In this test case we used Re =200,
CFL = 2.8, von Neumann number = 0.4 and 8 = 10. Anticipating a recirculating flow pattern at the exit
of the U-shaped channel, we used a non-reflecting [14, 15] boundary condition at the exit boundary. A

ty high-pressure region was found at the outer wall of the turning section while a low-pressure region was
d located at the inner part (Fig. 8(a)). The adverse pressure gradient along the inner part of the turning
v, section resuited in an open-end flow separation downstream of the turning section (Fig. 8(b)) which was
2 successfully predicted because we used the correct form of the non-reflecting exit boundary condition.
e The LSBMR method used the results at 30 iteration levels apart. The convergence histories for the
T maximum cell aspect ratio of AR ,, =40 for this complex flow example show (Fig. 9) that IRS (with
d ¢ =0.1 for the best performance with AR, ,, =40) performed only slightly better than the basic RK
e method. The LSBMR and the DMR methods reduced the number of iterations by 34%, while the
rt DMR reduced it by 20%. When the grid was further clustered toward the channel walls to give
e maximum cell aspect ratio of AR, =200, LSBMR method maintained the fastest convergence (Fig.
ct 10), while the DMR and the SBMR methods were not as fast as in the previous lower cell aspect ratio
es case. Again, the IRS (with £ =1.0 for the best performance with AR_, =200) did not yield any

noticeable acceleration for this test case.
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8. Conclusions

The Sensitivity-Based Minimum Residual (SBMR) and the Line SBMR (LSBMR) methods were
developed and applied to accelerate the convergence of the explicit RK algorithm for incompressible
Navier-Stokes equations. The methods are easy to comprehend and to implement in the existing
computer codes for iterative integration of systems of partial differential equations. Both new
acceleration methods consistently enhanced the convergence rate of the basic Runge-Kutta (RK)
method and outperformed the Distributed Minimal Residual (DMR) and the Implicit Residual
Smoothing (IRS) methods for both laminar and turbulent flows including separation. The advantage of
using the LSBMR method become more evident with increased grid clustering. Both new methods
require less computer memory than the DMR method. It can be concluded that the SBMR and the
LSBMR method enhance efficiency and robustness of the CFD codes even on highiy-clustered grids.
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