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Abstract

An approach to the aerodynamic inverse shape
design problem is considered where the shape update at
each iteration is found using an analytical Fourier series
solution to a set of two linear differential equations with
interrelated boundary conditions. The design technique
requires knowledge only of the surface pressure
distribution on the body to perform a shape update.
Thus, it can be implemented without modifying an
existing aerodynamic flow-field analysis code.
Formulations are given for both the two-dimensional
airfoils and three-dimensional wings. The Fourier
design technique was successfully tested in conjunction
with a panel code, an Euler code, and a turbulent
Navier-Stokes flow-field analysis code, at subsonic and
transonic speeds. The Fourier series method was found
to converge within 6-25 flow-field analysis while
simultaneously determining spanwise variation of wing
thickness, camber, twist, and dihedral.

I. Introduction

Aerodynamic shape design can broadly be classified
into two categories: shape optimization and inverse
shape design'®. The shape optimization approach
attempts to find the best global aerodynamic properties
from the design. On the other hand, the inverse shape
design approach requires that specific local properties
of the final configuration be specified as goals of the
design.

The inverse aerodynamic shape design is defined as
follows: given a desirable surface pressure distribution
on an aerodynamic body, find the shape of the body that
will achieve this pressure distribution subject to a given
global flow condition. There exist a multitude of
inverse design techniques that are useful in solving
different types of engineering problems’™®.
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Two major classes of inverse design tools for
aerodynamic shape design can be defined: methods with
coupled analysis and shape modification, and methods
with uncoupled analysis and shape modification.

The coupled methods require special consideration in
the writing of the flow-field analysis code. For example,
an indirect transpiration technique® * might exchange no-
slip wall boundary conditions on the body with specified
pressure boundary conditions in order to obtain a shape
update. Other examples of this class of techniques are:
stream-function-as-coordinate approaches, characteristic
boundary  condition  approaches, and  adjoint
operator/control theory approaches™*.

On the other hand, uncoupled inverse methods require
no modification to a flow-field analysis tool. Thus, any
reliable flow-field analysis code (a panel code, a Navier-
Stokes code, or even a wind tunnel data) can be used in
the design process without a need for alterations of such
an analysis tool. For example, elastic membrane
techniquesg'14 require knowledge of only the surface
pressure distribution on the current aerodynamic shape as
an output from the flow-field analysis code in order to
predict a shape update. The DISC technique is another
example of such a technique'”. Because they are
uncoupled from the flow-field analysis, these design
techniques have the added benefits of simplicity, relative
ease of programming, and versatility.

II. MGM Elastic Membrane Techniques

Garabedian and McFadden®"* first proposed the elastic
membrane approach to aerodynamic inverse shape design.
The technique treats the surface of an aerodynamic body
as a membrane that deforms under aerodynamic loads
until it achieves a desired surface pressure distribution.
The original model®'° for the evolution of an airfoil shape
was given by

dAn
BoAn+B1_+B2 (1)
dx

2
d”An = Clarget _ ~actual
2 P p

dx
Here, An’s are defined as shape corrections along outward

normal vectors (Fig. 1), and B¢, are user supplied

American Institute of Aeronautics and Astronautics, Inc.

1



constants that control the rate of convergence of the
shape evolution process, while C,*# and C?,cmal

are the specified (target) and the actual (computed)
local surface pressure coefficients, respectively. This
technique was modified by Malone et al."!, giving

BOAY+BI dAy +B, dd Ay Ctarget Cactual )

With this formulation (dubbed MGM for modified-
Garabedian-McFadden or Malone-Garabedian-
McFadden) all shape modifications are in the y-
direction, thus preventing the chord length from
changing. The MGM shape evolution equation (2) is
traditionally solved for Ay shape corrections using a
finite difference approach by discretizing along the
airfoil contour. The following formulation assumes that
the index numbering proceeds clockwise, starting from
the trailing edge of the airfoil. Using central difference
formulae for the derivatives in equation (2) results in a
tridiagonal set of linear, algebraic equations for the
unknown y-coordinate updates.

actual

Ay +BjAy; +CiAyiy =Cp-ltarget =Cp, (3)

Two major problems with the classical MGM
approach are its slow convergence at the leading and
trailing edges of the airfoil, and its significantly
slower convergence in conjunction with the flow-field
analysis codes of increasing non-linearity™.

I11. Fourier Series Elastic Membrane

Approach to Aerodynamic Design
In an attempt to alleviate these problems, a new
formulation of the elastic membrane concept has been
devised'®'®. It allows a Fourier series analytical
solution to the shape evolution equation.

A. Fourier Series Aerodynamic Inverse Design in
Two Dimensions

Equation (2) can be expressed by two different
equations on the top and bottom airfoil contours, as
the signs of two P coefficients must change for
symmetry. On the upper airfoil contour,

day d*ay
+ BSS 2
ds ds

_BOAy+Bs =ACp 4

where s is the airfoil contour-following coordinate
(Fig. 1). Then, on the lower airfoil contour,

dAy d Ay
BOAY + Bs - = Bss 5

=AC, )

These two ordinary differential equations with constant
coefficients are reminiscent of a well-known forced mass-
damper-spring system.

It is important to recognize the analogy between the
monotonically increasing time coordinate in the forced
mass-damper-spring system and the monotonically
increasing contour following coordinate, s, in the Egs. (4)
and (5).

Also, it is important to recognize the analogy between
the forcing function in the mass-damper-spring system
which varies arbitrarily with time and the surface pressure

coefficient difference, ACp , which varies arbitrarily with
the contour following coordinate, s, in Egs. (4) and (5).
Finally, there is an analogy between the global
periodicity of the mass-damper-spring forcing function
and the global periodicity of the surface pressure
coefficient difference, AC P which repeats its value at the
starting and the ending contour-following s-coordinate
location (Fig.1).
Then, AC,

utilizing the Fourier series expansion of the form

in Egs. (4) and (5) can be represented by

Oy,
AC,()=ag+ 3 |ay cos(Nys)+by sin(Nys)]  (6)

n=l

where

@)

and L is the total length of the airfoil contour.
The particular solution of either Eq. (4) or Eq. (5) can
be represented in the general Fourier series form

D max
Ay, =Ag+ 3 [A, cos(Nys)+ By sin(Nys)]

(8)
n=1
Then,
dA N max
dy" = ST-ALN, sin(Nps)+ ByN, cos(Nps)]  (9)
§ n=1
dszp
2
ds (10)

D max 2 5 .
= Y [-A,Nj cos(N,s)—B, N} sin(Ns)]
n=l

Substitution of Egs. (6)-(10) into the airfoil top contour
evolution equation (4) yields
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Atop — an (BO + NnZBss) - bn (ﬁan)

n=012"-
(BO +N3Bss)2 +(Ban)2 ’
(an
BI,OP _ b, Bo + erlﬁss)"'an (BsNy) n=123,
(Bo +N2Bsy)* + (B;N,)?
(12)

Similarly, substitution of Egs. (6)-(10) into the lower
airfoil contour evolution equation (5), results in

Abottom . an(_BO _ NnZBss)—bn(Ban) _
n - >t

_0,1,2,...
(B0+Nn2ﬁss)2+(BSNﬂ)2
(13)
Bgottom _ bn (—-BO _ ]\;nzﬂs;)'f' a, (ﬁsl\in) ,n=123-.
(BO +Nn BSS) +(BSN1’1)
(14)

Since the Fourier coefficients of the particular
solutions on the upper and lower airfoil contours are
different, it can be expected that gaps will form at the
leading and trailing edges of the airfoil. These gaps
can be closed with appropriate homogeneous
solutions to Egs. (4) and (5).

The upper contour homogenous solution is

Ay:]op _ Ftopekls + Gtopekzs (15)
where

+ /B2 +4
7\1,2 _ Bs Bs BOBSS (16)

2Bss

and F and G are as yet undetermined coefficients.

Likewise, on the lower airfoil contour, the
homogeneous solution is
Ay Eottom - pbottom e —Ags +G bottom e —Ags (17)

Thus, the overall displacement (correction) of the
airfoil contour is given by the following equations:
Ay top _ Ftopells +G topekzs

Nmax (18)
+ ) L\;"P cos(Ns) +B P sin(an)]

n=0

Aybottom — pbottom e—lls 4 bottom e—xzs

Nmax (19)
+ ) L\gmm cos(an)+Bg°“°m sin(an)]

n=0

The four unknown constants F and G can now be
determined for the upper and lower airfoil contours such
that the following four boundary conditions are met:
trailing edge closure, zero trailing edge displacement,
leading edge closure, and smoothness of Ay at the leading
edge.

For zero trailing edge displacement,

For trailing edge closure,
Ay bottom (O) - Ay top (L) (2 1)

From Eqgs. (20) and (18) it follows that

b b Dmax
poottom __ s bottom _ 2 Agottom

n=0

(22)
From Eqgs. (21) and (19) it follows that

FopelAh | glop LAy ____ZA:lop
n=0

(23)

For leading edge closure,

From Egs. (24), (18) and (19) it follows that
pbottom e‘SLE)‘l 4+ bottom —s LEM2
—FPeSLEM _ g topSLEM

(25)

Nmax
= Y [AA, cos(N sy g)+AB, sin(Ns;g)]
n=0

where

AA, = A:]op _Agottom . AB, = B:]op _Bgottom (26)

For smooth leading edge deformation,

d

d
—8y*OM (s ) =—— Ay (s 5) @7
ds ds

From Egs. (27), (18) and (19) it follows that
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_ FbOtmm?\.le-SLEM _ szbo[tomesLElz
—FlP), eSLEM _ GoP), , eSLEA2
Nmax

= > [-N,AA, sin(N,syg)+ N, AB, cos(N s g)]
n=0
(28)

Simultaneous solution of Egs. (22), (23), (25), and
(28) for the unknown coefficients F and G results in

Fbottom
Gbottom

Ftop =

G(Op

I 1 0 o 1
0 0 eL7\.l eLXz

e SLEM e SLEM —eSLEM —eSLEM

~heSLEM e SLER2 ) e SLEM —A,eSLEM
_nfx Abottom
n
n=0
Amax t
0,
- z Anp
n=0
Dmax
Y [AA, cos(Nysg)+AB, sin(N,spg)]
n=0

A max .

Y [-N,AA, sin(Ns; g)+ N, AB, cos(N,sg)l
n=0

(29)

B. Fourier Series Aerodynamic Inverse Design in

Three Dimensions

The two-dimensional Fourier series shape evolution
equation can be expanded to three dimensions as
follows.  First, define a second surface-following
coordinate, t, beginning at the wing root and extending
spanwise to the wing tip (Fig. 2). Note that the surface
following coordinates, s and t, should be scaled such
that the line s = 7t occurs at the leading edge of the
wing, the line s = 27 occurs at the trailing edge of the
wing, and the line t = w occurs at the wing tip. Also,
note that surface following coordinate directions s and
t are not necessarily orthogonal to each other.

Evolution model of the top surface of the wing can
then be assumed of the form

32 P 9?2
Bss — Ay + Bs Ay +l3n Ay
aS (30)

+Bt Ay BoAy = AC,

Similarly, the evolution model of the bottom surface of the
wing is

092 9 2?2
Bss — Ay ~Bs - Ay + By — Ay
8 S ot (31)

+Bt Ay BoAy =-AC

P

The arbitrary globally periodic aerodynamic forcing
function, AC;, can be represented using the Fourier series
expansion of the form

Cp(s,t) =

Mmax Nmax

Y Y {[Ap, cos(ns)+ By, sin(ns)]cos(mt)
m=0 n=0

+[Cyn cos(ns) + D, sin(ns)]sin(mt)}

(32)

The particular solutions to the linear partial differential
equations (30) and (31) can be assumed to be of the similar
Fourier series form.

Mmax Nmax

Y ) {[aik cos(ns)+ bk sin(ns)]cos(mt)

m=0 n=0

(33)
+[c! cos(ns)+d!%P sin(ns)]sin(mt)}

bottom (s,t) =

Mpax Nmax
3 {[af3O™ cos(ns)+ bOOMO™ sin(ns)]cos(mt) (34)
m=0 n=0

+ [cbOtmm cos(ns) + dbOttom sin(ns)]sin(mt)}

Substitution of Egs. (32) and (33) into Eq. (30) for the top
surface of the wing yields

o nBs th 0 a;g,‘,’ Amn
-n o 0 m top B
Bs B _ bto _ /Pmn (35)
~-mf, 0 o nBs Cmg Crn
0 _th - nBs Y dop Dnn
where
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6 =-n’Bg —m?B, By (36)

For the special case where the pressure distribution
and wing deformation are symmetrical about the wing
root t = 0, it follows that

Con =D = Ctop _dtop =0 37
o nf A
- nBs o aﬁ’lﬁ — an (38)
-mB; 0 b‘m"g 0
0 -mp, 0
Thus,

atop _ _(nzﬂss +m2Btt +BO)Amn "(nBs )an

mn
(n°Bgs +m By +Bo)” +(nBy)”
(39
top __ (B A mn — (nzl-)’ss + mZBtt +B0)Bmn
Bmn = 2 2 2 7“0
(n"Bgs +m Py +PBo)” + (nBy)
-mB, =0 40
Thus, t-direction damping should not be used.
Similarly, for the bottom surface of the wing,
botiom _ (0°Bgs +m*By +Bo)A my ~ (nBy 2B
mn -
(HZBSS + mZBtt + BO) + (nBs
(42)
bbottom (nBs )Amn + (nzBss + mZBn + BO)an
mn

(%P +m2By +Bo)? +(nBy)>
(43)

As was the case in two dimensions, the differing
Fourier coefficients in the particular solutions on the
upper and lower surfaces give rise to a gap formation
along the leading and trailing edges of the wing.

Gaprg (1) = AypP (0,1) - Ay "™ (0, 1)

mmax Bmax

2 2 [atop

m=0 n=0

Mmax Nmax

—2(n*Bgs +m>By +Bo) Ay cos(mt)
(nzﬁss + mzﬁtt + BO)2 + (nBs )2

m=0 n=0
(44)

Gapyg(t) = AypP (m,t) — Ay 5O (i, t)

Mmax Nmax

=3 ) D

m=0 n=0
_ M M —2(=1)" (n°Bys +m By +Bo)A py cos(mi)

(nzﬁss +m2f’n +BO)2 + (nBs)z

aloP _gbottom ) -oqmi)

m=0 n=0
(45)

There will also be a slope discontinuity that develops at the
leading and trailing edges.

Slope (1) =iAy‘°P (0,0) == Ayp°"*™ (0, 1)

Mmax Mmax
2 2 n[btop bbottom]cos(mt)

m=0 n=0
Magx Nmax — 2(n 2B, +m By +Bo)Byy cos(mt)

(n*Bgs +m?Py +Bg)? +(nBy)?

(46)
m=0 n=0

bottom

Slope; g (t) = —Ay‘°p (m,t)— (m,1)
Mpax Nmax
=Y Z( 1™ n[b'9P — p2OMOM )¢ (mt)
m=0 n=0

_ Mmax "max _ 2 (—1)" n(nzﬁss +m2{3n +B¢)B 1y cos(mt)

(nzﬁss +m2ﬁtt +BO)2 +(H[35)2
47

m=0 n=0

Series of homogeneous solutions to the shape evolution
equations (30) and (31) are used to overcome these gaps.
Specifically, on the top surface of the wing, the
homogeneous solution should satisfy

3 op.a O . top
BSS:)—szh +Bsa_s'Ayh

Saz (48)
+Peya —5 8" ~Bodyy” =0

The analytic solution of this linear partial differential
equation can be found using separation of variables
approach.

y P (s, 1) =S(s)T(1) (49)

»

Bss Bs —=Bo = =By T? (50)

In the T-direction,
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BnT’+a2T=0

2
T()= (const)cos(t, fg_)
Bu

In order to express T as a Fourier series to match
modes of gap functions, let

2
—q——=m, where m=0,1,2, ...
VBn

(52)

(53)
Then
o’ =B m? (54)
In the S-direction,
BssS”+BsS = (Bo +Bxm*)S=0 (55)
Let
Ym® =Bo +Bym’ (56)
Then
S(s) = (const{op Yedm® 4 (consttzop )e mS 7
where
B +yBs + 47 B 58)
2Bss
I —yBs” + 41 Bus 59)
2Bss

Then, on the upper surface of the wing, the y-coordinate
correction due to the homogeneous solution is

Mpax —
Ay P = Y [(EfPedm® + FiPe™*)cos(mt)]  (60)
m=0
For later convenience, multiples are extracted from the
E and F constants on the top surface, giving

Ayg’p =
(61)

Maex top . ~qQm (27-s) top . —Iy, (27—s)
Y {[EgPe™m +FPe™m Jcos(mt)}
m=0

Similarly, on the bottom surface of the wing,

(51) Aygottom -

m 62
E"ax [(ElbI:)ttome—qms + Frlr)lottome—rms )cos(mt))] (62)
m=0

To eliminate the trailing edge gap in each mode,

Ay P (2m, t) ~ Ay "™ (0, t) = ~Gap g (1) (63)

From Egs. (61) and (62) this condition is satisfied when

EoP 4 Flop _ Ebottom _ Fbottom
m m m m
e 2(n By +m2By +Bo)Amn (64)

2 (0% +m By +Bo)2 + (0B )>

To eliminate the slope discontinuity at the trailing edge in
each mode,

%Ay;:’p (2m,t) —%Ayﬁ(’“om (0,t) =—SlopeTg (1)  (65)

From Egs. (61) and (62) this condition is satisfied when

Emldm + Gt + B g + FR O

m
M 2n(n?Pg +m2By +Bo)Bmn (66)
n=0 (n2ﬁss + mZBtt + BO)2 + (nBs )2
To eliminate the leading edge gap in each mode,
Ay %P (1, t) — Ay 2" (. t) = —Gap g (1) (67)

From Egqs. (60) and (62) this condition is satisfied when

Eigpc_"qm + F&‘"Pe_mm
_Eg?ttom e~ ™m _Frl;ottom & ™m (68)
e 2(=1)" (0B + m By +Bo)A

- n=0 (nZBss +m2Btt +B0)2 +(nBs)2

To eliminate the slope discontinuity at the leading edge in
each mode,

9 ay WP (1)~ %Ayﬁ"“““ (mt)=-Slope g (t)  (69)

From Egs. (60) and (62) this condition is satisfied when
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E{oPq e ™m 4+ FlOPr o ~™m

+ Eg:)ttom U e ™m 4 Frlxnlottom I, e~ ™Mm (70)
_"@ 201" (0B, +m*By +B0)B o
2
n=0 (n“Pgs +mZBn +B0)2 +(nBs)2
Combining the boundary conditions yields a 4 x 4

matrix equation for E and F coefficients in each
mode, m.

1 1 -1 -1 E‘mOP
dm m dm Im FioP
e‘ﬂ'qm e_m'm _ e"’“lm - e_mm Ebottom

m
qme"mqm rme_mm qme‘WQm rme‘m'm Frtr)lottom

g 2(nBgg +m By +By)A
n=0 (n*Bgs +m?By +Bo)? +(nBy)>
"wax  2n(n’Byg +m 2By +Bo)B oy

_] 20 (0%Bgs +m?By +Bg)” +(nBy)?

“ﬁx 2=1)" (B +m2By +Po)A
n=0 (n%Bgs +m?By +Bo)? + (nBy)>
" 2n(=1)" (n*Bgs + m*By +P0)B g
=0 (0%Bgg +m2Py +Bg)? +(nfs)?

1)

This matrix equation becomes stiffer with increasing
mode number, m. Thus, a numerical inversion is not
suggested. The constants can however be calculated
analytically. Let

Muax 2(n2B + mZBy +Bo)A g
n=0 (nzﬁss +m2ﬁtt +|30)2 +(nBs)2
ths; D max 2n(n2[3SS +m2Btt +B0)Bmn
thsy | | 120 (n%Bss +mBy +Bg)” +(nBy)?
ths “iax 2~ (0B +mBys +Bo)A
thsg) | 130 (0%Bgs +m*By +Bo)” +(nBy)?
g 2n(—1)" (n2Bgg + m By +Bo)B
n=0 (n*Bg +m?By +PBo)% +(np)>
(72)
Then
ths;e”™m —rhs,
| rhs; + ot
E9P = S (73)
2 L thsy  rhsye™™m —rhs,
dm I (e—m'm _e"‘Clm)

1| rhsy —rhs,e ™m

2 I'm (e-m'm __e_m-lm)

ths3 —rhs e ™m
+
TQm

FiP =

~Tty —e”

] (74)

(75)

|

(76)

[

ths;e ™m —rhs,

—rhs; - — —
e m —-e m
thsye ™ ™m —rhs,

dQm (e_mm — e ™m )

bottom __
En =

1
2
4 rhs, +

Am

ths4 —ths,e ™m  thsy —rhs;e ™m
| T'm (e_m'm _e“mm)

Fltl)]ottom %

e ™m _o~™m

Finally,

Ay"P(s,t) =
[EioPem(275) 1 BloPe~fm 2T=9) 1005 (mi) +

miax nfx (2

m=0 | n=0

o an

mn cos(ns) + b:gg sin(ns)}cos(mt) +

[c1% cos(ns)+d 2P sin(ns)]sin(mt)}

Aybottom (s,0) =

[Ell)ri)(tome—qms + Frllalottome—rms Jcos(mt) +

Mmax | MTmax

2l

n=0

bottom

bottom
Amn b mn

cos(ns)+ sin(ns)]cos(mt)
m=0

bottom

d bottom
mn mn

+{c cos(ns)+ sin(ns)]sin(mt)}

(78)

IV. Numerical Results

A. Two-dimensional Airfoil Inverse Design Results

The airfoil design case utilized a target coefficient of
pressure distribution corresponding to a NACA 1311
cambered airfoil at free stream Mach number M = 0.5.
The initial geometry was a NACA 0012 non-lifting airfoil.
Shape evolution parameters P, Bs, and B, were set to 1.2,
0.0, and 0.4 respectively. The evolution of the airfoil
surface coefficient of pressure distribution and its
geometry are shown'®® in Figs. 3 and 4.

Three flow-field analysis codes (a potential flow code
with Laitone’s algebraic compressibility correction, an
Euler compressible flow code, and a compressible viscous
flow Navier-Stokes code with a Baldwin-Lomax
turbulence model) were used to demonstrate that the
Fourier series technique converges consistently faster than
the original MGM technique especially with the Euler and
the Navier-Stokes flow-field analysis codes (Fig. 5).
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B. Three-dimensional Wing Inverse Design Results

After verifying that the three-dimensional version
of the Fourier series method maintains symmetry
when designing a wing with a symmetric surface
pressure distribution at every station''®, an inverse
design test case was carried out using a three-
dimensional surface panel flow-field analysis code
with an algebraic compressibility correction.

The objective was to test the Fourier technique’s
ability to simultaneously modify a wing’s spanwise
distribution of thickness, camber, twist, and dihedral.
Only the trailing edge point of the wing root section
was fixed. The wing had a taper ratio of 0.5 and a
leading edge backward sweep angle of 7.125 degrees.
The semi-span was equal to two root chord lengths.
The wing tip airfoil had a non-zero thickness and
free-stream Mach number was M = 0.2. The target
pressure distribution was obtained from analysis of a
wing having a NACA 1311 root airfoil and a NACA
2412 tip airfoil. The target wing had a linearly
varying twist with 0.0 angle of attack at the root and
+3.0 degrees angle of attack at the wing tip. The
initial geometry had a constant NACA 0009 airfoil
shape with a linearly varying twist angle from 0.0
degrees at the root to —1.0 degree angle of attack at
the tip. The wing grid had 64 panels in the s-
direction and 19 panels in the span-wise direction that
were clustered toward the wing tip. The shape
evolution parameters By, Bs, Bs and B, were set to
7.0, 0.9, 0.0, and 1.2. The maximum number of
Fourier terms considered in the s- and t-directions,
were set 10 Ny =120 and my,, = 120. After ten
design iterations, the target pressure differs mostly
near the wing tip and at the trailing edge (Fig. 6).
The evolution of the wing shape is shown in Fig.7.

The next test case was examined in conjunction
with both a three-dimensional turbulent Navier-
Stokes flow-field analysis code and an Euler flow-
field analysis code. In these cases, a wing tip that
quickly shrinks the airfoil thickness down to zero was
added to each wing. The wing had a taper ratio of
0.5. The leading edge sweep angle was 14.03
degrees and the trailing edge had zero sweep, while
the semi-span was two times the root chord length.
The free stream Mach number was M = 0.6. The
computational grid was regenerated after each
application of the Fourier series design method by
stacking two-dimensional C-grids generated for each
span station. Twenty span stations, 32 C-layers, 64
grid cells on each airfoil, and 16 cells along the wake
defined the computational grid. A turbulent Navier-
Stokes flow-field analysis code with Reynolds
number of one million was used to obtain the target
pressure distribution corresponding to a severely
twisted wing with a root airfoil NACA 0009 at +4.0
degrees angle of attack and a tip airfoil NACA 1311
at —4.0 degrees angle of attack. The initial geometry

for the design process had root airfoil NACA 2412 at —4.0
degrees angle of attack and a tip airfoil NACAQ009 at
+4.0 degrees angle of attack. The shape evolution
parameters By, Bs, Bs, and By were set to 7.0, 0.9, 0.0, and
1.2, respectively. The target pressure distribution (Fig. 8)
is not fully achieved near the root and tip after 20 design
iterations. Figure 9 depicts the change in wing geometry
including dihedral angle during the design process. The
same test case was then repeated with an Euler flow-field
analysis code where the viscosity effects were not
included in the target pressure distribution. When using
the same shape evolution parameters By, B.,, B, and Bo, the
inverse design convergence rates when using the Euler
code and the Navier-Stokes code were basically the same.

Next, an Euler equation design case was performed in
transonic flight conditions, seeking to design a fully
subsonic wing from an initial wing with a shock wave at
the flight Mach number M = 0.8. The wing planform had
a taper ratio of 0.5, leading edge sweep angle of 14.03
degrees, zero trailing edge sweep, and semi-span of two
times the root chord length. The initial guess had a
NACA 0012 airfoil shape at +5.0 degrees angle of attack.
The target pressure distribution corresponded to a non-
lifting wing with a NACA 0009 airfoil. The
computational grid was defined by 20 span stations, 32 C-
layers, and 100 grid cells per airfoil. The shape evolution

parameters Py, Bss, Bs, and By were set to 7.0, 1.2, 1.0, and
1.6, respectively. After twenty iterations, the wing still
had some lift (Fig. 10) despite its non-lifting target
pressure distribution. The airfoil shape obtained after the
first iteration of the Fourier series technique developed a
dent at the location of the shock wave on the upper
surface of the wing (Fig.11). However, after 20 iterations
in this case, the concavity was removed, leaving a smooth
wing shape (Fig. 11) and no shock wave (Fig. 12).

Finally, an Euler design of a shocked wing was
attempted by performing a reverse of the previous case,
that is, by designing a wing at +5.0 degrees angle of
attack with a NACA 0012 airfoil from an initial wing at
zero incidence with a NACA 0009 airfoil. The shape
evolution parameters were By, = 7.0, B, = 0.7, Bs= 3.0, By
= 1.4. The shock location history (Fig. 13) shows that
the shock wave location stabilizes after a few iterations
of the Fourier series technique in this case. The
evolution of the surface coefficient of pressure
distributions at several span stations (Fig. 14) and
evolution of the wing geometry still underwent a
significant waving motion when using damping (Fig. 15).

V. Conclusions
A mathematical formulation for the elastic membrane
concept in aerodynamic shape inverse design using an
analytical Fourier series solution has been developed. A
benefit of the Fourier technique is that it requires no
modification to the existing flow-field analysis software.
In two dimensions, numerical results have shown that the

American Institute of Aeronautics and Astronautics, Inc.

8



Fourier technique converges considerably faster than
the MGM method from which it was derived. The
original MGM design method uses finite differencing
to evaluate derivatives in the surface evolution
equation while Fourier method uses analytic
expressions. The Fourier series method does not
appear to suffer from slower convergence due to
increases in the non-linearity of the flow-field
analysis code. The Fourier technique requires the
user to specify several constants that can affect the
convergence if selected poorly. In three dimensions,
numerical results have shown that subsonic wings can
be reliably designed using a panel code, an Euler
solver, or a turbulent Navier-Stokes solver.
Transonic cases in three dimensions have
demonstrated the necessity of s-directional damping
in the shape evolution equation, as without damping,
the surface of the aerodynamic body is prone to
oscillate excessively in the vicinity of shock waves.
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Fig. 2 Wing surface following coordinates s,t and
the Cartesian coordinate system x,y,x.
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Fig. 12 Initial and inversely designed wing top surface isobars for an initially shocked transonic wing using an Euler
flow-field analysis code in conjunction with the Fourier series inverse design technique.
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Fig. 15 Span-wise geometry evolution for a wing design having a specified three-dimensional shock wave. An Euler
flow-field analysis code was used in conjunction with the Fourier series inverse shape design technique.
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