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A mathematical model and an explicit finite-difference iterative integration algorithm for
two-dimensional laminar steady flow and solidification of an incompressible, viscous,
electrically conducting but neutrally charged melt containing electrically charged particles
and exposed to an externally applied electrostatic field were developed. The system of
governing electrohydrodynamic equations was derived from a combination of Maxwell’s
equations and the Navier-Stokes equations, including thermally induced buoyancy, latent
heat release, and Joule heating, while accounting for the mushy region. Physical properties
were treated as arbitrarily temperature-dependent. Numerical results demonstrate the
existence of strong electrothermoconvective motion in the melt and quantify its influence on
the amount of accrued solid, deposition pattern of the electrically charged particles inside the
accrued solid, and the meit /solid interface shape.

Fluid flow under the influence of a combined electromagnetic field [1] can be
described by either of the two extreme models: electrohydrodynamics (EHD) or
magnetohydrodynamics (MHD). The EHD model assumes a quasi-static electric
field applied to a fluid containing electrically charged particles and having negligi-
ble magnetic induction effects [2-4]. The phenomenon of electrohydrodynamic
instability or the generation of vorticity resulting from a nonuniform electric
charge distribution in the fluid under the influence of an electric field is well
known [1]. This is due to the existence of the Coulomb forces [5] that arise from
the inicraction of ilic charges and ihe eleciric poteniiai energy.

A number of experimental observations and several simplified analytical
studies have been performed on the general topic of interaction of electroconvec-
tion and heat transfer. A comprehensive review of the operational principles of the
EHD in single-phase and condensation heat exchangers is provided by [6]. The
injection of charges between two electrodes was dealt with in detail by Zahn and
Chatelon [7]. The EHD enhancement of heat transfer has been demonstrated for
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NOMENCLATURE
b charged particle mobility € electric permittivity
coefficient, m?* s~ ! V! coefficient, kgms™2 V™2
c specific heat coefficient, 0 nondimensional temperature
m2K-ls™? difference
D charged particle diffusivity u dynamic viscosity coefficient,
coefficient, m? s~ ! kgm~'s”!
D*, Dys diagonal matrices p fluid density, kgm >
E = E(E,.E,) electric field vector, Vm ™! ) gravity potential,
g =1glg,,g)  gravity acceleration vector, m2s?
' ms~? @ electric potential, V
I identity matrix
k heat conductivity coefficient, Superscripts
kgms 3 K!
kg Boltzmann constant, * nondimensional quantity
kg™'sK ' function of nondimensional
! length, m temperature
L latent heat of solidification, T transpose of a matrix
Jkg™! or a vector
p fluid pressure, Nm™>
q electric charge /volume, Subscripts
kgm~ls"2V!
t time, s cold cold wall
T temperature, K E electrical
v =vu,v) velocity vector in Cartesian hot hot wall
coordinates, ms ™! 1 liquid
X,y Cartesian coordinates, m liquidus liquidus
a thermal expansion s solid
coefficient, K~! solidus solidus
B artificial compressibility 0 reference values
coefficient s differentiation

flows between parallel plates [8] and for EHD duct flows [9]. Several simplified
models of EHD liquid flows without solidification have been solved numerically in
the past [10-13]. The extreme complexity of the physical phenomena and the
corresponding mathematical models for the EHD [4, 12, 14, 15] seem to be the
main reason for the apparent nonexistence of published research on analytical,
numerical, or even experimental efforts in EHD solidification. On the other hand,
several recent publications addressed analytical modeling and numerical simulation
of MHD solidification under the influence of reduced gravity [15-17].

This article represents a more thorough and precise analytical model of EHD
solidification /melting than our earlier work [15]. Specifically, here we elaborate on
a single set of partial differential equations describing the entire phenomenon, not
only in the all-melt regions, but also in the mushy (mixed melt and solid) regions,
as well as in the all-solid regions. This is possible by modeling the solid phase as
being yet another liquid having all the physical properties of the actual solid,
except for its viscosity, which will be treated as extremely high but finite. In such a
way, the actual solid-phase regions will be computationally captured as regions
having practically zero internal velocity field. For the purpose of clarity, we will




DIELECTRIC FLUID SOLIDIFICATION 359

often refer to the melt as “liquid” and to the extremely viscous fluid as “solid.”
This formulation eliminates the need to model the mushy region as a porous flow
domain.

EHD SOLIDIFICATION: ANALYTICAL MODEL

The mathematical model presented in this article consists of an electrically
neutral, homocompositional, viscous, incompressible liquid that is seeded with one
type of charged particles having all physical properties identical to those of its
immediate neighborhood media (all liquid, mushy region, or all solid) except that
the particles are electrically charged. The objective is to demonstrate only funda-
mental effects of the applied electrostatic field, for which a single-species formula-
tion will suffice. Although many practical solidification/melting processes involve
turbulent flows, we have decided to study solidification /meiting with EHD effects
in laminar flows only, since reliable and universal turbulence models for EHD
flows do not exist. We will also assume that there is no electrolysis or pool boiling
in the liquid, and that charged particles do not undergo chammg due to their
polarization (no electrorheological effects).

The system of governing equations for EHD can be derived from a combina-
tion of Maxwell’s equations of electrodynamics and the Navier-Stokes equations
[11-13]. An idealized charged fluid is assumed [2, 3] and, therefore, induced
magnetic fields can be neglected. In the same model, the magnetic field vector and
the electric polarization vector are assumed to be negligible compared to the
electric field vector. Consequently, Maxwell’s equations can be reduced to an
electric charge conservation equation and a Poisson partial differential equation
for electric potential, since the electric field is irrotational. Starting with the
complete Navier-Stokes equations for compressible fluid flow and assuming that
density variations as a function of temperature are small, an extended form of the
Boussinesq approximation can be derived for fluids with temperature-dependent
properties [11, 18]. The EHD governing equations are

Vov=0 m
Dv T
o = —Vp — pag AT + V- {ulVv + (W)} + gE @
O . kvD) +JE 3
pepr VYD I

Jd
4 .50 @)

at
v.E=2 (5)

€

Notice that the induced electric current per unit volume is given by Ohm’s
law,

J=q(v+bE) —DVg (6)
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The electric charge diffusivity coefficient, D, and charge mobility coefficient, b, are
related by Einstein’s formula [3, 5]:

k.To.
D= B3Py — 0.00256 )
qm,;

where m; is the mass of a charged particle and p; is the density of the electrically
charged particle. Since the electric field is irrotational, it follows that

E=—-Vgp ®)
Here, ¢ is the electric potential, so Eq. (5) becomes
q Lo
Vip=—= 9
€

Nondimensionalization can be performed with respect to the reference values
denoted by subscript 0, so that

v X tivyl
V*=—— x*=_ t*= 0 * P > (10)
Vol ly Iy pol vl
o = A E* — El, q*=_q_ 0=T—'To g*=_g_ (11)
Aoy Agg 90 AT, lgol

Typically, if T, is the temperature of the cold wall and T, is the temperature of
the hot wall, then AT, = Ty, — T.oq» Where T, is often taken as the solidus
temperature, that is, Ty = Tygjqus- Similarly, Ae, is the reference value of the
electric potential difference between the two wall electrodes. Here, for simplicity, it
was assumed that the electric permittivity coefficient, e, is constant.

Our objective is to use a single system of governing equations in the entire
domain, which could locally contain the liquid alone, a mixture of the liquid and
the solid (mushy region, where Tyqiqus > T > T, ,uaus)» OT the solid alone. Physical
properties of the liquid and the solid phases are quite different. The mass fraction
of liquid at any point in the domain determines locally to what extent physical
properties of the liquid or the solid phase should be taken into account. For
example, latent heat released or absorbed per unit mass of the mushy region is
proportional to the local volumetric ratio of liquid phase to the entire local volume.
This ratio is often modeled [19] as

v, 0= Oans |
f — ! — ( solid! ) (12)
VI + I/s oliquidus = Biolidus

where the exponent n is typically 0.2 <n <5. We will assume separate linear
variations of density as a function of nondimensional temperature in the liquid and
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in the solid. Thus, in the liquid we have

a(py/ por)
+ ——

pr=

with a similar expression for the fluid simulating the solid phase. For certain
materials, their physical properties can be significantly different in the liquid as
compared to the solid phase. Density, viscosity, heat conductivity, electric charge
mobility, electric charge diffusion, and heat capacity in the liquid can be expressed
as arbitrary functions of nondimensional temperature:

Poi , Mo | ko , b ,
Pl=—=p W =——u ki=-"k  bf="b 14
Po Ko 0 0
D c a €
D} =—"D; =L of=—2 g=2 (15)
D, Co @y €

with similar expressions for the fluid simulating the solid phase. Here, we assume
thermal expansion coefficients and electric permitivity coefficients to be tempera-
ture nondependent in both the liquid and the solid phase. We can now introduce
nondimensional numbers defined as follows:

Reynolds number
_ pol volly

Mo

Re

Grashof number
2 3
polgolag AT,I
Gr - 0 0 (; 0f0
2]

Froude number

Charge diffusivity number
Mo
po Dy

Dy =

Electric Prandt]l number
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Prp = ———
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2
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Stefan number
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The nondimensional system of equations that is valid throughout the computa-
tional domain comprising the liquid, the mushy region, and the solid with separate
temperature-dependent physical properties in each phase and containing charged
particles while under the influence of electrostatic and gravitational arbitrarily
oriented fields expressed in a conservative form, is

Mass conservation equation

V*.v* =0 2y

Linear momentum conservation equation

*

p* P +fpf V¥ (v*v* + pFI) + (1 — fpF V* - (v*v* + prl)
[T T __ Greé
e =fV*-{i€[V v + (V*v*) ]}+a* Ra? gt
wk
=)V {R—S[v*v* + (V*v*)T]} + S, g*E* (22)
(<

Energy conservation equation

0
+ fpr V¥ - (cX6v*) + (1 = f)pf V¥ - (ckov™)

=%
¢ at* g

1
— * * YTk . * * 7%k
= RePr[fV (k¥ V*@) + (1 — f)V* - (k¥ V*9)]

- E*-E* o Vig*E*

®pk L E* 4 *B* -b 23
+SEEc(q vioE g Re Pr, Re D 23

Charge conservation equation

9q* v* N - b*E* 1 V* . (B* V*g* (24)
+ V* - + = .
ar* N Re Prg Re D ( 1 )
Electric potential equation
foa-=5n
Vet = —Neg*| =+ (25)
! s

Here, we used the following symbols for the mixture density, mobility, heat
capacity, and thermal expansion:

p*=rfof +Q-fp! (26)
b* = fboF + (1 — f)bF @n
- d(ct.6) a(ct9)
¢ =fot — i+ @ =Pl — (28)

a* = fpfaf + (1 — f)pfaf (29)
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Combination of hydrodynamic and hydrostatic pressures,

* * % %
LA o P (30)

=* -
! o Fr? ' p¥  Fr?

uses the nondimensional gravity potential ¢*, defined as g* = V*¢*. We used an
enthalpy method to formulate the equivalent specific heat coefficient in the liquid
and the solid phases as

., 1 f 1 of

* _ _ * Nk __ e
¢l = — d ct,=c

C an
' Ste 98 se Ste 96

respectively. This expression allows for the latent heat to be released in the mushy
region according to the empirical law (12). Viscous dissipation can be neglected
[11, 18], since its ratio with respect to the convective term in the energy equation is
of the order Ec/Re, which is typically a small number in natural convection.

EHD SOLIDIFICATION: NUMERICAL MODEL

For the purpose of developing a versatile EHD solidification /melting analy-
sis code applicable to arbitrary configurations where correct boundary conditions
could be easily enforced precisely at the boundaries, the system of equations
(21)-(24) was transformed into a fully conservative vector form expressed in
general curvilinear, boundary-conforming, nonorthogonal coordinates (&, n)
[11-13] as

+

+
o oE* | om*
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where the solution vector Q* and the general flux vectors E* and F*' are

* T
Q* = {p—u* U*()q*} (32)

1
J\ B
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U* p*
U*u* + ¢, pf V*u* + m,,pf
i:l* _ l U* U* + §,y;;k i‘l* _ l V* v¥ + 7],y1=?7 (33)
J U*o J V*o
b E} brEY
o\U* + ——— olv + —L
Re Prg Re Pr,

with similar expressions for the flux vectors E** and F**. The source vector is

0
=% Gre *® * Pk
e a Rf;‘z gx + SEq Ex
Gré
§* = = 34
a* Re? g;‘ + SEq*Ey (34)
- E*-E* = V*g*-E*
Sg Ec|g*|{v* - E* + b* - b —
Re Pry Re D¢

Here, diagonal coefficient matrices are

D* = diag|15771]

11 1 1
Dy = diag|0— — 5
NS 1ag[ Re Re RePr Re DE] (35)
D}¢ = diaglOufufkibf] DY = diaglOu s k7 by ] (36)

Here, J = det[d(£, 1)/ 3(x, y)] and g;; is the metric tensor given by g;; = Vx; Vxj,
while U* and V* are the nondimensionalized contravariant velocity vector compo-
nents. A nonphysical artificial [20] compressibility term, J(p*/ B)/ar*, was added
so that the system (31) can be made nonsingular and integrated in time simulta-
neously. The parameter 8 is a constant specified by the user. The system of
coupled nonlinear partial differential equations (31) was discretized using central
differencing and integrated iteratively using a four-stage explicit Runge-Kutta time
stepping [21] given as

QO =Qn
AQ" = —y, Ar* R™! m=1,2,3,4 (37

Qn+1 - Qn + AQ4

where the iteration level is denoted by n, and each stage of the Runge-Kutta
algorithm is denoted by m. Here the coefficients are v, = 1/4,1/3,1/2, and 1,
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respectively. The residual vector R is computed by moving ail terms from the right
side of the system (31) to its left side and explicitly adding a small amount of
fourth-order artificial dissipation to stabilize the algorithm, which is otherwise
prone to oscillations due to even—odd decoupling because it uses central differenc-
ing in space. Poisson’s equation (25) for electric potential was solved separately
during each global iteration using a fast, alternating-direction, implicit algorithm.
Wall pressures were computed from the normal momentum equation. Boundary
conditions for electric charges on the electrically isolated boundaries were of the
Neumann type. Otherwise, electric charges were injected uniformly at one bound-
ary and their pattern was computed at the opposite boundary.

NUMERICAL RESULTS

Based on our theoretical model and the numerical algorithm, a FORTRAN
code was developed that is capable of predicting details of the convection and
conduction heat transfer in EHD flows invoiving solidification /melting. We are
not aware of any publications dealing with EHD solidification of dielectric fluids.
Consequently, we chose a sequence of simple test cases to demonstrate the ability
to simulate this phenomenon without having an opportunity to thoroughly verify
the accuracy of our analytical model and the numerical algorithm against published
experimental or computational data. Although the code is applicable to arbitrary
two-dimensional configurations, for the purpose of analyzing the fundamental
phenomena we chose to test solidification processes numerically in a simple
configuration consisting of a closed, horizontal, two-dimensional rectangular con-
tainer of aspect ratio 2:1 (/, = 0.033333 m in height), fully filled with the molten
gallium arsenide. The container area was discretized with a symmetrically clustered
orthogonal computational grid having 60 X 60 rectangular grid cells. Physical
properties used in this work are summarized in Table 1, and the corresponding
nondimensional numbers are given in Table 2. Since we did not have reliable
information as to the typical level of the electric charges and mobilities, we used
Go=1x10"% Cm™> and by, =1Xx10"8 m* V''s™! as the reference values,
which correspond to an aqueous biological solution [22]. Since there is no mean
velocity in this type of fiow, we defined ihe Reynoids number as Re = Gi'/”, which
determines the reference velocity in full gravity as v, = 0.02473 ms™!' and in
reduced gravity test cases as v, = 0.002473 ms~!. All other reference values used
in the nondimensionalization corresponded to the liquidus temperature (Table 1).
The following nondimensional numbers were used in all the test cases: Pr = 0.068,
Ste = 5.98 X 1073, D = 1.95 X 107*. The top wall was specified as uniformly
cold at 9 = —0.5 (T4 = 1506.005 K), the bottom wall was uniformly hot at
6 = 0.5 (T, = 1516.005 K), while vertical walls were adiabatic. The gravity vector
was applied vertically downward. Initial guesses were v=10, p =0, 8§ = 0.5, g = g,
(or g = 0), and E = constant (or E = 0). Several distinct test cases were analyzed
numerically.

Case 1. There was no electric field applied in this case, and no charged
particles were introduced while full gravity force was applied (g* = 1.0). This is the
typical case of solidification from above, where two strong thermoconvective,
counterrotating vortices (Figure 14) exist in the steady-state situation below the




366 G. S. DULIKRAVICH ET AL.

Tabie 1. Physical Properties of GaAs

Symbols and units Value Reference
o [kgm ™3] 5710.0 23

o, [kgm™3] 5196.0 24,p. 1.1
o Ukg 'K 4340 23

c, kg™ 1K1 416.0 24,p. 1.8
EWm 'K 17.8 23
k,[Wm 1K™!] 7.0 23

T, K} 1511.005 Assumed
T, [K] 1511.0 23

b Im?v~1] 1x10°8 22

b, [m*Vv~1!] 1x 1071 Assumed
D, [m?s™] 2.5 % 10710 5

D, [m*s™'] 25 x 10716 5

a, [K™1] 1.87 x 1074 23

a, (K ] 5.0 x 107" H

g (W™ im 1] 8.0 x 10°

g, [Wim™1] 3.0 x 10* 23

€ 708 x 10~ 12 22

€ 1x10712 Assumed
wlkgm 1571 2.79 — 0.005(T — 1511) x 10~? 23,25
LiJkg™'1 726,000 23

solid that accrued on the top wall. Strong temperature gradients exist inside the
solid, and the solid /liquid interface is highly curved (Figure 1b). Due to the strong
convection in this test case, the computed normal temperature gradients (negative)
at the bottom wall and at the top wall are highly nonuniform (Figure 1c). Notice
that differences in the magnitudes of the arrows in Figure 1c at the top and bottom
walls are due to the fact that the thermal conductivities of liquid and solid GaAs
are quite different (Table 1). The predicted solidified volume was 10.96% of the
total container volume (Table 2). When running this same test case with 1% of

Table 2. Input Parameters for EHD Solidification of GaAs Melt in a 2:1-Aspect-Ratio
Closed Container®

Case no. 1 Case no. 2 Case no. 3 Case no. 4 Case no. 5
g 1 1 0.01 1 0.01
Ap(V) 0 50001 10001 15000 — 1000 —
Re 1687 1687 168.7 1687 168.7
Gr 2.85 x 10° 2.85 x 10° 2.85 x 104 2.85 x 10° 2.85 x 104
Ec 141 x 1077 141 x 1077 141x107° 141x1077 141x107°
Ne NA 0.222 0.222 0.07407 0.111
Sg NA 0.143 14.3 0.429 28.6
Pry NA 977 %1077 977 x107% 326x107% 488X 107°
Solid(%) 10.96 10.82 27.48 10.88 28.30

“Arrows designate orientation of the uniform electrostatic field vector E.
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terrestrial gravity (g* = 0.01), only mild convection started initially. Nevertheless,
as the solidification front advanced downward from the top wall, the effective melt
height reduced, thus strongly reducing the Grashof number and the effective
Rayleigh number (Ra = GrPr). Consequently, the effective Rayleigh number
became subcritical and thermal convection ceased altogether. As a result, this test
case produced a steady state with pure conduction in the accrued solid and in the
melt below. The predicted isotherms were practically horizontal, and the predicted
solidified volume was 29.17% of the total container volume.

Case 2. A uniform external electrostatic field of 5000 V was applied in this
case acting upward, as was the full gravity force (g* = 1.0). We enforced uniform
charged particle concentration at the lower wall while treating the top wall as an
exit boundary for the charged particles, since the side walls had a Neumann
condition imposed on electric charges. Negligible differences between the resuits in

Figure 1. Case 1—solid accrues from top
wall. Full gravity without electric field
and charged particles: (a) velocity vector
field due to thermoconvection; (b)
isotherms in the accrued solid and in the
melt; (¢) normal temperature derivatives
(negative) on the top and the bottom
walls.
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this case and in the previous case have been observed. The computed velocity field
(Figure 24), temperature field (Figure 2b), and the normal derivatives (negative) of
temperature at the top and the bottom walls (Figure 2¢) were practically the same
as in Figures 1a, 15, and 1¢. Consequently, an almost identical amount of accrued
solid (10.82% of the container volume) was predicted. Thus, a stronger electric
field is needed in full gravity to influence the strong thermal convection.

Case 3. A uniform external electrostatic field of 1000 V was applied in this
case acting upward, as was a low normalized gravity force (g* = 0.01). We enforced
a uniform distribution of the charged particles at the lower wall while treating the
top wall as an exit boundary for the charged particles, since the side walls had a
Neumann condition imposed on electric charges. The resulting Coulomb force in
this case was strong enough to overcome the viscous force and cause a pure
electroconvection (Figure 3a) consisting of two weak, counterrotating vortices. The

Figure 2. Case 2—solid accrues from top
wall. Full gravity with A ¢ = 5000 V elec-
tric field acting vertically upward and
charged particles: (a) velocity vector field
due to combined electrothermoconvec-
tion; (b) isotherms in the accrued solid
and in the melt; (¢) normal temperature
derivatives (negative) on the top and the
C bottom walls.
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Figure 3. Case 3—solid accrues from top
wall. Reduced gravity with A ¢ = 1000 V
electric field acting vertically upward and
charged particles: (a) velocity vector field
due to combined electrothermoconvec-
tion; (b) isotherms in the accrued solid
and in the melt; (¢) normal temperature
derivatives (negative) on the top and the
c bottom walls.

predicted isotherms (Figure 3b) are mildly curved, while the predicted normal
temperature derivatives at the top and the bottom walls (Figure 3c) are only mildly
nonuniform. Predicted volume of the accrued solid in this case was 27.48% of the
total volume of the container.

Case 4. In this case an external electrostatic field of 15,000 V was applied
horizontally while full gravity (g* = 1.0) acted vertically downward. A uniform
electric charge density was specified at the left vertical wall, normal derivatives of
charges were zero at the top and the bottom walls, and charges were computed at
the right vertical wall. Because of the strong interaction of thermal buoyancy and
the electroconvection, this case resulted in a highly asymmetric solution containing
a complex pattern of counterrotating vortices (Figure 4a). The asymmetry is
obvious in the predicted thermal field (Figure 4b) and the corresponding normal
temperature derivatives at the top and the bottom walls (Figure 4c¢). This test case
resulted in 10.88% of the total volume solidified.
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Figure 4. Case 4—solid accrues from top
wall. Full gravity with A¢ = 15,000 V
electric field acting horizontally from left
to right and charged particles: (a) velocity
vector field due to combined electrother-
moconvection; (b) isotherms in the ac-
crued solid and in the melt; {¢) normal
temperature derivatives (negative) on the
top and the bottom walls.

Case 5. In this case an external electrostatic field of 1000 V was applied
horizontally while reduced gravity (g* = 0.01) acted vertically downward. The
electric charges were specified as uniform at the left vertical wall. A dramatic
change of pattern of the resulting electroconvection lead to a single asymmetric
vortex (Figure 5a), causing also a slight asymmetry in the predicted isotherms
(Figure 5b) and the normal temperature derivatives at the bottom and the top walls
(Figure 5¢). This time the predicted solidified volume was 27% of the container
volume.

In order to demonstrate the insensitivity of the computer code to grid
refinement, we ran the first test case on 120 X 120 symmetrically clustered grid
cells. The resulting melt flow pattern was practically indistinguishable from the
pattern obtained with the grid consisting of 60 X 60 grid cells. In addition, the
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amount of solid accrued on the refined grid differed by less than half of one
percent from the amount of solid accrued on the coarser grid.

CONCLUSIONS

A complex analytical model capable of simultaneously capturing thermocon-
vective and electroconvective motion inside a liquid, details of the mushy region,
and the accrued solid phase have been successfully implemented numerically for
the cases with electrically charged particles and arbitrary externally applied electro-
static and gravitational fields. Numerical simulation of two-dimensional solidifica-
tion from above a GaAs melt reveals that the electrostatic field has definite
consequences on the thermal field inside the melt and the solid accrued because of
the creation of electroconvection. Consequently, predicted wall heat fluxes with the
applied electrostatic field differ significantly from those without the electric field

Figure 5. Case 5—solid accrues from top
wall. Reduced gravity with A¢ = 1000 V
electric field acting horizontally from left
to right and charged particles: (a) velocity
vector field due to combined electrother-
moconvection; (b) isotherms in the ac-
crued solid and in the melt; (¢) normal
temperature derivatives (negative) on the
C top and the bottom walls.
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applied. These effects are more pronounced in the reduced gravity environment
than in the full gravity environment for low Rayleigh numbers. Computational

re
th
th

sults indicate the extreme importance of understanding the interplay between
e externally imposed electric and gravitational field strengths and orientations. If
e solidification process had been simulated with a time-accurate code, precise

impurities deposition pattern inside the solid could be predicted. This suggests
possibilities to develop an algorithm for a judicious application of the external
electric field to actively control impurities or dopant deposition pattern in the
crystal, heat transfer at the boundaries, the amount of solid accrued, and the
solid /liquid interface shape.

10.

11.

12.

13.

REFERENCES

. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press,
New York, 1960.

. O. M. Stuetzer, Magnetohydrodynamics and Electrohydrodynamics, Phys. Fluids, vol. 5,
no. 5, pp. 534-544, 1962.

. J. R. Melcher, Continuum Electromechanics, MIT Press, Cambridge, Mass., 1981.

. V. G. Babskii, M. Y. Zhukov, and V. 1. Yudovich, Mathematical Theory of Electrophoresis
(translated by C. Flick), Consultants Bureau, New York, 1989.

. A. C. Eringen and G. A. Maugin, Electrodynamics of Continua II; Fluids and Complex

Media, Springer-Verlag, New York, pp. 562-563, 1990.

. M. M. Ohadi, Heat Transfer Enhancement in Heat Exchangers, ASHRAE J., vol. 33, no.

12, pp. 42-50, 1991.

. M. Zahn and H. Chatelon, Charge Injection between Concentric Cylindrical Electrodes,

J. Appl. Phys., vol. 48, no. 5, pp. 1797-1805, 1977.

. T. Fujino, Y. Yokoyama, and Y. H. Mori, Augmentation of Laminar Forced Convection

Heat Transfer by Application of a Transverse Electric Field, J. Heat Transfer, vol. 111,

pp- 345-351, 1989.
. J. L. Fernandez and R. Poulter, Radial Mass Flow in Electrohydrodynamically-
Enhanced Forced Heat Transfer in Tubes, Int. J. Heat Mass Transfer, vol. 30, no. 10,
pp. 2125-2136, 1987.
M. S. Bello and V. L. Polezhaev, Hydrodynamics, Gravitational Sensitivity and Transport
Phenomena in Continuous Flow Electrophoresis, AIAA Paper 91-0112, Aerospace
Sciences Meeting, Reno, Nev., Jan. 7-10, 1991.
S. Lee, G. S. Dulikravich, and B. Kosovic, Electrohydrodynamic (EHD) Flow Modeling
and Computations, AIAA Paper 91-1469, AIAA Fluid, Plasma Dynamics and Lasers
Conf., Honolulu, Hawaii, June 24-26, 1991.
G. S. Dulikravich, V. Ahuja, and S. Lee, Computation of Electro-Thermo-Convective
Phenomena in Electro-Rheological Fluids, ASME Fluids Engineering Summer Meeting,
in D. A. Siginer, J. H. Kim, and R. A. Bajura (eds.), Proc. of Symposium on Electro-
Rheological Flows, Washington, D.C., June 21-24, 1993, ASME FED-Vol. 164, pp.
29-42, 1993a.
G. S. Dulikravich, V. Ahuja, and S. Lee, Simulation of Electrohydrodynamic Enhance-
ment of Laminar Flow Heat Transfer, ASME National Heat Transfer Conf., Atlanta,
Ga., Aug. 8-11, 1993, in Y. Bayazitoglu and V. S. Arpaci (eds.), Proc. Symp. on
Fundamentals of Heat Transfer in Electromagnetic, Electrostatic, and Acoustic Fields,
ASME HTD-Vol. 248, pp. 43~-52; also in J. Enhanced Heat Transfer, vol. 1, no. 1, Aug.
1993b.




14.

15.

16.

17.

18.

19.

20.

21

22,

23.

24,

25.

DIELECTRIC FLUID SOLIDIFICATION 373

A. Hosseini-Sianaki, R. Firoozian, D. J. Peel, and W. A. Bullough, Comparative
Methods for the Derivation of In Flow Electrical Characteristics of Electro-Rheological
Fluids, J. Intelligent Material Systems and Structures, vol. 3, pp. 96-111, 1992.

G. S. Dulikravich and B. Kosovic, Solidification of Variable Property Melts under the
Influence of Low Gravity, Magnetic Fields and Electric Fields, AIAA Paper 92-0694,
AlAA Aerospace Sciences Meeting, Reno, Nev., Jan. 6-9, 1992.

S. Motakeff, Magnetic Field Elimination of Convective Interference with Segregation
during Vertical-Bridgman Growth of Doped Semiconductors, J. Crystal Growth, vol. 104,
pp. 833-850, 1990.

G. S. Dulikravich, V. Ahuja, and S. Lee, Three-Dimensional Solidification with Mag-
netic Fields and Reduced Gravity, AIAA Paper 93-0912, Reno, Nev., Jan. 11-14, 1993;
also to appear in Int. J. Heat Mass Transfer, 1994.

D. D. Gray and A. Giorgini, The Validity of the Bousinessq Approximation for Liquids
and Gases, Int. J. Heat Mass Transfer, vol. 19, pp. 545-551, 1976.

V. R. Voller and C. R. Swaminathan, General Source-Based Method for Solidification
Phase Change, Numer. Heat Transfer, Part B, vol. 19, pp. 175-189, 1991.

A. J. Chorin, A Numerical Method for Solving Incompressible Viscous Flow Problems,
J. Comput. Phys., vol. 2, pp. 12-26, 1967.

A. Jameson, W. Schmidt, and E. Turkel, Numerical Solutions of the Euler Equations by
Finite Volume Methods Using Runge-Kutta Time-Stepping Scheme, AIAA Paper
81-1259, Palo Alto, Calif., June 1981.

D. A. Saville and O. A. Palusinski, Theory of Electrophoretic Separations, AIChE J.,
vol. 32, no. 2, pp. 207-214, 1986.

P. Sabhapathy and M. E. Salcudean, Numerical Study of Flow and Heat Transfer in
LEC Growth of GaAs With an Axial Magnetic Field, J. Crystal Growth, vol. 104, pp.
371-388, 1990.

M. H. Brodsky, Properties of Gallium Arsenide, 2d ed., INSPEC, EMIS Datareview Series
No. 2, 1990.

M. J. Crochet, F. T. Geyling, and J. J. Van Schaftingen, Numerical Simulation of the
Horizontal Bridgman Growth. Part I: Two-Dimensional Flow, Int. J. Numer. Meth.
Fluids, vol. 7, pp. 29-47, 1987.




