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A mathematical model for laminar steady flow of an incompressible, viscous, neutrally-charged carrier fluid mixed with
a fluid having electrically charged particles is presented. Thermally induced buoyancy was incorporated via an extended
Boussinesq approximation allowing for temperature-dependent density, viscosity, heat conductivity and heat capacity
while including Joule heating and electroconvective motions due to Lorentz forces. Induced magnetic fields and viscous
dissipation in energy conservation equation have been neglected. Viscosity was modeled as a function of local electrical
charge concentration thus simulating particle chaining phenomena in electrorheological fluids. Numerical results
clearly demonstrate the influence that an applied electrostatic field and the consequent electric charge gradients can
have on the flow pattern, temperature field and surface convective heat fluxes.
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lectrohydrodynamics (EHD) and magnetohydro-

dynamics (MHD) represent two extreme models
for a fluid flow under the influence of a combined
electromagnetic field (Landau and Lifshitz, 1960; Erin-
gen and Maughin, 1990a, 1990b). The EHD model
assumes a quasi-static electric field applied to a fluid
containing electrically charged particles and having
negligible magnetic induction effects (Stuetzer, 1962;
Melcher, 1981; Babski et al., 1989), while the MHD
model assumes that there are no charged particles in
the flow field (Stuetzer, 1962).

The phenomenon of electrohydrodynamic instabi-
lity or the generation of vorticity resulting from a
non-uniform electric charge distribution in the fluid
under the influence of an electric field is well known
(Landau and Lifshitz, 1960; Ostroumov, 1966). The
mechanism of electric charge injection offers a process
wherein continuous work is done in convecting the
flow by the release of electrical potential energy. The
injection of charges between two electrodes and special
cases of charging transients to a step voltage or current

source for space charge limited conditions at the inject-
ing electrode along with discharging transients were
dealt in detail by Zahn and Chatelon (1977).

The EHD enhancement of heat transfer has been
demonstrated by Fujino et al. (1989) for flows between
parallel plates. Investigations carried out by Fernan-
dez and Poulter (1987) have also revealed the enhance-
ment of heat transfer rates exhibited by liquids flowing
in ducts when subjected to an electrostatic potential. A
comprehensive review of the operational principles of
the EHD in single phase and phase-change heat ex-
changers is provided by Ohadi (1991). Nevertheless,
only incomplete models of EHD flows have been nu-
merically solved in the past (Belo and Polezhaev, 1991;
Lee, Dulikravich and Kosovic, 1991). The main reason
is the extreme complexity of the mathematical models
(Babski et al., 1989).

One of the least understood phenomena is that
under the influence of an applied electric field the
charged particles will start connecting and forming
chains between electrodes (Korobko and Mokeev,
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1991) with the distribution of these chains being ran-
dom. This leads to an increase in the effective fluid
viscosity of several orders of magnitude. Actually, it
has been observed that the electrorheological fluid can
become an effective solid (Tao and Sun, 1991; Tao,
1992) if a very high electric potential difference is
applied across a very narrow region filled with such
a fluid.

Several attempts to develop a comprehensive mathe-
matical model for the relationship between the effective
viscosity and the electrical field parameters in such
fluids have been made (Korobko and Mokeev, 1991;
Tao and Sun, 1991; Tao, 1992; Hosseini-Sianaki et al.,
1992; Usman et al., 1992). Nevertheless, none of the
models seem to be simple and reliable enough to
effectively demonstrate the effect of increased viscosity
on convective heat transfer in such fluids.

This paper attempts to demonstrate the significant
influence that this fundamental phenomena has on
heat transfer enhancement. A detailed numerical inves-
tigation of the impact of the EHD phenomenon on the
distribution of surface heat fluxes and the influence of
charge injection pattern on the enhancement of heat
transfer is also carried out.

MATHEMATICAL MODEL

The mathematical model presented in this paper con-
sists of an electrically neutral, homocompositional,
viscous, incompressible carrier fluid that is seeded with
one specie of charged particles having all physical
properties identical to those of the carrier fluid except
that the particles are electrically charged. This model
can be extended to electrically non-neutral carrier
fluids and multiple-specie particles having different
physical properties. One possibility for creating such a
model is to use concepts of mixture theory (Usman
et al., 1992). In this paper the objective is to demon-
strate only fundamental effects of the applied electros-
tatic field for which a single-specie formulation will
suffice. Although most practical heat exchangers work
with turbulent flows, we have decided to study EHD
effects in laminar flows since reliable and universal
turbulence models for EHD flows do not exist. We will
also assume that there is no electrolysis and no pool
boiling.

The system of governing equations for EHD can be
derived from a combination of Maxwell’s equations of
electrodynamics and the Navier-Stokes equations
(Lee, Dulikravich and Kosovic, 1991; Lee, Dulikravich

and Ahuja, 1993). An idealized charged fluid is as-
sumed (Stuetzer, 1962; Melcher, 1981) and, therefore,
induced magnetic fields can be neglected. The magnetic
field vector and the electric polarization vector are
assumed negligible compared to the electric field vector
so that Maxwell’s equations can be reduced to an
electric charge conservation equations and a Poisson’s
partial differential equation for electric potential since
the electric field is irrotational. Here, it was assumed
that ¢ is constant. Non-dimensionalization can be per-
formed with respect to the reference values denoted by
subscript o, so that
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If T, is the temperature of the cold wall and T, is the
temperature of the hot wall, then AT=T—T, and
AT,=T,— T, Similarly, Ag, is the reference value of
the electric potential difference between the two wall
electrodes. Fluid density, electric charge mobility and
coeflicients of specific heat, thermal expansion, viscos-
ity and heat conduction can be expressed as arbitrary
functions of non-dimensional temperature (Gray and
Giorgini, 1976; Lee, Dulikravich and Kosovic, 1991)

p=p,p0) b=b,b(0) c=c,c(6) 3)

a=a0(0) n=n,70) k=k,k(0) (4)

We can now introduce non-dimensional numbers (Lee,
Dulikravich and Kosovic, 1991) defined as
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The electric charge diffusivity coefficient D and charge
mobility coefficient b are related by Einstein’s formula
(Babski et al., 1989)

b (10)

where m; is the mass of charged particle and p; is the
density of the electrically charged fluid. The non-
dimensional density p’ can be expanded in a Taylor
series while retaining only the first order term
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It can be assumed that the coefficient of thermal
expansion, a, is constant in the range of temperatures
which are of interest in a particular case. Starting with
the complete Navier-Stokes equations for compress-
ible fluid flow and assuming that (¢AT,)<« 1, an ext-
ended form of the Boussinesq approximation can be
derived for the fluids with temperature-dependent
properties (Gray and Giorgini, 1976; Lee, Dulikravich
and Kosovic, 1991). Thus, the non-dimensional system
of equations for incompressible flow of a fluid with
temperature-dependent properties and containing
electric charges under the influence of an electrostatic
field can be reduced (Lee, Dulikravich and Kosovic,
1991) to
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where p* = p* + ¢*/Fr? is a combination of hydros-
tatic and hydrodynamic pressure so that g* = V¥*¢*.
According to the Boussinesq approximation, viscous
dissipation can be neglected (Gray and Giorgini, 1976;
Lee, Dulikravich and Kosovic, 1991) since its ratio
with respect to the convective term in the energy
equation is of the order Ec/Re which is typically a very
small number.

NUMERICAL MODEL

For simplicity and clarity of notation, the asterisk
symbol in the system of Egs. (13-17) will be omitted.
The system (13-16) can then be written in a fully
conservative vector form in physical Cartesian co-
ordinates as follows
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where the solution vector Q and the flux vectors E, F
are defined as
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For the purpose of developing a versatile EHD analy-
sis code applicable to arbitrary configurations where
correct boundary conditions could be easily enforced
precisely at the boundaries, the system of equations
governing EHD flows was transformed in a fully con-
servative vector form in general £,#, curvilinear
boundary-conforming non-orthogonal coordinates
(Lee, Dulikravich and Kosovic, 1991; Lee, Dulikravich
and Ahuja, 1993) as
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Here,S=S,D =D, J = d(¢,7)/d(x, y)and g, ;1 the met-
ric tensor given by g;; = Vx;Vx/, while U,V are con-
travariant velocity vector components. A non-physical
term, 0(p/B)/0t, representing an artificial compressibil-
ity (Chorin, 1967) was added so that the system (13-16)
can be made non-singular and consequently integrated
in time simultaneously. Parameter § is a user specified
constant that depends on the Reynolds number and
computational grid clustering, orthogonality and
smoothness (Lee and Dulikravich, 1991b). The artificial
compressibility concept is more consistent and easier
to code than an equally common pressure-based algo-
rithm for incompressible Navier-Stokes equations. The
system of coupled nonlinear partial differential equa-
tions (21) was discretized using central differencing and
integrated iteratively using a four-stage explicit Runge-
Kutta time stepping (Jameson et al., 1981) given as
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where the iteration level is denoted by n, and each stage
of the Runge-Kutta algorithm by m. Here the coeffi-
cients are y, =1/4,1/3,1/2 and 1, respectively. The
residual vector R is defined as
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The last term in this expression represents a fourth
order artificial dissipation that was added explicitly to
stabilize the algorithm which is otherwise prone to
even-odd decoupling oscillations because it uses cen-
tral differencing (Steger and Kutler, 1977). The sensor
function y was based on normalized second derivative
of electric charge distribution. The user-specified para-
meter ¢, should be very small. We used ¢, =0.01.
Poisson’s Eq. (17) for electric potential was solved
separately using and alternating-direction implicit
algorithm.,

NUMERICAL RESULTS

Based on this theoretical model and the numerical
algorithm, a FORTRAN code was developed capable
of accurately predicting convective heat transfer in
EHD flows. Three different configurations have been
numerically analyzed. The first configuration was a
closed horizontal rectangular chamber of aspect ratio
3:1 that was discretized with a symmetrically clustered
orthogonal computational grid of 60 x 30 rectangular
grid cells. The chamber was 0.00275 meters in height.
Non-dimensional parameters that were common to all
closed container test cases were Pr=7.396, Ec=
1.28 x 1072, Gr =900 and Re = 30, while those con-
tainer cases that were tested with a non-zero electric
field had in addition Dp=25x 107, S;=0.852,
Ng=1.261 and Prg = 0.0036. The temperature differ-
ence between hot (bottom) and cold (top) walls of the
container was AT =22 K.

The second test configuration represented a straight
vertical channel having a width of 0.0055 meters and an
aspect ratio of 4:1. It was discretized with the same
number of clustered grid cells. Both computer runs
with the vertical channel configuration had Pr = 7.396,
Ec=254 x 1078 Gr=1000 and Re = 100. The tem-
perature difference between the left vertical wall (hot)
and the right vertical wall (cold) was AT = 3.05K.

The third configuration was a U-shaped channel
with a constant width of 0.0055 meters. The domain in
this case was discretized with a clustered grid consist-
ing of 130 x 31 grid cells. Both walls were uniformly
heated and the temperature difference between the
incoming fluid and the heated walls was 3.05 K. The
non-dimensional parameters for this case were
Pr=17.396, Ec = 2.54 x 1078 and Re = 100. A constant
electric potential difference of Ap, =500 Volts was
applied between the walls of the U-shaped channel so
that the electric potential non-dimensional numbers

in this test case were Dp=2.5x 107, §;=0.0416,
Ng=3.53 and Pr;=0.04.

Closed Container

Several tests were run with this general configuration
where the container was assumed filled with a neutrally
charged liquid. In most tests the bottom wall acted as a
uniform generator of electrically charged particles. The
boundary conditions on the electric charges were spe-
cified as follows: constant electric charge distribution
along the lower wall and zero normal derivative of the
electric charges at the vertical walls. The charge density
equation was solved at the upper wall. An external
steady electric field was then imposed acting in the
vertical direction by means of electrodes along the
lower and the upper wall. The boundary conditions on
the electric potential were specified as follows: constant
(high) electric potential along the bottom wall and a
constant (low) potential along the top wall and zero
normal derivative of the potential at the vertical walls.
Temperature was kept high and constant along the
bottom wall, low and constant along the top wall, while
enforcing zero normal temperature gradient on the
vertical walls of the container. Pressure at all four walls
was computed from the normal momentum equation
pertinent to the wall in question. Fluid viscosity was
treated as a constant except in one test case. Each test
case was chosen to illustrate flow instability induced by
the electric field (Ostroumov, 1966; Eringen and
Maugin, 1990a) which is analogous to the classical
Benard problem resulting in thermal buoyancy, except
that here Joule heating, Lorentz force and thermal
buoyancy were taken into account.

To illustrate the phenomenon of electrohyd-
rodynamic instability, we chose the following set of
non-physical non-dimensional numbers; Pr=1,
Gr=3000, Re=Gr'?, Ec=00001, S;=1, Ny =1,
Dg =1 and Pr;= 1. Strong combined thermo-electro-
convection (Figure 1a) resulted in this case. Recircula-
tion induced by the temperature gradients alone (with
no electric field applied) is depicted in Figure 1b, while
recirculation generated by the electrical (Lorentz) for-
ces alone (with the entire container and the fluid kept at
the same temperature) is depicted in Figure 1¢c demon-
strating that vorticity is generated from a non-uniform
electric charge distribution in a space charge loaded
electric field. Electroconvective vortices analogous to
thermoconvective vortices were developed since suffi-
cient electrical potential energy was released that in-
verted the electrically charged layer close to the bottom
wall electrode.
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FIGURE 1 A demonstration of an electro-thermal convection in a
closed container (top cold and bottom hot) with an electric potential
difference imposed between the top and bottom. Velocity vector
fields for; (a) combined thermal convection and electroconvection, (b)
thermal convection alone, (c) electroconvection alone.

TABLE 1
Reference values of physical properties for fluid used

1000kgm ™3

1.002 x 107 3kgm " 's™?!
0.5682Wm~1K™!

196 x 1074K !
4182 kg 'K !
5x1078m2s1v™!

p,: density
1,: dynamic viscosity
k,: heat conductivity
. thermal expansion coefficient
c,: specific heat coefficient
b,: electrical mobility coeflicient

0
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The numerical test case simulating an aqueous sol-
ution (Table 1) in a closed horizontal container was
then run without an electric field and with an electric
potential difference of A¢@, = 5600 Volts. Figure 2a-b
represent computed velocity vector fields, the velocity
vectors being normalized by the reference value
vo=109 x 107 *ms~!. Maximum computed speeds
in the two test runs were 0.07 v, and 0.11v,,, respective-
ly. Figure 3a—b represent the computed isotherms in
the flow field and the surface heat fluxes at the top and
bottom walls. The influence of the applied electric field
is clearly noticeable since it generates an increased

FIGURE 2 Velocity vector fields in a closed container; (a) no
electric field, (b) 5600 Volts applied between the top and bottom and
uniform charge injection at the bottom wall.
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FIGURE 3 Isotherms and surface heat fluxes in a closed container
(top cold and bottom hot); (a) no electric field, (b) 5600 Volts applied
between the top and bottom and uniform charge injection at the
bottom. (See color plate 1.)

number of counter-rotating vortices. The electrically-
induced secondary vortices have a destabilizing effect
on the thermal boundary layer near the upper wall
Consequently, there is a redistribution of the heat
fluxes computed at the bottom and the top walls when
5600 Volts are applied (Figure 3b) as compared to the
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case with 0 Volts applied (Figure 3a). A 38.7%; enhance-
ment in the integrated heat transfer rate was predicted
at the upper wall, compared to the case where no
electric field was applied. Figure 4 depicts the com-
puted electric potential field while Figure 5 depicts the
computed charge density distribution. Notice that the
electric charges are highly concentrated at the bottom
wall electrode where they are being generated.

FIGURE 4 Electric potential field in a closed container (top cold
and bottom hot) with 5600 Volts applied between the top and bottom
and uniform charge injection at the bottom wall. (See color plate I1.)

FIGURE 5 Electric charge densities in a closed container (top cold
and bottom hot) with 5600 Volts applied between the top and
bottom and uniform change injection at the bottom wall. (See color
plate IIL.)

FIGURE 6 Velocity vector fields in a closed container with
5600 Volts applied between the top and bottom, uniform charge
injection at the bottom and charge-dependent variable viscosity; (a)

(1/Modmax = 1.75, (b) (/1 )max = 2.0.

The second numerical test case was devised with the
specific objective of simulating the influence of local
electric charge concentration on the charged particle
chaining phenomena. Fluid viscosity was modeled ac-
cording to the formula n/n, =1 + C(q/q,)" where 7, is
the viscosity when there are no charged particles. Two
computer runs were performed. In the first run we used
C =0.75 and n = 1.25 thus increasing the original vis-
cosity at the locations of maximum electric charge
concentration (g = g,) by 75%. In the second run we
used C = 1.0 and n = 1.25 thus doubling the maximum
ratio of viscosities at the locations of maximum electric
charge concentration (g = g,). For this case an electric
potential difference of Agp,= 5600 Volts was applied
between the bottom and the top wall electrodes. The
computed velocity vector fields (Figure 6a—b) and the
temperature fields (Figure 7a-b) differ significantly
from the case when the viscosity was assumed to be
unaffected by the electric charge concentration (Fig-
ure 2a-b and Figure 3a-b). Maximum computed
speeds in the two test runs were 0.045v, and 0.05v,,
respectively. The computed wall heat fluxes (Fig-
ure 7a-b) show that by neglecting viscosity’s depend-
ence on the electric charges leads to discrepancies in the
prediction of EHD flows and convective heat fluxes.
The effect of increasing viscosity by only 25%, between
the two runs is quite noticeable in the computed veloc-
ity fields since it rapidly causes suppression of an
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FIGURE 7 Isotherms and surface heat fluxes in a closed container
with 5600 Volts applied between the top and bottom, uniform charge
injection at the bottom wall and charge-dependent variable viscosity;

(@) (1/M0)max = 1.75, (b) (1/10)maz = 2.0. (See color plate IV.)
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already weak thermo-electro-convective motion. Con-
sequently, the velocity field with (5/1g),., =20
(Figure 7b) assumes a pattern similar to that existing in
the case without an electric field when = 5, (Figure 2a).

The objective for the third numerical test was to
demonstrate the influence of the variable electric
charge profile as injected at the bottom wall. In this test
case the aqueous solution (Table 1) viscosity was kept
constant and electric charges were distributed at the
bottom wall according to a sine wave. This was also a
test case with a constant electric potential difference of
Ag, = 5600 Volts between the bottom and the top wall
electrodes. The computed velocity vector field (Fig-
ure 8a) and temperature field (Figure 8b) clearly de-
monstrate that both velocity and temperature fields
can be actively controlled by selectively charging par-
ticles along the sections of the walls. The maximum
computed speed was 0.13 v, The computed electric
charges in this case are shown in Figure 8c.
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FIGURE 8 Container with 5600 Volts applied between the top
and bottom, constant viscosity and sine wave charge distribution at
the bottom wall; (a) velocity vector field, (b) isotherms and surface
heat fluxes, (c) electric charge densities. (See color plate V.)
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Notice that the same test case with 5600 Volts ap-
plied had four counter-rotating vortices (Figure 2b)
when the charges were generated uniformly instead of
according to a sine wave at the bottom wall. The
computed wall heat fluxes for this test case are also
depicted in Figure 10b. The enhancement of integrated
heat transfer rate was 63.84%, as compared to the case
with no electric field applied. The heat transfer enhan-
cement rates and the distribution of heat fluxes differ
substantially from the case with uniform charges im-
posed along the bottom wall (Figure 3b).

Vertical Channel

This numerical test case’s objective was to demonstrate
the influence of the applied electric field on convective
heat transfer in a pressure-driven mean flow with
gravity acting along the channel. The test configura-
tion was a vertical parrallel channel with the left verti-
cal wall uniformly hot (6 = 1) and the right vertical wall
uniformly cold (6 = 0). The aqueous solution (Table 1)
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FIGURE9 Velocity vector fields in a vertical channel; (a) no elec-
tric field, (b) 28000 Volts applied between the walls, constant visco-
sity and sine wave charge distribution along the left vertical wall.
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having an initially uniform temperature (6 =0.5) is
moving downward with an initially fully developed
Poisseuile velocity profile (Re = 100) and a relatively
small Grashof number (Gr =1000). Two runs were
performed with this configuration assuming constant
viscosity. The first run did not involve any electric
fields or charged particles and resulted in a symmetric
velocity profile (Figure 9a) at the channel exit. In this
test case the normalizing velocity was v, = 1.8 x
10" 2ms™!. The computed isotherms and surface heat
fluxes (Figure 10a) also indicate symmetry since the
Grashof number was very small indicating negligible
thermal buoyancy force. The second run was per-
formed with a strong electric potential difference of
Ag, = 28000 Volts applied between the walls resulting
in the following electric non-dimensional numbers:
Dy;=25x%x10" S;=232, N;=02521 and Pry=
0.00071. Electric charges were specified along the left
vertical wall as varying according to a statio-nary sine
wave. The computed velocity field in this case indicates
a dramatic change involving even a flow reversal
(Figure 9b) at the hot wall that generated the electric
charges. Maximum computed speeds in the two test

T
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runs were 1.0 v, and 1.5 v, respectively. The computed
isotherms and surface heat fluxes (Figure 10b) with
the electric field applied show significant perturba-
tions as compared to the same test case with no electric
field.

U-Shaped Channel

In this test case flow in a turnaround channel was
investigated with the influence of an applied electric
field. Both walls of the channel were heated and main-
tained at constant temperature (6 =1.0) while cold
fluid had initially uniform temperature 8 = 0.5. A con-
stant electric potential difference of Ag, = 500 Volts
was maintained between the two walls of the channel
with the inner wall being kept at a higher potential than
the outer wall. At the inlet of the channel characteristic
boundary conditions were used, that is, a parabolic
velocity profile was specified along with a constant
temperature. The pressure at the inlet was computed
iteratively by solving the characteristic equations there
(Lee, and Dulikravich, 1991a). At the exit plane, non-
reflecting boundary conditions were used (Lee, Dulik-

...1111111111[!11111]11111111
Ly

FIGURE 10 Isotherms and surface heat fluxes in a vertical channel; (a) no electric field, (b) 28000 Volts applied between the walls, constant
viscosity and sine wave charge distribution along the left vertical wall. (See color plate VL)
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ravich and Ahuja, 1993) allowing for non-uniform flow
at the exit since all the flow variables were computed
there iteratively. The computed velocity vector field
(Figure 11a) indicates a small separation zone at the
end of the turnaround portion of the channel. Maxi-
mum computed speed in this test run was 1.6 v,. Fig-
ure 11b depicts the computed pressure distribution
throughout the channel. The computed isotherms (Fig-
ure 11¢) indicate the development of the thermal
boundary layers at the walls of the channel. The ther-
mal boundary layer thickens at the inner wall just after
the turnaround portion, indicating the effect of flow
separation on heat transfer. The computed surface heat

FIGURE 11

flux distribution is shown in Figure 11d. Electric
charges (Figure 11¢) were injected uniformly from the
turnaround portion of the inner wall only and were
convected by the mean flow downstream. A slight
accumulation of the charges is clearly visible in the
region where flow separation occurs. Figure 11fdepicts
the lines of computed constant electric potential. Al-
though uniform injection of electric charges was per-
formed only along the turn-around section of the inner
wall of the channel and a uniform external electrostatic
field was applied across the channel, an overall 12%
enhancement in heat transfer was predicted in this test
case.
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U-shaped channel with 500 Volts applied between the walls; (a) velocity vector field, (b) isobars, (c) isotherms, (d) surface heat

flux distribution, (e) electric charge distribution, (f) electric potential field. (See color plate VIL.)
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CONCLUSIONS

A simple EHD model for a single-specie electror-
heological fluid has been developed and numerically
integrated for several test cases of electro-thermally
generated flows in a closed container, in a vertical
channel and in a turnaround channel. In all test cases a
significant influence of the applied electric field acting
on electrically charged particles generated at one of the
solid boundaries has been demonstrated. This always
resulted in a significant alteration of the flow field and
consequently redistribution of the surface convective
heat fluxes. when viscosity was treated as a constant,
the predicted increase of the convective heat transfer
rate due to EHD phenomena was between 129 and
64% for the cases studied. Importance of accounting
for increased viscosity of the electrorheological fluid
due to the chaining effect of the electrically charged
particles has been clearly demonstrated.

These results suggest possibilities for active control
and enhancement of convective heat transfer rates in
electrorheological fluids by properly varying electric
potential and/or the pattern of injection of charged
particles at the wall electrodes.
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Nomenclature

Charged particles mobility coefficient (m2s~!V™!)
Specific heat coefficient (m2K ~!s~2)

Diffusivity coefficient of charged particles (m2s~?)
Diagonal matrix

Electric field vector (Vm™1)

x-flux vector in Cartesian coordinates

y-flux vector in Cartesian coordinates

Gravity acceleration vector (ms~2)

Identity matrix

Heat conductivity coefficient (kgms™ 3K ™)
Boltzman’s constant [kg ™ sK]

Length (m)

Fluid pressure (Nm™~2)

Solution vector in Cartesian coordinates

Electric charge per unit volume (kgm~!s~2V™1)
Residual vector

Source term vector

Temperature (K)

Time (s)

, U) Velocity vector in Cartesian coordinates (ms™?)
X,y Cartesian coordinates (m)

mowe <
by
bry
~

9 " =

909,)"

2T NOES QN T

Greek Letters

o Thermal expansion coefficient (K ~!)

B Artificial compressibility coefficient

£ Electrical permitivity coefficient (kgms™2V~2)
A Fourth order artificial dissipation parameter
n Dynamic viscosity coefficient (kgm ™15~ 1)

¢ Gravity potential (m~%s™ %)

] Electric potential (V)

v Artificial dissipation sensor function

P Fluid density (kgm™~3)

0 Nondimensional temperature difference
Subscripts

c Cold wall

E Electrical

h Hot wall

0 Reference value

* Nondimensional values
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See George S. Dulikravich ef al., Figures 3a and 3b.

ENHANCED HEAT TRANSFER, VOLUME 1, NUMBER 1. COLOR PLATE II.
See George S. Dulikravich ef al., Figure 4.
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ENHANCED HEAT TRANSFER, VOLUME 1, NUMBER 1. COLOR PLATE IV.
See George S. Dulikravich ef al., Figures 7a and 7b.
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ENHANCED HEAT TRANSFER, VOLUME 1, NUMBER 1. COLOR PLATE V.
See George S. Dulikravich et al., Figures 8b and 8c.
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ENHANCED HEAT TRANSFER, VOLUME 1, NUMBER 1. COLOR PLATE VL

See George S. Dulikravich et al., Figures 10a and 10b.
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See George S. Dulikravich ef al., Figures 11b, 11c, 11e, and 11f.



