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Abstract

This paper presents results of research involving
the inverse thermal design of coolant flow passage
shapes in arbitrary, three-dimensional, internally-
cooled configurations. A computer program has
been developed to demonstrate this methodology in
which a thermal systems designer can simultaneously
enforce the desired temperature and heat flux
distribution on the hot outer surface of the object
while enforcing either the desired temperature,
desired heat flux or desired convective heat transfer
boundary conditions on the cooled interior surfaces
of the coolant flow passages. The program's
objective is to meet the over-specified thermal
boundary conditions of the outer surface by
iteratively altering the geometries of the coolant
passages. This 1is achieved with an automatic,
constrained optimization algorithm that minimizes
the difference between the user-specified and the
intermittently computed hot outer surface heat flux
distribution. A quasi-Newtonian gradient search
algorithm was used for the optimization. A simple
method for escaping stationary points was employed
and involved the switching of the objective function
when the optimization process stalled at a local
minimum. The analysis of the steady-state, non-
linear heat conduction within the solid was done
using the Boundary Element Method (BEM)L.
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1. Introduction

The design of turbines within turbojet and
turbofan engines introduces a unique set of
requirements for high performance, endurance, light
weight and compact size. To meet these
requirements, turbines must operate at elevated
temperature and pressure levels and must use air as a
coolant to be capable of withstanding large numbers
of thermal cycles, high heat flux levels and high
thermal strain levels. An engineer who might wish
to reduce the high thermal plastic strains that cause
cracks to form in the coolant passage walls of a
turbine blade must simultaneously try to maximize
the heat transfer out of the blade to avoid melting.
This complicated thermal design problem could be
accomplished by allowing the engineer to develop a
coolant system geometry that satisfies a specific
desired temperature field within the configuration.

The design of internal coolant flow passages
within turbine blades is usually accomplished using
approximate empirical methods, repetitive numerical
analysis of intuitively modified coolant flow passage
shapes and expensive experimentation.  The
development of high speed computers and adequate
numerical techniques has made it possible to
approach the design problem differently and to solve
it more efficiently and with greater accuracy.
During the past several years, we have developed a
fully automatic inverse thermal design method2? that
allows a thermal cooling systems designer to
determine the proper sizes, shapes and locations of
arbitrary coolant fluid passages within internally
cooled configurations. The methodology has been
successfully demonstrated on several simple
geometries and also on realistic shapes such as coated
and non-coated, two- and three-dimensional turbine
blades, scramjet combustor struts and rocket nozzle
wall sections.



II. Theory

The mathematical model for steady-state heat
conduction within an internally cooled solid object
can be represented by a boundary value problem
over a multiply-connected domain. The desired
temperature field within a fixed configuration is
intrinsically related to a single set of well-posed
thermal boundary conditions specified on the object's
surface. If additional boundary conditions are
enforced on part or all of the object's surface, the
boundary value problem becomes ill-posed but not
necessarily multi-valued. The methodology presented
in this paper demonstrates that this problem may be
solved by iteratively altering the geometry of the
configuration until the over-specified thermal
boundary conditions are appropriately satisfied.

Steady-state heat conduction in a
nonhomogeneous, isotropic medium with a variable
coefficient of thermal conductivity is governed by
the following partial differential equation in the
region, Q, of a conducting solid

Ve (MD)VT) = 0 (1)
where T is the temperature and A(T) is the
temperature-dependent coefficient of thermal
conductivity. This equation represents a boundary
value problem having essential boundary conditions,
To, and natural boundary conditions, Qq, specified on
the surfaces T’y and T'q, respectively. Equation (1)
can be linearized by the application of the classical
Kirchoff transformation!® which defines the heat
function, ©, as
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Here, Ao is a reference conductivity. Utilizing this
transformation, equation (1) can be transformed into
Laplace's equation and solved for the heat function,
@, instead of the temperature, T.

Ve = 0 (3)
Results obtained for the heat function must be
transformed back into temperatures using the inverse
of the transformation given in equation (2).

The Laplace's equation can be accurately and
efficiently solved using the BEM!. By introducing
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an approximation, u, to the exact solution, ®, an
error function or residual is produced in the domain
and on the boundary. The residual in the domain is
given by R = V?u and the residuals in the essential
and natural boundary conditions are

Ru=u-6 and Rq=du/dn- Qo 4)
respectively. These error functions are normally
non-zero unless u is the exact solution. The weighted
average of the residual over the domain and on the
boundary may be set to zero by the weighted residual

statement
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Q
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where u* represents the weight function which is
usually called the fundamental solution!, while q =
du/on and q* = du*/dn where n is the direction of the
outward normal to the surface I'. After integrating
by parts twice, the boundary integral equation for
Laplace's equation is obtained

jquu*dQ + J.u*qdr‘ = J'q*udl‘ 6)
Q r r

The weight function is a Green's function solution
for a point-source subject to the homogeneous
boundary conditions. For the three-dimensional
Laplace's equation it is

N

where r = | xj - Xj |, Xi is the coordinate of the
observation point and x;j is the coordinate of the
source point. The bounding surface T" is discretized
into Nsp surface elements bounded by N end-nodes.
After discretizing the surface and utilizing the

properties of the Dirac delta function, the boundary
integral equation (6) can be written as

Nsp

Y, [qu*dh

j=1 Tj

Nsp
cu + Y, Ju q* drj
=1 T3
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for each "i-th" node. The term c;j indicates the scaled
internal angle at the i-th surface node. It is produced



when the first surface integral of equation (6) is
integrated in the sense of the Cauchy principal value.
The functions u and q are assumed to vary bilinearly
along each quadrilateral surface element and,
therefore, they can be defined in terms of their nodal
values and interpolation functions. The whole set of
equations for the N nodal values of u and q can be
expressed in matrix form as

HIU=[G]Q %)
where U = (U1,U3z,...,UN) and Q = (Q1,Q2,...,QNsp)
are vectors containing the nodal potentials and
surface panel fluxes respectively while the terms in
the [H] and {G] matrices are assembled by properly
adding the contributions from each surface integral.

After the [H] and [G] matrices are formed, all
boundary conditions are applied and a set of linear
algebraic equations, [A] X =F, is constructed.
Known or specified surface potentials, Uj, and fluxes,
Qj, are assembled on the right-hand-side of the
equation set and are multiplied by their respective
[H] or [G] matrix row thus forming the vector of
knowns, F. All unknown potentials or fluxes are
assembled on the left-hand-side of the equation set
and are represented by a coefficient matrix [A]
multiplying a vector of unknown quantities, X.

The integration for each surface panel in equation
(8) was performed with three-point Gaussian
quadrature. Whenever the surface panel integral
included a singularity at one of the quadrilateral's
vertices, a localized transformation!! was performed
to eliminate the singularity and the order of the
Gaussian quadrature was increased to a five-point
integration.

[I. The Optimization Technique

The complexity of the analysis of the temperature
field in an irregular, three-dimensional, multiply-
connected domain calls for the use of a relatively
simple but robust and fast optimization technique for
constrained, nonlinear optimization. The Davidon-
Fletcher-Powell (DFP) quasi-Newton algorithmlz'13
was implemented because it requires a relatively low
number of objective function evaluations and because
of its ability to converge quickly near minima. This
optimization procedure is iterative in nature and
involves repetitive solutions of the thermal field
within the solid configuration. A first-order

numerical approximation was used to compute the
gradients of the objective function and the univariant
line search was handled using quadratic polynomial
fitting.

The primary goal of the optimization procedure
is the minimization of the objective function f(x),
where x contains the Nyar design variables which
make up the geometry of the internal coolant
passages. During the optimization process local
minima can occur and halt the process before
achieving an optimal solution. In order to overcome
such a situation, a simple technique has been
devised!4. In this approach, whenever the
optimization stalls, the formulation of the objective
function is automatically switched to some other
valid formulation. The new objective function
provides a departure from the local minima and
further convergence towards the global minimum.

Specifically, the objective of the optimization
procedure is to minimize the difference between the
specified heat fluxes, QSPC, and the calculated values,
Q¢al¢  at the outer boundary. Thus, the objective
function can be mathematically formulated in the
sense of the normalized least squares of the global
error

N
2QF - Q5
fx) = I (10)
QP +e

=

or as a local normalized error at each panel on the
outer boundary.

N QP - Q)2
____7__
Z

f(x) = 11

Here, € is a very small user-specified parameter to
avoid division by zero.

In summary, the optimization procedure consists
of the following steps:
(1) The geometry of the outer surface of the object
is assumed fixed in order to satisfy certain
requirements. This configuration may be supplied as
a surface grid only due to the nature of the BEM
thermal field analysis.
(2) The desired temperature and heat flux profile
are specified on the hot outer surface of the turbine

blade. The temperatufe is used as a Dirichlet-type



boundary condition on the outer surface while the
heat flux profile is used in the objective function
formulation of the optimization procedure described
previously. In addition, boundary conditions such as
temperature, heat flux or the convective heat transfer
function must be specified on the three-dimensional
coolant passage surfaces. The configurations of
which are, as yet, unknown.

(3) The user may specify almost any type of equality
or inequality constraints to the program as a
subroutine. Such constraints could be allowable
minimum or maximum wall thickness, minimum
distance between multiple coolant passage walls,
minimum or maximum cross-sectional areas of the
coolant channels, material types and properties, etc.
The program is already capable of handling
infeasible geometries as additional constraints.

(4) The user supplies an initial guess geometry for
the internal configuration. This is given as a set of
design variables that makes up the geometry of the
three-dimensional coolant flow passages.

(5) The BEM is used to solve for the temperature
field within the current configuration. Since the
temperature boundary conditions are specified on the
outer surface, the BEM algorithm automatically
computes the heat flux distribution on that surface.
The computed heat flux distribution is, in general,
not the same as the user-specified heat flux
distribution.

(6) An objective function is formulated using the
computed and user-specified outer surface heat
fluxes. Please note that the use of heat fluxes in the
objective function is not a requirement nor a
limitation. The user is free to develop any objective
function or set of weighted objective functions that
may utilize not only boundary values such as
temperature and heat flux, but also convective heat
transfer coefficients and ambient temperatures,
temperatures at points within the solid, thermal
stresses and strains and many other functions of the
temperature field.

(7) The optimization procedure automatically
perturbs the design variables in order to minimize
the objective function while satisfying the constraints.
In order to properly and efficiently minimize this
function, a feasible and descent line search direction
is found by computing the gradient of the function.
This requires one thermal field analysis using the
BEM per design variable. Once the line search
direction is obtained from the DFP update formula, a
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univariant sub optimization procedure minimizes the
objective function along that direction.

(8) The optimization continues to the next cycle
beginning with step 5.

IV. Verification of the Nonlinear Boundary
Element Formulation

The accuracy of the BEM analysis program for
the nonlinear heat conduction in a 1.0 m long by 0.1
m high by 0.1 m wide parallelepiped object was
verified. The rectangular box was discretised with
4?2 square surface panels each measuring 0.1 m by
0.1 m. Four sides of the object were kept adiabatic
(Qo = 0) and the remaining two opposite planes were
subject to different temperatures (Thot = 100 K and
Teold = 0 K). The temperature-dependent thermal
conductivity was given as a polynomial function

MT) = Ao (AT-1 + B + CT + DT2 + ET3)  (12)

where Ao = 1.0 W/ mK,B=10and A=D=E=0.
Temperature data was collected for various degrees
of non-linearity given by one parameter C. The
results shown in Figure 1 were compared with the
one-dimensional analytic solution10

C
+ =

2
2 Tho[) -

C -z
(1 + '2‘(Tho; +Tcom))(z(m1—_h°l)

%Tz +T= (Thm

Figure 1 shows that the nonlinear BEM results
compared very well with the analytic solution,
averaging an error of less than 0.5%.

V. Inverse Design of a
Super-elliptic Cavity Within a Sphere.

This test case was used to demonstrate the fully
three-dimensional inverse design capability’ of the
optimization algorithm with the BEM thermal field
analysis scheme. The geometry consisted of a unit
sphere with an off-centered cavity of a three-
dimensional super-elliptic shape given by

() - (552 -
b

Seven design variables are derived from this

equation: the center of the super-elliptic cavity

X - Xp Z-1Zy

a C

)n 1 (14



(X0,Y0,Z0), its semi-major axes (a,b,c) and the super-
elliptic exponent, n. The outer spherical surface
and the internal super-elliptical cavity (Fig. 2) were
discretized with 64 isoparametric quadrilateral
panels, respectively. A temperature of 100 K was
specified on the outer surface and 50 K on the inner
super-elliptic surface. The normal temperature
derivative specified on the outer surface was taken
from the analytic solution (dT/on = 59.3 K/m)
corresponding to the desired (target) configuration
consisting of a centered spherical cavity with radius
of 0.5 m. The material properties were assumed
such that the thermal conductivity Ao = 1.0 W/m K,
A=D=E=0,B=10,and C=001K-1.

The initial guess to the design variables was; Xo
=02m,yo=02m,20=02m,a=03 m,b=04
m, z = 0.5 m, n = 4.0. The run was terminated near
the global minimum with an objective function value
of 0.32%. The DFP optimization algorithm nearly
reached the fully converged sphere-within-a-sphere
configuration (Fig. 3) in 50 optimization cycles.
Figure 4 depicts the convergence history of the
composite objective function. Note that a spike
occurs at the 30th iteration indicating an automatic
cost function switch from global to local L2 norm.
The entire optimization procedure required 647 calls
to the BEM analysis routine and consumed
approximately 2235 seconds of CPU time on an IBM
3090 computer.

VI. Inverse Desien of a Coolant Passage within a
Turbine Blade

This example involved the application of the
inverse design technique to a three-dimensional
turbine blade of realistic shape. The turbine blade
was given a single internal coolant flow passage. The
blade inner surface was generated at each radial cross
section by first determining the mean thickness curve
from the local blade airfoil geometry. At each blade
cross section this mean thickness curve was then
reduced by a fraction of its total length from the
leading and trailing edges, pte and pie, respectively.
The local blade airfoil inner contour was then
constructed by defining a wall thickness function
versus the blade airfoil outer contour arc length, s.
The wall thickness was defined to be the distance
from a point on blade airfoil outer contour to the
corresponding point on the reduced mean thickness

curve. The wall thickness t(s) was approximated by
a Chebyshev polynomiall3 of degree n given as

n
(s) ~ YeiPjals) - (15)

=1

where the Chebyshev coefficients are

¢;= Zz{cos("(k;l’zﬂcos(”‘j“”‘:‘”2’) (16)

n k=1

and

Pj(s) = cos(j arccos s) an

The polynomial of equation (15) can be truncated
to a lower degree m << n due to the nature of the
Chebyshev approximation. Thus, the design

~ variables that made up the coolant passage geometry

consisted of m Chebyshev coefficients for each radial
section of the blade in addition to the two quantities,
Pte and ple, that determine by what fraction the mean
thickness curve is reduced from the trailing and
leading edges of each local blade airfoil.

The outer surface and the initial guess to the
inner surface geometry of the three-dimensional
turbine blade are shown in Figure 5. The outer

surface of the blade was generated by creating airfoil
sections of the blade at each of the five locations
measured radially from the turbine axis. Each
turbine blade section between two consecutive radial
cuts was discretised with 20 clustered quadrilateral
surface panels around its outer surface in addition to
the same number of quadrilateral surface panels on
its inner surface. There were also 20 quadrilateral
panels covering the blade root cross section and 20
quadrilateral panels covering the blade tip cross
section. This means that the blade wall thickness at
the root and at the tip sections was discretised by
single rows of quadrilateral panels. Consequently,
we used a total of 200 quadrilateral surface panels
connected between 200 nodes at the panels’ vertices.
The desired temperature was prescribed along the
outer surface of the turbine blade according to a

simple formula
) 2
TS H (18)
Smax

T(s) = Tmyin + (Tmax-Tmm)[cos(



with T, = 500 K and T, = 1000 K at the blade

root section. Each of them was increased by 50 K at

each of the four remaining consecutive sections so
that their values at the blade tip section were T, =

700 K and T,,,x = 1200 K. The three-dimensional

blade surface isotherms are illustrated in Figure 6.
In addition, a desired constant temperature was
specified on the inner surface, Tinner = 300 K. The
reference coefficient of thermal conductivity was Aq
= 23.0 W/m K and the parameters of equation (12)
were A=D=E=0,B=1.0and C=0.01 K-1.
Next, a desired (target) configuration for the

three-dimensional coolant passage geometry was
generated and this is illustrated in Figure 7. The

BEM was run once with the desired temperature
boundary conditions described above and the outer
surface heat fluxes were computed (Fig. 8). These
outer surface heat fluxes were then used as the
desired (target) over-specified boundary conditions
for the optimization process's objective function.

Figures 9a through 9e illustrate the evolution of
the coolant passage geometry throughout the
optimization process. FEach figure represents a
consecutive cross-section of the turbine blade
showing nodes on the outer surface of the airfoil
shape, the initial guess geometry (finely dotted line),
several intermittent contours depicting the coolant
passage cross-section geometry after every 10
iterations (dashed lines) and the target configuration
(solid line). The final configurations are almost
geometrically equivalent to the target configurations.
The optimization process was completed after 46
iterations with the objective function reducing from
an initial value of 74% to its final value of 8.64 %
(Figure 10). A single objective function automatic
switch occurred at the 14th iteration. Notice also
that the objective function declines very rapidly
initially and then levels off to a rather slow rate of
decrease. This is typical of most optimization
procedures. Although the program was terminated
at the 46th optimization cycle, the process could be
resubmitted in order to further refine the coolant
passage geometry. The entire optimization process
required 2996 calls to the BEM analysis routine and
consumed approximately 2550 seconds of CPU time
on a CRAY C-90 single-processor computer.

VII. Summary

The concept of inverse design of three-
dimensional configurations subject to over-specified
thermal boundary conditions has been found to be
feasible. Future research possibilities in the field of
three-dimensional shape inverse design using the
presented methodology could be directed toward
complex design tools involving thermal convection,
radiation and conduction as well as thermal stress-
deformation field analysis and electromagnetic field
problems. The same optimization procedure with
boundary integral analysis described herein can be
used for problems governed by Poisson's equation.
This work is presently being extended into unsteady,
fully three-dimensional, nonlinear heat conduction
involving latent heat, multiple coolant passages and
multiple domains with different properties.
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Fig. 1 Comparison of temperature distribution
in a parallelepiped with different degrees of thermal
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Fig. 2 Initial configuration for a three-
dimensional inverse shape design: a super-elliptic
off-center cavity in a sphere.

Fig. § Initial configuration for a three-

Fig. 3 Final converged configuration for a
three-dimensional inverse shape design: a centered
spherical cavity in a sphere.
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