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Abstract

Two interacting systems of partial differential equations
governing three-dimensional laminar flow of an
incompressible viscous fluid undergoing solidification or
melting under the influence of externally applied
magnetic fields have been formulated analytically and
integrated numerically. The model allows for separate
temperature-dependent physical properties within the
melt and the solid phase. It includes effects of Joule
heating, latent heat release, microgravity and magnetic
ponderomotive force. The amount of latent heat
released is an arbitrary function of temperature. Mushy
region is automatically captured by varying viscosity
several orders of magnitude in the mushy region. It was
found numerically that the presence of an external
steady magnetic field: a) diminishes flow field vorticity, b)
causes higher velocity gradients within the mushy
region, ¢) influences the amount of accrued solid phase,
and d) influences the solid/liquid interface shape. These
numerical results demonstrate possibilities for a
practical automatic control of phase change processes
using a combination of magnetic and gravitational fields.

Nomenclature

c = specific heat, J kg-1 K-1

Ec = Eckert number

Fr = Froude number

g = gravity force per unit volume, m s2

Gr = Grashof number

H = magnetic field, H kg~

Hi = Hartmann number

k = heat conductivity coefficient, W m-1 K-1
| = length, m

L = latent heat of liquid/solid phase change, J kg-1
P = pressure, kg m-1 -2

Pm = magnetic Prandti number

Pr = Prandtl number

R = volume fraction of the liquid phase

Ra = GrPr= Rayleigh number

Re = hydrodynamic Reynolds number

Ste = Stefan number

t =time, s
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T = absolute temperature, K

AT  =Tg- T| = temperature difference, K
v = (uv,w) = velocity vector, m s°1

V  =volume, m3

x,y.z = Cartesian coordinates, m

o =thermal expansion coefficient, K-1
B = artificial compressibility parameter
n = viscosity coefficient, kg m-1 s°1

E, n, { =non-orthogonal grid coordinates

= magnetic permeability coefficient, H m-1
= density, kg m-3

= electrical conductivity, Q-1 m-1

= non-dimensional temperature

= gravity potential (gj=¢3)
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o} = reference values

c = cold wall

h = hot wall

i = component of a vector
i = component of a vector
| = liquidus

s = solidus

* = nondimensional values
' = function of nondimensional temperature
# = transpose of a matrix or a vector

Introduction

The objective of this paper is to elaborate on a
mathematical model and an accompanying numerical
algorithm capable of simulating fully three-dimensional
melt flow control during melting and sofidification via an
arbitrarily distributed and oriented externally applied
magnetic field. It has been well known analytically [1,2]
and demonstrated computationally [3-11] that the
magnetic field can eliminate vorticity from the flow field
and reduce the magnitude of the fiuid motion so that the
solid/liquid front shape and its propagation speed could
be manipulated. The formulation presented in this paper
extrapolates on our previous work [7-11] which was
based on the fundamental concepts of
MagnetoHydroDynamics (MHD) as formulated by
Stuetzer [2] and an extended Boussinesq approximation
formulation [12] that allows for temperature-dependent
physical properties. Our formulation simultaneously
predicts detailed velocity, pressure, temperature and
magnetic fields for the moving melt, white capturing the
forming solid phase by using a single computer code.
The same mathematical formulation and computer code
can simulate the reverse process of melting of the solid
phase. In this work we have formulated the entire



problem as three-dimensional and time-dependent
although our computational results will be for steady
situations only.

Analytical Model

Starting with the Maxwell's equations and the Ohm's
law, the magnetic field transport equation can be
derived [1,2,7] as
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where subscripts after the comma designate partial
differentiation with respect to the variable or variables
that follow the comma. The fiuid flow partial differential
equations (Navier-Stokes) and the magnetic field
transport partial differential equations (Maxwell ) can be
non-dimensionalized. If the flow has a mean stream, the
non-dimensionalization will lead to the introduction of
the hydrodynamic Reynolds number because of the well
defined reference velocity. Thus,
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Here, we chose AT = Tg - Tj and Tg = Ts. In this work

only incompressible flow will be considered while
accounting for thermal buoyancy via an extended

Boussinesq approximation in the form which is valid
even when melt and solid properties vary as arbitrary
functions of non-dimensional temperature [12]. Thus,
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Here we have assumed only ¢ and u not to vary with the
temperature. A function describing variation of density
as a function of non-dimensional temperature is then
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with a similar expression for k'. The latent heat released
or absorbed per unit mass of mushy region (where T} >

T > Tg) is proportional to the local volumetric liquid/solid
ratio often modeled [13] as
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where the exponent n is typically 0.2 < n < 5. With the
following non-dimensional groups
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buoyancy term, assuming that as'e << 1, and dropping

the asterisk symbol, the non-dimensional Navier-Stokes
equations for phase-changing MHD flows become

vi,i=0 (12)
1., = RGro
vig+ (iv)) = RgM'Vijlj - Pi + T3 G
H,2
+ ——— (HiH (13)
P Re2 (Hi Hi k

R , 1R ‘o)
01+Vi0i = g Prog (M 8 +,—R—9L;>—,)<,—e-(ks 8,i),i

Re nt'
+R Ecco' (vij+ vii) Vi

1 H{ Ec
3 eijkeilm He,jHmy  (14)

+ T A
Ce'py2 Re

Non-dimensional hydrostatic, hydrodynamic, and
magnetic pressures can be combined to give

Ht2
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where ¢ is the non-dimensional gravity potential defined
as gi=¢,. |f S=1fora melting cell and S=0 for a

solidifying cell, the enthalpy method [1 4] leads to the
introduction of a non-dimensional equivalent specific
heat, cg' = Cg / Cq, which can be defined as
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The magnetic field transport equations in their non-
dimensional form become

;
Ht- v Hi-viH) =5 R Hii (17)

Viscosity in the mushy region was modeled according to
an exponential law, that is, n/nj = 10 exp(R).



Numerical Model

Equations (12), (13), (14) and (17) represent a
system of eight coupled non-linear partial differential
equations [7]. This global system has been split into two
systems in order to simplify computer programming. The
first system represents the non-dimensional Navier-
Stokes equations for incompressible flows with thermal
buoyancy, magnetic field effects and possible
solidification or melting. It can be written in a fully

conservative form in terms of the non-orthogonal grid-
following boundary-fitted coordinate system as
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where & =E&(xy,z), n=n(xy,2), {=1_{{xy.z) Qis the
transformed solution vector, E, F and G are the

transformed flux vectors, and S is the transformed
source vector. The diffusion vector in general curvilinear
coordinates is defined as
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where J = det [(a% )] is the determinant of the

Jacobian geometric transformation matrix and the metric
tensor components are defined as
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Here, Xj = Xj(x, y , 2) is the Cartesian coordinate vector
and Qi = ﬁi(«";, 1, {) is the curvilinear coordinate vector.
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The contravariant components U, V,W and Hg, Hn. HC
are defined as
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For the Navier-Stokes equations, the vectors are defined
as follows
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The system of equations (18) based on the above value

of Qis singular since there is no time derivative term in
the mass conservation equation and the system cannot
be integrated simultaneously. Consequently, an artificial

a =
compressibility [15] term , 3 (ﬁ‘) is added to the mass

(26)

conservation so that the first term of the vector Q

becomes (31 = p/(BJ). Here, B is a user specified

parameter that depends on the problem geometry, grid,
flow parameters, etc. [16]. In the steady state limit, the

time variation of (31 term tends to zero and does not
influence the accuracy of the steady state solution. The

non-zero components of the source vector Syg are
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Here, gy, gy: 9z are the Cartesian components of the
non-dimensional gravity vector, while
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Similarly, the transformed system of magnetic field
transport equations can be expressed as
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where the solution vector Q , the flux vectors E, ?, é,

= Dyag + Swac (34)

and matrices Dyag and Dyag are defined as
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while §MAG = 0. In the case of flows where there is no
identifiable reference velocity (as in the case of a
thermally induced flow inside a closed container) and
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rather than guessing the value of the Reynolds number it
is often advantageous to avoid it by performing the non-
dimensionalization with respect to different reference
variables. Specifically, if the characteristic velocity is
chosen as the ratio of thermal diffusivity and the

characteristic length, that is, if vo=Kkg/(pg Co lg), the

coefficient matrix Dyg becomes

= R (1-R)¥
DNs=diag[O RP; RP[ RP, {&? (#} ] (37)

while Dpng, Dmag. Dmag and Syag remain unchanged.

Also, terms of the transformed source vector §Ns in the

Navier-Stokes equations remain the same as in
equations (27-30) except that Ra Pr should now be used

instead of Gr/Rez. Here, the Rayleigh number is defined
as Ra=GrPr.

In the case of a three-dimensional problem, eight
partial differential equations need to be satisfied

simultaneously. This was accomplished by integrating a
system of five fluid flow equations (Eq. 18) and a system
of three magnetic field equations (Eq. 34) in an
alternating fashion [7] and after each iteration

transferring the information through source-like terms

Spns- By adding the artificially time-dependent term in
the mass conservation, the entire Navier-Stokes system
becomes non-singular and of a hyperbolic type so that it
can be integrated in time using an artificial time
marching [7] technique based on an explicit four-stage
Runge-Kutta time-stepping algorithm [17]. The explicit
time integration scheme was used because it can be
efficiently vectorized and easily modified when
additional equations need to be incorporated in a
system. A small amount of fourth order artificial
dissipation [17] was added to the Navier-Stokes system
at higher Reynolds number flows to suppress numerical
oscillations that appears due to even-odd decoupling
caused by central space differencing.

Boundary Condii

Solid walls: Along the solid walls, the velocity
components were set to zero. The pressure gradient
normal to the walls calculated from the momentum
equations were used to compute pressure at the solid
boundaries. This gives physically correct wall pressure
distribution rather than assuming zero pressure gradient
normal to the wall. Depending on which type of thermal
boundary condition was imposed at the wall, the wall
temperature was either specified or obtained from the
specified surface heat flux and the points on the first grid
line off the boundary.

in the case of a melt flow

through a three-dimensional passage with an open inlet

and an exit, both characteristic and non-reflective

boundary conditions have been implemented at the exit.

Characteristic boundary conditions [7] can be

determined by rewriting the system (18) in a
nonconservative (characteristic) form as

%—?+X%§+§%’+E%—§=ENS+§ (33)



The eigenmatrix Xcorresponding to the flux vector

Jacobian coefficient matrix A is

A= diag [U-a, U+a, U, U, U] (39)
where a is the equivalent local speed of sound

2 ,2 ,2.1/2
a= U2+BEy+Ey+E)" (40)

From the eigenvalues it is obvious that there are four
incoming characteristics corresponding to four positive

eigenvalues. Thus, four variables (u,v,w,0) have to be

specified at the inlet assuming that £ is in the direction of
the mean flow there. Nevertheless, the first eigenvalue is

negative at the inlet meaning that one variable (p) has to
be computed at the inlet from a characteristic form of the
equations. Similarly, at the exit boundary, the combined

pressure (p) should be specified while the velocity
components and the temperature should be obtained by
integrating the characteristic equations.

The similarity transformation matring that

converts the E-direction generalized flux vector E, intoits
characteristic non-conservative form is given by
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Iif equations (18) are premultiplied by the similarity

-1
transformation matrix Mg , the characteristic form of the

equations is obtained. The equation corresponding to
the negative eigenvalue is to be selected at the inlet,
while at the exit the equations corresponding to the
positive eigenvalues are chosen. The selection
procedure can be conducted using the selection matrix

L. if the boundary condition vector is £2, then

a*l oot 9,5 (44)
Q

or
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Equations (44) are added to the system of transformed
equations, so that,

Qt
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Here, t is the iteration level, oy are the coefficients in

the Runge-Kutta k-stage time-stepping scheme, and R
is the residual vector of system (18). At the inlet plane,

L = diag[1,0,0,0,0] 47
#
Q=1[0, u-up, v-vp, W-Wp, 9-9p] 48)
At the exit plane
L =diagf0, 1, 1, 1, 1] (49)
= = #
Qz[P'Pp, 0,0’090] (50)



so that

9{—2 = diag[PJ,0,0,0,0].
aQ

Nevertheless, the characteristic boundary
conditions at the exit plane require specification of the
melt pressure on the entire exit plane, which cannot be
performed correctly since the correct pressure
distribution there is unknown a priori especially if the
flow at the exit is not fully developed. A remedy is to use
a different type of exit boundary conditions.

The non-reflecting boundary conditions do not
force us to specify any of the physical variables at the
exit plane. Instead, an additional equation needs to be
solved there. The non-reflecting boundary condition
demands that the amplitude of an incoming wave be
constant in time. This condition allows computation to
handle the variable pressure at the exit boundary. The
outgoing waves depend only on information at the
boundary and within the domain. Thus, those equations

which represent outgoing waves can be solved-at the
exit boundary as they are to give three velocity
components and temperature at the exit. At the inlet
boundary, a characteristic boundary treatment was
employed whereby three velocity components and one
temperature are specified and pressure is obtained by
solving the characteristic form of the equation which has
a negative eigenvalue.

For one-dimensional problems, wave
propagation direction is well defined. For
multidimensional problems there is no unique direction

of propagation because the coefficient matrices A,B,C
cannot be simultaneously diagonalized. Boundary
condition analysis requires that any one coordinate
direction be diagonalizable at a time. Eigenvectors

(1)

corresponding to the Jacobian coefficient matrix A are

solutions of [X-'i 1]{x} = 0. Premultiplying the
governing equation (18) with the inverse of a similarity

matrix S of A gives

~ . 2Q
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Then we can define a column vector L as follows
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Components of L defined as above are used for the
equations corresponding to the outgoing waves while
for the equations corresponding to incoming waves the
characteristic boundary treatment and non-reflecting
boundary treatment have different approaches. In

characteristic boundary treatment for incoming waves,
flow properties are specified instead of solving the
equations. On the other hand, the non-reflecting
boundary treatment defines L's differently for only these
equations corresponding to incoming waves [18,19]

Li=-(§'1ﬁ)i

Here the subscript i represents the equation
corresponding to the incoming wave. This condition
constrains the amplitude of the incoming wave to remain
constant with time so that the outgoing waves are not
allowed to reflect back into the domain. This formulation
of non-reflecting exit boundary condition was used in the
present work allowing for the non-uniform pressure on
the exit plane.

The system of the magnetic field equations (34) is
also hyperbolic in time. The eigenvalues of the

(5%)

Jacobian matrix of this system are A =diag[U,U,0] in the

case of {~direction. At the inlet plane, therefore, two
components of the magnetic field vector should be
specified, while the axial component Hy of the magnetic
field vector has to be evaluated from the characteristic
equation. The transformation matrix for the magnetic
transport equations is given by

kagv-k1ow  kziw-kogu  kqgu-kaqv
-1
M, kogw-kz1v  kaju-kqgw  kqav-kogu  |(s5g)
Exki2z -§ykiez  -§zkq23

where k12, k23, k31 are defined like in the equation (43)
and

k123 =kq2 + ka3 + k31 (57)
Here

L=diag[1,1,0] (58)
Q = { Hy-Hyp, Hy-Hyp, 0} 7 (59)

At the exit plane, all three magnetic field components
are updated by integrating the governing equations.
When the wall is a perfect conductor, the tangential
component of the magnetic field is discontinuous while

the normal component is continuous. If {) denotes the
jump across the boundary, then at the wall boundary

nx<E>=0 nH=0

If the wall is a perfect insulator, then the magnetic field
has no discontinuities at the boundary, that is (H) = 0.

(60)

Numerical Results

Based on the elaborated analytical model and the
numerical algorithm a fully three-dimensional MHD flow
analysis computer code has been developed [7].



Numerical results from this code were compared with
known analytical solutions and proved to be highly
accurate [7]. This code was then augmented to
incorporate thermally induced buoyancy, temperature-
dependent physical properties of the melt and the solid
phase and the effacts of latent heat release with an
adequate account of the mushy region.

Two basic configurations were studied with this
code: a cubical closed container (Fig. 1a) with sides of
fength | = 0.01 m and a straight duct having square cross
section (Fig.1b) with dimensions 0.01 m x 0.01 m x
0.0475 m. The cubical closed container was completely
filled with the melt and the duct was assumed to be
horizontal with the melt flowing from left to right in the
positive x-direction. Gravity was assumed to act
vertically downward in the positive z-direction. 1f not
indicated otherwise, the solid walls were thermally
insulated. All runs were performed with CFL number 2.8,
von Neuman number 0.4, artificial compressibility

parameter B = 5 and with the coefficient of fourth order
artificial [17] dissipation v = 0.0001. The values of the
reference parameters were: v = 0.01 ms™1, 15 =0.01 m,

go=9.81m s-2 and the exponent used in the model for
latent heat release (Eq. 8) was n = 5. Values of the non-
dimensional parameters used in the test cases are
summarized in Table 1. Physical properties used in the
case of a molten stee! are summarized in Table 2.

As a basic test
of the capability of the computer code to predict three
dimensional buoyancy driven flows without any phase
change in a cubical closed container we used the test
case of Ozoe and Okada [3]. Two numerical tests were
carried out in the cubical enclosure with one of the

vertical walls (x" = 0) uniformly heated (8 = 0.5) and the

opposite vertical wall uniformly cooled (6 = -0.5). The
first test run was performed without an external magnetic
field (Ht = 0) and the second with an external uniform
magnetic field (Ht = 500) applied horizontally in the x-
direction. Both runs were carried out for molten silicon
(Table 1) with Ra=10°% and Pr=0.054. A computational
grid of 30x30x10 cells symmetrically clustered towards
the walls was used for this purpose. In the case of no
magnetic field the computed isotherms on the horizontal

* = 0.5 mid-plane (Fig. 2a) and on the vertical y' =0.5
mid-plane (Fig. 2b) compare well with the computational
results (Fig. 2c-d) of Ozoe and Okada [7]. In the case
with the magnetic field applied, the computed isotherms
(Fig. 3a-b) compare reasonably well (Fig. 3c-d) with
those of Ozoe and Okada. This case is indicative of
suppression of flow circulation by the strong externally
applied magnetic field and the dominance of conduction
in the process of heat transfer. The magnetic field in the
x-direction thickens the thermal boundary layer in the
vertical plane as is visible from the isotherms in the y =
0.5 vertical mid-sectional plane (Fig. 2b).

Closed container with solidification: In this case the
cubical closed container was filled with molten steel
having its top wall uniformly cooled below freezing
temperature (6 =-1) and the bottom wall uniformly
heated (6 =1). The container was discretized with
20x20x20 grid cells that were clustered symmetricaily
towards all the walls. Two cases were run without the
influence of the magnetic field (Ht = 0). One of the cases

was in microgravity (g = 0.01 go) and the other with the
full influence of gravity. The computed isotherms in the
y" = 0.5 vertical mid-plane (Fig. 4a-b) for the two cases
indicate significant solidification occuring at the upper
wall [20]. Evidently, in the microgravity case conduction
is the dominant mode of heat transfer, whereas in the full
gravity case heat transfer is carried out by both
conduction and convection. The computed isotherms
(Fig. 5a) and the contours of constant z-velocity

components (Fig. 5b) on the horizontal z" = 0.5 mid-
plane in the full gravity case indicate strong centrally
located downward jet and upward motion close to the
walls thus forming a deformed thoroidal melt motion.
The solidification was then tested for the case where

one vertical wall (x* = 0) was kept uniformly hot (8 = 2)
and the opposite vertical wall (x" = 1) was at a uniformly

below freezing temperature (8 = —1). In this case silicon
was replaced by molten steel (Table 2). Two runs were
performed with full gravity (g = go); one case without the
magnetic field (Ht = 0) and the other with a strong
external magnetic field (Ht=50) uniformly appfied in the
y-direction. A comparison of the computed isotherms
(Fig. 6a-b) and velocity vector fields (Fig. 7a-b) in the y'
= 0.5 vertical mid-plane show a noticeable difference in
the shape of the solid/melt interface when the magnetic
field is applied. In this situation the thermally induced
vorticity vector points mainly in the negative y-direction,
while the magnetic field points in the positive y-direction
thus strongly supressing the melt circulation and
causing an increase in the amount of solid accrued on

the vertical cold wall (x" = 0).
In addition, two runs were performed in microgravity
(g = 0.01 go); one case without the magnetic field (Ht =
0) and the other with a strong external magnetic field
(Ht=50) uniformly applied in the y-direction. A
comparison of the computed isotherms (Fig. 8a-b) in the
* = 0.5 vertical mid-plane indicates a negligible
difference in the shape of the solid/melt interface and the

amount of the accrued solid.

Straight duct with solidification: The second
configuration studied was a straight three-dimensional
duct with a uniform melt temperature (6 = 2) imposed at
the duct inlet (x" = 0). Along all four walls a cooling was
specified as 8 = 2 - 3.6 sin (x"®). Characteristic
boundary conditions were used at the inlet, while
specifying nothing at the exit. Instead, a non-reflecting
boundary condition was enforced at the exit. The fluid
used in this problem was molten steel {Table 2), which is
characterised by the fact that it does not undergo a
phase change isothermally, thereby giving rise to a
sizable mushy region. The flow field was discretized with
50x20x20 grid cells that were clustered symmetrically
towards the duct walls. Four computer runs were
performed for this configuration.

The first test case represents a solidifying flow field
in a microgravity environment (g = 0.01 go) without any
magnetic field (Ht = 0). Computed solidified zones are
clearly evident on all four walls of the duct from the
computed velocity vector fields (Fig. 9a) in the horizontal
(z* = 0.5) mid-plane and the isotherms (Fig. 9b) in the
vertical (y = 0.5) mid-plane. For all practical purposes
the solution is doubly symmetric with respect to the
longitudinal mid-planes.

Two additional test cases were then run in a



microgravity environment (g = 0.01 go) with uniform
magnetic fields of Hi=10 and Ht=30, respectively, acting
vertically downward. The influence of the magnetic fields
is evident from the velocity vector plots (Figs. 10a-b) in

the horizontal (z' = 0.5) mid-plane depicting flattened
velocity profiles. Consequently this leads to the
thickening of thermal boundary layers at the vertical
walls (Fig. 11a-b) and a slight decrease in the amount of
solid phase accrued on the horizontal walls (Fig. 12a-t).

A fourth case was run with a full gravitational field (g
= go) but without any magnetic field (Ht = 0). In this case

strong asymmetry was noticed in the vertical (y' = 0.5)
mid-plane velocity pattern (Fig. 13a) and computed
isotherms (Fig. 13b) due to thermal buoyancy resulting
in a significantly more solid phase accrued on the
bottom wall and less on the top wall as compared to the
side walls. This is also evident from the computed

isotherms in the vertical cross section plane (x' = 0.5) of
the duct (Fig. 14a). The computed non-uniform pressure
at the exit plane (Fig. 14b) clearly demonstrates the
benefits of using non-reflecting boundary conditions
rather than forcing characteristic boundary conditions at
the exit.

Figure 15 summarizes the effects of the magnetic
field at full gravity and in microgravity for the closed
container with solidification from a side wall. It is clear
that the effect of the magnetic field is more pronounced
(in this case it increases the amount of accrued solid)
with the increase in gravity magnitude.

Conclusions

A complete analytical and numerical formulation
has been developed for the theoretical prediction of
phase change processes inside three-dimensional
containers and passages with and without the influence
of an externally applied steady magnetic field and
arbitrary gravity vector. Computational results confirm
that the magnetic field has a profound influence on the
solidifying flow field since it weakens flow recirculation
regions and causes distorted velocity profiles having
overshoots close to the solid boundaries. Consequently,
the temperature field also changes under the influence
of the external magnetic field. This change influences
convective heat transfer through the boundaries and
reduces the amount of the solid phase accrued on
undercooled walls. This is the result of higher melt
velocity that is generated by the ponderomotive force
close to the solid/liquid interface and, to a much lesser
extent, by Joule heating. This demonstrates a possibility
for the development of an active control algorithm for
realistic three-dimensional solidification or melting since
the magnetic fields can either increase or decrease the
amount of acrued solid phase.
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Steel melt Silicon meit
Re 100 200
Pr 0.4167 0.054
Gr 1000 1.85 x 106
Ec 5.56 x 10-10 7.87 x 10-8
Ht 0,10, 30 0, 500
Pm 0.01 0.01

Table 1. Nondimensional input parameters.

Cpl W kg™t K1) 788

Cps [J kg~ K1) 465.4 +0.1336 T
ki W m-T K1) 12.29

ks W m1 K1) 8.16

T [K] 1727

Ts [K] 1670

L[J kgl 265200

Table 2. Physical properties for molten steel

Fig. 1 Test configurations and computational grids;
a) closed container, b) straight duct



Fig. 5 Closed container with solidification (z‘b =0.5¢g=
go, Ht = 0): a) isotherms; b) constant z-velocity contours.

Fig. 2 Isotherms for closed container without
solidification (Ht = 0): a) z2'=05 computed; b) y* = 0.5
computed; ¢} z' =05 from [3]; d) y* = 0.5 from [3].

b,
|
;

X

Fig. 6 Isotherms for closed container with sofidification
b (y"=0.5,g=go): a)Ht=0; b)Ht=50.

X X .
: 3
f | S b
y c 2 d N o
Fig. 3 Isotherms for closed container without Fig. 7. Velocit): fields for closed container with
*_ solidification (y =0.5,g=go): a) Ht=0; b) Ht=50.

solidification (Ht = 500): a) z'=05 corpputed; b)y
0.5 computed; ¢)z = 0.5 from [3];d)y =0.5from [3].

Fig. 4 Isotherms for closed container with solidification Fig. 8 Isotherms for closed container with solidification
(y* =0.5, Ht=0): a)g=0.01go; b) g = go. (y" =0.5,g=0.01go): a) Ht=0; b) Ht = 50.
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Fig. 9 Straight duct with solidification (g = 0.01go, Hi= 0):  Fig. 13 Straight duct with sqlidiﬁcaﬁon (y' =0.5,9=0qo
a) velocity field at 2" = 0.5: b) isotherms aty’ =0.5. Ht= 0): a) velocity field; b) isotherms.

Fig. 10 Velocity fields in straight duct with solidification Fig. 14 Straight duct with solidification (g = go, Ht=t0):
(z' =0.5,g =0.01go): a) Ht=10; b) Ht = 30. a) velocity field at x = 0.5; b) pressure at the exit x = 1.
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femememod, ot

Fig. 11 Isotherms in straight duct W|th solidification (y" =
0.5,9 =0.01go): a) Ht=10; b) Ht =

1500 —

ey
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Number of freezing points

a — 1% gravity (Ht=30)
---------- 100% gravity (Ht=30)
soodl | 1% gravity (Ht=0)
----- 100% gravity (Ht=0)
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b 0 2000 4000 6000
Iteration number
Fig. 12 Isotherms in straight duct wnth solidification (z” = Fig. 15 Convergence histories for solidification in a
Olg gz-_- 0.01go): a) Ht= 18 b) Ht = ( closed container filled with molten steel (side freezing).
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