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ABSTRACT

Systems of partial differential equations
governing three-dimensional laminar flow of an
incompressible viscous fluid undergoing
solidification under the influence of externally
applied gravitational, magnetic and electric fields
have been formulated. The model uses an extended
Boussinesq approximation to allow for temperature
dependent physical properties. It includes effects of
Joule heating, latent heat release, Lorentz force and
ponderomotive force. The system of coupled partial
differential equations was solved using an artificial
compressibility formulation and explicit finite
differencing with a four-step Runge-Kutta time
integration. Preliminary two-dimensional numerical
results demonstrate the ability of the externally
applied magnetic and electric fields to influence the
melt recirculation, the amount of solid phase
accrued, and the solid/liquid interface shape.

NOMENCLATURE

A = &-flux vector Jacobian in curvilinear
nonorthogonal coordinates

b = charged particles mobility
coefficient [m2 s-1 V-1]

B = n-flux vector Jacobian in curvilinear
nonorthogonal coordinates

Cp = specific heat coefficient [m2 K-1 5-2)

C = {-flux vector Jacobian in curvilinear

nonorthogonal coordinates
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D = diffusivity of charged particles
[m2 s-1]

= differential operator

= diagonal matrix

= electric field vector [V m-1]
x> E y» E ; =x,yand z component of the

Moo

electric field vector

2

= &-flux vector in curvilinear
nonorthogonal coordinates

F = n-flux vector in curvilinear

nonorthogonal coordinates
= metric tensor

= gravity force per unit volume [N m-3]

coordinates
= magnetic field [H kg-1]
= identity matrix
= electric current per unit volume
[A m-3]
k = heat conductivity coefficient
kg ms-3K-1)
kp = Boltzman's constant [kg-1 s K]
1 = length {m]

gij

g

G = {-flux vector in curvilinear
H

I

J

-

= latent heat of liquid/solid
phase change [J kg-1]
= unit vector normal to the solid wall
= pressure [N m-2]
= combined pressure [N m-2]
= electric charge density per unit
volume [kg m-1s-2 V-1]
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= solution vector in curvilinear
nonorthogonal coordinates

= residual vector .
= volume fraction of the liquid phase

naom Qo

= source term vector in curvilinear
nonorthogonal coordinates

= time (s)

= temperature [K]
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AT = temperature difference [K]

u,v,w = velocity components in Cartesian
coordinates [m s-1]

= contravariant velocity components
[ms-1]

v = velocity vector in Cartesian
coordinates [m s-1]

= Cartesian coordinates [m]

= thermal expansion coefficient [K-1]

= artificial compressibility coefficient

= smoothing operator

= electrical permitivity coefficient
(kg m s-2 V-2]

€4 = fourth order artificial dissipation

UV, W

X,Y,Z

m O™ Q

coefficient
= curvilinear coordinates [m]
= viscosity coefficient [kg m-1 s-1]
= smoothing coefficient for residual
= non-dimensional gravity potential
= electric potential [V]

Eng

= artificial dissipation sensor function

= fluid density [kg m-3]

= nondimensional temperature
difference

= non-dimensional gravity potential

= magnetic permeability [ H m-1]

= electrical conductivity [ Q-1 m-1]

= viscous dissipation function
[ kg m!s-3]

P <€ 60g 3

eaTe

subscripts
= cold wall
= electrical
= hot wall
= reference values
= electric

mo = o o

superscripts
= nondimensional values
T = transpose of a matrix
= function of nondimensional temp.

1. INTRODUCTION

During the solidification of melts significant residual
stresses and nonuniform distribution of impurities
regularly occur in the solidified material, During the
cooling or thawing processes, secondary flows are

generated due to strong buoyancy forces. These
processes cannot be effectively controlled, except if
influenced by a global body force. One such body
force is the general electromagnetic Lorentz force
which is created in any electrically conducting
moving fluid when either a magnetic field or an
electric potential field is applied. It has been well
known that the magnetic field can eliminate vorticity
from the flow field, while the electric field can
enhance it so that the freezing front could be
manipulated.

Stuetzer! was the first who clearly defined two
extreme models for a fluid flow under the influence
of electromagnetic fields: magnetohydrodynamics
(MHD) and electrohydrodynamics (EHD)26, The
MHD model assumes that there are no electrically
charged particles in the flow field and that there is no
electric potential applied’"1!. EHD assumes that there
is no magnetic field applied!2"16 while an external
electric field is applied to an electrically conducting
fluid containing electrically charged particles. In the
EHD flows, the electrically charged particles are
convected with the flow, they can diffuse and move
under the influence of the outside (imposed) and
inside (self-induced) electric field. When modeling
EHD flows we must incorporate an equation for
electric charge density preservation for each of the
electrically charged species®. One equation goveming
the electric potential field must also be added. In the
momentum equation an electrical (Lorentz) body
force must be added. In the energy equation we must
add a Joule heating term. In the case of solidification
(phase change) a latent heat term must be added to
the energy equation. Only incomplete versions of the
EHD models have been numerically solved in the
past. Our recent efforts15-16 were among the first
attempts at a consistent and complete modeling of the
EHD flows. Nevertheless, to the best of our
knowledge, the EHD flows that involve solidification
have not been computed before.

The objective of this paper is to present a fully
three-dimensional mathematical model in the
Cartesian (physical) space and in the nonorthogonal
curvilinear boundary-conforming (computational)
space. Difficulties with the numerical algorithm for
its solution will be discussed and very preliminary
computational results for cases of two-dimensional
steady laminar MHD and EHD flows involving
solidification will be presented for the cases with full
gravity and a reduced gravity.



2. MHD SOLIDIFICATION MODEL
2.1 General Definitions
The entire set of partial differential equations

can be non-dimensionalized by introducing the
relations

vt_!_ xt_._x_ tt_tvo
R " Xo Iy
‘=—L— ‘=& ¢.= ¢
P Po Vo? & g Mo V?)/l(z)
. Hi AT . e
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Here, T, is the temperature of the cold wall and T}, is
the temperature of the hot wall, so that AT =T - T,
and AT, =T, - T,. With the following non-
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The non-dimensional density p' can be expanded in a

Taylor series while retaining only the first order
term, that is,

pP'=1-0AT=1-a%9@ (3)

where

«_0p" ATopodp’ ATe0p
=36 p,AT, 90 =~ p, oT -“ATex 4

It can be assumed that the coefficient of thermal
expansion, @, is constant in the range of temperatures
which are of interest in a particular case. When the
term (AT0 a) « 1, an extended form of the

Boussinesq approximation can be derived for the
fluid with non-constant physical properties!”.

2.2 Latent Heat Release Model

In the case of a liquid/solid mixture the
enthalpy per unit mass of the mushy region becomes

dh= c,dT +LdS )

where L is the latent heat (enthalpy of solid/liquid
phase change) and S is the volumetric fraction of the
solid phase. Then

vih.i=CpViT,i'L viS.i= (Cp'LS‘T) ViT,i
(6)

Let cpe =¢,-L St be an equivalent specific heat.

LS,0
Cpe = Cpo Cpe’ = Cpo (¢ - ——L——'—c; T) 0

Here, S could be an arbitrary function of 6 and Cpe' I8
the non-dimensional equivalent specific heat. This
approach is called the "enthalpy method"!8.



2.3 MHD Model

The non-dimensional MHD equations including
solidification can finally be written as
Mass conservation:

(8)

vii=0

Momentum conservation
1 . Gr 0
Vigt (Vi Vj),j =Re (Tl Vi,j),j “Pit R B

+ Riljze (1),

&)

Energy conservation
1 :
0.0+ vi®,i=gep, Cpe’ (o),
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Magnetic field transport

1
Hy- (v Hi-viH) = o Hig an

where iimHm,Hx  is ponderomotive force

1
Mm2 Eijk &
while m%c-la Eijx€imHy jHm 1 is Joule heating due to
applied magnetic field and ®® is the energy
dissipation function for incompressible viscous flow.

(D(l) = T]' (vi,j + Vj,i) Vid' (12)

It should be pointed out that the viscous dissipation
®® can be neglected from an order of magnitude
analysis. For example, for water with Cpo = 4179

J/(kg K),py = 1003 kg/m3, 1, = 0.0017 kg/(m s) it -

follows that
0o c aT
o “vpe a[ Re ATO 10
To® “E ~ 2.46 x 109 v, (13)

The combination of non-dimensional hydrostatic,
hydrodynamic, and magnetic pressures is

1
ﬁ=p+%+mﬂﬂ (14)

where ¢ is the non-dimensional gravity potential
defined as g; = ¢ ;.

2.4 Numerical Algorithm for MHD

Equations (8-11) represent a global system of
coupled non-linear partial differential equations. The
global system has been split in two subsystems in
order to simplify programming. The Navier-Stokes
equations (8-10) constitute the first subsystem and
magnetic field transport equations (11) constitute the
second subsystem. To integrate each subsystem, the
explicit Runge-Kutta time stepping method!? was
used in an alternating manner’-

The general form of each subsystem is the
same. When expressed in a fully conservative form
in generalized curvilinear non-orthogonal
coordinates they are
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where Q is the solution vector and E, F and G are
the flux vectors. The transformed source vector is

denoted by §. For the Navier-Stokes equations, the
generalized vectors are defined as
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where J = %%-3—%) is the Jacobian determinant of the

geometric transformation from physical Cartesian
coordinates X, y, z into &, 1, { computational space.
The system of equations given by (7-11) is not
hyperbolic since there is no physical time derivative
term in the mass conservation equation.
Consequently, to integrate the system simultaneously
and obtain a steady state solution, an artificial

20 9 |B
compressibility” term, gt | BJ has been added to

the mass conservation equation. Here, B is an
artificial compressibility coefficient, a user specified
parameter that depends on the problem geometry,
grid, flow parameters, etc.2! In the steady state limit
the artificial compressibility term tends to zero.

The source vector S contains the influence of
the ponderomotive force due to the magnetic field
and the thermal buoyancy force. Its components are
given as

~
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where H,, Hy, H, are the components of the magnetic
field vector in Cartesian coordinates, e ey, e are
components of the unit vector in the direction of
gravity force, and
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The diffusion term in general curvilinear coordinates
is

Dz:(%gij(ﬁi) ‘ jli

where g;; is metric tensor. The contravariant

components of velocity vector are denoted by U, V,
W, while contravariant components of the magnetic

field vector are ﬁg, ﬁ“ ﬁ(

For the subsystem containing the magnetic

(19)

field transport equations, the solution vector Q. the
flux vectors E, F, G, and the source vector § are
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Thus, in the case of three-dimensional magneto-
hydrodynamics, the system of eight partial
differential equations needs to be solved by
integrating intermittently a subsystem of five fluid
flow equations and a subsystem of three magnetic
field transport equations and transferring the

information through the source-like terms’.

3. EHD Solidification Model

The system of EHD governing equationsl'ls'16 is
derived from a combination of Maxwell's equations
of electrodynamics and the Navier-Stokes equations.



An idealized charged fluid is assumed and therefore
magnetic fields can be neglected so that Maxwell's
equations reduce to a charge conservation equation
and Poisson's equation for electric potential. The
electric permitivity € is assumed to be uniform.

Thus, the EHD governing equations are:

Mass conservation
V.v=0 1)

Momentum (including thermal buoyancy force and
electric Lorentz force)

Dv
poﬁ='vp'poagAT+v' MV v)

+qE (22)
Energy (including Joule heating)
P o=V (KVT)+J. E 23)
Electric charge conservation
%—? +V.J=0 (24)
Electric potential field
V.E = % (25)

The induced electric current per unit volume is given
by Ohm's law

J=q(v+bE )-DVgq (26)

The electric charge diffusivity coefficient D and
mobility coefficient b are related by the Einstein's
formula’

ky T
T qmj

D pib VX))

where m; is the mass of a charged particle and pj is
the density of the electrically non-neutral fluid. Since

VxE=0 (28)

it follows that

E=-Vo (29)
where @ is the electric potential, so that equation (25)
becomes

vip=-{ 30)

Nondimensionalization can be performed with
respect to the reference values denoted by subscript
0, so that
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Here, A, is the reference value of the difference of
the electric potential between the two walls. The
following nondimensional groups should be
recognized as :
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Electric Prandtl number Pre

Electric field number

Thus, the system of equations for incompressible
flow of a fluid with temperature dependent
properties and electric charges under the influence of
an externally applied electric field reduces!> to
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where J = ——8(x,y,z)

geometric transformation matrix from physical x,y,z
into computational £,n,C space, and gjj is the metric

is the determinant of the Jacobian

tensor given by

gij =V xi' Vxj (43)
Contravariant velocity components are related to
velocity components in Cartesian coordinate system
as follows

Ul recg eq
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The system (38) was solved using a four-stage

Runge-Kutta explicit time stepping method!?
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Here, the iteration level is denoted by n, and each

stage of the Runge-Kutta method by m, where the

coefficients are vy, = 1/4, 1/3, 1/2 and 1,

respectively. The residual R is defined as

R=%g-+gn—p+§£--02(JQ)-S
04 o4 b

The last term in equation (46) represent fourth order
artificial dissipation19 which is added to improve the
stability of the scheme and to prevent16 the electric
charge signs from changing locally in the flow field.
The artificial dissipation sensor function, Yy, was
based on a normalized value of the local gradient of
the charge density distribution. The influence of
artificial dissipation terms is controlled by €4 which
are user-specified small parameters. Addition of
fourth order artificial dissipation was found to be

necessary in the simulation of the solidification
processes only when the sharp gradients were created
in velocity or in the charged particle density
distribution.

To enhance the convergence rate, implicit residual
smoothing was used when solving the Poisson's
equation for the smoothed residual after each stage of
the Runge-Kutta iteration.
V2R, = R™, @7

This equation was discretized and numerically solved
by an alternate direction implicit scheme

(1- 08g)(1- 08, (1- 08 )R =R,
(48)

where the smoothing operator is denoted by & and ®w

is a user-specified constant, while ﬁi represents the
smoothed residual. By introducing the artificial
compressibility term in the continuity equation, the
system of equations becomes hyperbolic. Therefore,
boundary conditions have to be applied considering
characteristic directions. Proper boundary conditions
are determined from the nonconservative form of the
transformed system. Wall boundary conditions for
the pressure were computed from the normal
momentum equation

~ 1 ) Gr o
n Vp=n. [R_e vV.(n Vv) + -Ezg+SEqE]

(49)

Boundary conditions for electric charges on the
vertical boundaries were of the Neumann type. The
Poisson equation for the electric potential was solved
separately during each global iteration using an ADI
algorithm.

4. COMPUTATIONAL RESULTS

Mathematical and numerical models for
solidification of a fluid flow were tested in the case
of a rectangular two-dimensional container of aspect
ratio 3:1. A uniform, non-dimensional temperature 6
= 1 was imposed at the bottom wall, a uniform
cooling temperature © = - 10 was enforced along the

top wall and vertical walls were thermally insulated.



Gravitational force was acting vertically downward.
Two separate two-dimensional analysis
computer codes were written that are based on the
analytical formulation and the numerical algorithm
summarized above. One code is capable of
performing MHD solidification and the other code is
capable of performing EHD solidification analysis.
The container was filled with an electrically
conducting fluid which was neutrally charged. It was
discretized with 60 x 60 grid cells that were
smoothly clustered towards the walls.
We have decided to simulate solidification of
realistic melts used in electronics industry.
Specifically, for MHD solidification we have used a
silicon melt and for the examples of an EHD
solidification we have used a gallium arsenide melt.
The nondimensional numbers corresponding to the
two melts are summarized in Table 1 and Table 2.
It should be pointed out that the value of the
magnetic Prandtl number quoted in Table 1 is one
order of magnitude larger than if the magnetic
permeability for vacuum was used in the formula.
This was done since the computer code tended to
diverge when using the physical value for the
magnetic Prandtl number. Identical problem was

encountered when simulating solidification of blood
flowing through a variable passagel0 subjected to an
external magnetic field. In this case, the magnetic
Prandtl number had to be increased ten orders of
magnitude before a converging solution was
obtained. Similarly, the electric Prandtl number
quoted in Table 2 is approximately ten orders of
magnitude larger than the actual physical value for
the molten GaAs?3. If smaller values for the electric
Prandtl number were used, the EHD code with
solidification tended to diverge rather quickly. The
given cases represented a difficult task from a
numerical point of view.

A CFL number of 2.8 corresponding to the
maximum allowable value for the four step Runge-
Kutta scheme was used together with a von Neumann
number of the order 0.001. The value of the
artificial compressibility parameter was B = 10 in all
computer runs. In the explicit algorithm that we have
used, the choice of B can affect?! not only the
convergence rate of the iterative process, but also the
stability of the entire scheme. A more thorough
linear stability analysis is definitely required of any
iterative algorithm that is to be implemented in the

MHD or the EHD solidification simulation.

We have occasionally used a small amount of
fourth order artificial dissipation (eq= 0.005) to
allow for a smooth convergence. The results could be
considered only as preliminary, because it was
found16 that even a very small amount of artificial
dissipation necessary to enhance the convergence rate
has a detrimental effect on the accurate prediction of
the diffusion of charged particles.

4.1 MHD Computational Results

At first we were interested in learning about
the silicon melt solidification involving no magnetic
field and 100% of gravity. The computed velocity
vector plot (Fig. 1a) indicate the existence of two
recirculation zones, while the isotherms (Fig. 1b)
indicate that the recirculation in this test case does
not influence the solid/liquid interface shape.

Then, we repeated the test case with a uniform
steady external magnetic field of 1 Tesla pointing
downward as did 100% of gravity. Figure 2a
indicates that the recirculation vortices have
considerably weakened and migrated towards the side
walls, while the predicted isotherms (Fig. 2b)
demonstrate a deformation of the solid/liquid
interface due to the presence of the magnetic field. A
direct comparison of Figurela and Figure 2a reveals
that the amount of accrued solid phase is significantly
lower in the case with the strong magnetic field.

In order to simulate a microgravity
environment, the magnetic field was removed and the
gravity field was reduced to 1%. The computed
velocity vector plot (Fig. 3a) indicates a considerably
weaker recirculation in the melt. It is interesting that
the predicted amount of accrued solid and the
corresponding isotherms (Fig. 3b) for this low-
gravity test case are practically identical to the case
with 100% gravity and no magnetic field.

From the convergence histories for these three
runs (Fig. 4) it is evident that the solidification of
silicon with a strong magnetic field proceeds at a
significantly slower rate, while micro-gravity has a
negligible effect on the solidification rate of this
material.



4.2 EHD Computational Results

Since it is much easier to generate an electric
potential field difference than it is to generate a
strong magnetic field, it would be interesting to see
what influence does an externally applied electric
field have on a solidification process of GaAs. It was
assumed that the rectangular container was initially
filled with a GaAs melt. Initially, electrical charges
were specified only at the injection boundary (lower
wall). A steady external electric field was imposed by
means of electrodes along the lower and the upper
wall with an electric potential field difference of A
= 100 V. Gravity force of 100% strength was applied
vertically downward. The predicted electro-
convective vortices were numerous and extremely
strong in this case (Fig. 5a) causing irregularities in
the melt/solid interface shape due to the strong micro
vortices present there. Figure 5b depicts the
predicted isotherms for this test case.

Next, the gravity force was reduced to 1% of
its strength, while maintaining the electric potential
difference as in the previous test case. The result was
a significant reduction of the number and the
strength of the vortices (Fig. 6a). The predicted
isotherm plot (Fig. 6b) reveals that in the
microgravity environment this test case achieved an
improvement in the uniformity of the liquid/solid
interface shape. The amount of accrued solid phase in
both EHD cases was practically the same.

Finally, we changed the geometry of the
container by making it a square. In this case the
number of vortices (Fig., 7a), their strengths and
locations were detremental to the smoothness of the
solid/liquid interface (Figure 7b).

Conclusions

A separate magnetohydrodynamic and a
separate electrohydrodynamic flow models including
solidification have been developed. The models
include Joule heating and latent heat release effects
and Lorentz and ponderomotive forces. Gravity
induced thermal buoyancy was incorporated via an
extended Boussinesq approximation that allows for
temperature dependent physical properties of the
melt. It has been found that artificial dissipation
causes excessive diffusion of charged particles and
influences the convergence rate of the iterative

10

process. Linear stability analysis of the existing
numerical schemes need to be augmented to include
the full MHD and EHD effects including
solidification. Otherwise, the contemporary
numerical iterative algorithms are highly unstable
when attempting to perform computations with actual
physical parameters for the solidifying melts. The
existence of electro-convective vortices analogous to
thermo-convective vortices has been computationally
demonstrated and their significant weakening
observed in the microgravity solidification
simulation. This work is possible to extend into three
dimensional separate MHD and EHD simulation
packages as well as into a combined formulation for
a joint MHD-EHD simulation which could include
multiple charged species and physically unsteady
magnetic and electric fields.

Results of these feasibility studies suggest
possibilities for the development of an optimally
controlled solidification process?4-25. It should
involve simultaneously variable thermal, magnetic
and electric fields capable of achieving desired
configurations of the solidifyed layers and desired
distribution of different species within the layers.
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Table 1. Input parameters for MHD solidification

of silicon melt in a 3:1 container with 100% gravity



ApV) 100

Re 87.6

Gr 7683.

Ec 5.7610-8

Pr 0.068 Figure 2a. Silicon solidification with MHD;
Se 0.007 velocity vector field for 100% gravity case
D, 10-10

Pr, 1.

Ne 8.556

Table 2.  Input parameters for EHD solidification
of GaAs melt in a 3:1 container with 100% gravity

Figure 2b. Silicon solidification with MHD;
isotherms for 100% gravity case

Figure la. Silicon solidification without MHD; L‘
velocity vector field for 100% gravity case

G

Figure 3a. Silicon solidification without MHD;
velocity vector field for 1% gravity case

Figure 1b. Silicon solidification without MHD; Figure 3b. Silicon solidification without MHD;
isotherms for 100% gravity case isotherms for 1% gravity case
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Figure 6b. GaAs solidification with EHD ; isotherms

for 1% gravity case
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