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ACCELERATED COMPUTATION OF VISCOUS
INCOMPRESSIBLE FLOWS WITH HEAT TRANSFER

Seungsoo Lee and George S. Dulikravich
Department of Aerospace Engineering. Penn State University, University Park,
Pennsylvania 16802

A new method for enhancing the convergence rates of iterative schemes for the numerical
integration of systems of partial differential equations has been developed. It is termed the
distributed minimal residual (DMR) method. The DMR method has been applied to in-
compressible Navier-Stokes equations with heat transfer. All numerical test cases were
obtained using explicit four-stage Runge-Kutta or Euler implicit time integration. The
DMR method was found to reduce computation time by 20-60%, depending on the test
case. The formulation for the DMR method is general in nature and can be applied to
explicit and implicit iterative algorithms for arbitrary systems of partial differential equa-
tions.

INTRODUCTION

A free convection flow is produced by buoyancy forces. Temperature gradients in
the fluid are introduced, for example, through boundaries maintained at different tem-
peratures. The resulting fluid density differences induce the motion: hot fluid tends to
rise, while cold fluid tends to descend. One of the classical problems of free convection
is the Benard convection problem [1]. Two infinite horizontal plates are maintained at
different uniform temperatures. The temperature of the bottom wall is higher than that
of the upper wall. The basic solution to the problem is no flow with light fluid below
heavy fluid. However, when a nondimensional parameter known as Rayleigh number,
Ra = gal’AT./kv, exceeds a certain critical value, that is, when the temperature dif-
ference is so large that the density difference overcomes the stabilizing effect of viscosity
and thermal conductivity, an instability occurs, resulting in fluid motion. Here, g is the
gravitational acceleration, « the coefficient of thermal expansion, AT, = Ty — T, the
characteristic temperature difference, L the characteristic length (in our example, the
distance between the two plates), and k and v the thermal diffusivity and the kinematic
viscosity of the fluid, respectively.

Numerical studies of the free convection problems are challenging. The strong
source terms of buoyancy forces usually cause numerical instability and often make
numerical schemes fail to converge. In this paper, formulation of two-dimensional heat-
conducting viscous flow under the action of buoyancy force will be described. Effec-
tiveness of the distributed minimal residual (DMR) method [2-7] in the presence of strong
source terms will be examined.
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NOMENCLATURE
A.B Jacobian matrices AT, characteristic temperature
¢ equivalent speed of sound difference
i CFL Courant-Friedrichs-Lewy number € coefficient of fourth order
! D artificial dissipation operator artificial dissipation
D Jacobian matrix of source o normalized temperature
vector H (3] weighted correction vector
D? diffusion operator in the Y inclination angle of the gravity
transformed coordinates force
Fﬁ E,F generalized flux vectors K thermal diffustvity
| g gravitational acceleration vector A diagonal matrix similar to
8 contravariant metric ensor Jacobian matrix
! Gr Grashof number v kinematic viscosity cocfficent
1 H heat source vector £&n transformed curvilinear
J Jacobian determinant coordinates
K Jacobian matrix of the transformed  £,. §,. m,. m, metric derivatives
coordinates o von Neumann aumbcr
' ¥ M number of combined steps in the w DMR acceleration factor
1 DMR method (§) boundary condition vector
‘ n normal direction v gradient operator
i p pressure p summation
! Pr Prandtl number
1 q component of the solution Subscripts
1. vector Q
| § Q gencralized solution vector < critical value
k| E R generalized residual vector i first interior grid point off a wall
18 Ra Rayleigh number ij indices of grid points
il Re Reynoids number q.r numbering of solution vectors
B ! time w wall
LT T temperature
113 u, v Canesian velocity vector Superscripts
qF components
| 3 u.v contravariant velocity vector k stage level in the Runge-Kutta
% components schemc¢
i X, ) Cartesian coordinates m, n Jevel of solution to be combined
4 a cocfficient of thermal expansion ! itcration level in time
i o Runge-Kutta cocfficients : designator showing that artificial
3 B anificial compressibility dissipation is added
cocfficient . variables expressed in terms of
Ha A correction vector transformed coordinate variables
Ar time increment * transpose of a matrix
b

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH HEAT TRANSFER

The governing equations of motion for a heat-conducting viscous fluid under the
action of gravity can be written with the aid of the Boussinesq approximation [1, 8],
resulting in

e
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Here. the generalized vectors for nondimensional variables are

0 u v
_|u u>+p _ vu
Q v E uv F= vi+op
6 ud v
(2)
0 0
_ 1 1 _|no
S = Gr'?) 1 H = n0
1/Pr 0

where u, v are the velocity vector components, p is the sum of hydrostatic pressure and
hydrodynamic pressure, 8 = (T — T.)/AT, is the nondimensional temperature, and the
vector i = &1, + €., is the upward unit vector assuming that the gravitational force
is acting downward. Here, Pr is the Prandtl number and Gr is the Grashof number
gaL’AT./v2. Notice that the Boussinesq approximation neglects viscous dissipation in
the energy equations. Equations (2) must be considered simultaneously, unlike incom-
pressible Navier-Stokes equations, which are decoupled from the energy equation when
v # (7).

To solve the system of equations, the solution vector Q was modified by adding
the artificial compressibility term a(p/B)/dt, where B is the artificial compressibility
coefficient (9, 10]. ‘ )

For completeness, consider the mixed convection problem. The solution vector and
the flux vectors for the mixed convection problem remain the same as for the natural
convection problem. The only changes in Eq. (2) are [11]

0 0
1 1 Gr n.0

5= Re| 1 H= e n,8 )
1/Pr 0

Equation (1) is transformed to a general curvilinear §, n nonorthogonal coordinate
system:

9Q 9E oF .
— + —+ — =D¥JQ)+ H
Py € om (JQ) (4)
where
_p/B U ]
U - 'V Uu + €p
Q= Jl v B J|Uv + &p
| 9 ve |
_ Z (5)
Vv 0
- 1} Vu+mnp 5 _ i nd
F = Jp W + mp H = Ji n®
L ve 0
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For a mixed convection problem, the source vector is modified to

0
- Gr | no
H= *
J Re?| n,6 ©
0

Here, J is the Jacobian determinant, while U and V are the contravariant velocity vector
components normal to constant £ and m grid lines, respectively.
The physical viscous terms are contained in

i

. S .
D*(1Q) = li’J‘gij(JQ).j:l (7)

where g;; is the contravariant metric tensor, g; = Vx;Vx/.

EIGENVALUE ANALYSIS

The Jacobians of the inviscid part of the modified Navier-Stokes equations in
Cartesian coordinates are given as

0 1 00 0 0 t O

_E _|B w00 _F o v w0
A_aQ_ 0 v u 0 B—aQ— B O 2v O ®)

0 6 0 u 0 0 6 v

The Jacobians in the generalized curvilinear coordinates are easily obtained from
those defined in Cartesian coordinates. Thus

- 9E . 9F
A=—=K(WUZE.E,) B=—=K(WV, n,7) (9
0 aQ '
where

0 k, ks 0

OE  OF _ | Bk, k+ku ku O
Kk ki, k) = Kk 2Q + k 0Q | Bk, kv k+ kv O (ie)

0 k)0 k.8  k

where k, and k, can be either £, and £, or m, and 7, depending on the direction to be
considered. Also, k is defined as

k = ku + kv (1)



The eigenvalues of the matrix K are given by
A =diag(k — ¢, k + ¢, k, k) (12)

where the equivalent speed of sound c is given as

¢ = VK + Bk} + k) (13)

NUMERICAL ALGORITHMS

In this section, the numerical algorithms used for incompressible Navier-Stokes
equations with the energy equation will be discussed. Two time integration schemes
(explicit four-stage Runge-Kutta time stepping method and Euler implicit method) were
used in conjunction with the central difference spatial discretization scheme.

The fourth-order artificial dissipation of Ref. [12],

€
8J At

DUQ) = V4JQ] (14)

was added to the residual vector R, resulting in the complete residual:

R = E K _ D*(JQ) — H + DUQ) (15)
ag am

The Runge-Kutta time stepping method [13] can be written as
Q°=Q' AQ*= —o, AtR¥TT k=1,2,....K (16)
Q' = Q + AQK

where o, are the coefficients for each of the K stages of the Runge-Kutta scheme required
to advance the solution from iteration level ¢ to iteration level t+ + 1. For example, o,
= 1/4, 1/3, 1/2, and | for the four-stage Runge-Kutta scheme. To reduce the compu-
tational effort, the artificial dissipation and the viscous part of the residual are calculated
only at the beginning of the first stage of each application of the Runge-Kutta scheme
and are kept unchanged during the four stages of the Runge-Kutta scheme.

The Euler implicit scheme for incompressible Navier-Stokes equations with the

energy equation is
. - d - ,
Q" =Q" + L\ta—tQ”'l + O(Ar) (17)

or

- - t+1
< JE  oF - -

= -At|— + — - D*JQ) - H 18
AQ At[ag on (JQ) ] (18)
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where AQ = Q"' — Q. The flux vectors and source terms are linearized by expanding
in Taylor series and truncating terms higher than second order in time, that is,

E,+]:E1+AAQ l-;‘r+].__l';‘1+BAQ }:l;+1=l:ll+l-)AQ (19)

where
: 0 0 0 0O
- oH
p=22_ 0 0 0 n (20)
8Q 0 0 0 n
0 0 0 O

The mixed second-order derivatives, however, are treated explicitly in order to use the
factorization technique. Equation (18) then becomes

i i _ Sg1, 8 Sgap d .
AQ:-Az{iA4-—6—1;—-6—<—§‘-‘—‘—J)—,i<g“2 J)—D}AQ

a€ an & \ J ot an \ J an
) o) R |
At [6& + P D4(JQ) H:] (21)

By applying the factorization scheme and adding the artificial dissipation to the righthand
side, we have

85 _ 9 (Sen s - 25
{P+A’|:6§A a§<J a§1>]}P ‘{P+Ar[anB

BOUNDARY CONDITIONS

At the solid wall, the normal momentum equation is used instead of the zero-order
boundary layer approximation, dp/an = 0. It can easily be shown that in the presence
of buoyancy force, the boundary layer approximation gives erroneous results, since the
momentum equations contain the buoyancy terms. The normal momentum equation for
& = constant line is found to be

a . oo . ] -
3¢ [BIG] = M,ID2UG) + ol = (DG + o] (23)

where § are the terms of Q and h are the terms of H.
Now we discuss the implementation of Eq. (23). For the explicit scheme, (8]4,),
is computed at the first grid point off the wall. Then ¢, at the vertical wall is extrapolated
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from (BJ4,)¢ and the value of ¢, one grid point off the wall. Nonslip boundary conditions
(= v = 0) are imposed at the wall. The wall temperature is set to a given value for
the thermal Dirichlet boundary condition, while the temperature is extrapolated from the
interior point for the thermal Neumann boundary condition.

For the Euler implicit method, Eq. (23) is written in delta form as

) ] ) Y . o i
a‘—gml Ag,) = —(—)‘Etmqll + 0, [D2UGy) + fy] — D24y + hy) (24)

If the wall is insulated, then the boundary condition vector is Q) = 0,u,v,8, —8),
where the subscripts w and i denote grid indices at the wall and at the first grid layer off
the wall, respectively. Then

10 - TOR
2 AQ, - =240, =0 (25)

a Qw ()Ql

Upon adding Egs. (24) and (25), it follows that AAQ, - B AQ; = C. where A =
diag (BJ,.. J., J... J.), and B = diag(BJ;, 0, 0, J,), and

righthand side of Eq. (24)

5 0
C= 0 (26)
0

For a mixed convection problem, we encounter inflow and exit boundaries. The boundary
treatment utilizes the characteristic boundary condition treatment [14]. At the inflow
boundary, we have three positive eigenvalues and one negative eigenvalue. Thus « and
v components of the velocity vector were specified with the temperature profile. At the
exit, three positive eigenvalues and one negative eigenvalue indicate that one boundary
condition (back pressure) was imposed.

DISTRIBUTED MINIMAL RESIDUAL METHOD

The local residual at iteration level r + [ is given by

JE’*!  gF'*!

+ = DXIQYH — HIQ™™) + DUQ™Y)  (27)
IS am

Rt =

Assume that the solution at iteration level + + 1 is extrapolated from the previous M
consecutive iteration levels. Then one can say that

M
Ql+l — Ql 4 Z e/n (28)

m=|
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where

Wl AT
wm m

er=| ] (29
WTAT :
wi A7

Here w are the acceleration factors to be calculated, A are the corrections computed with
the original scheme, and M denotes the total number of consecutive iteration steps com-
bined.

Using Taylor series expansion in time and truncating the terms that are higher than
second order in At, Eq. (27) becomes approximately

. . M _ 0 - -
R'*! = R’ + 2 -é- A+ —B' - D) - D + DJ] o (30)
m=1 3§ d'ﬂ

The global domain residual can be defined as

=

t = > R™*R 31)
iJj

In order to minimize the R'*!, the w are chosen from the following equations:

ﬁ:ﬂ
R _o (32)
dwr
that 1s,
. _ N . aem
- R’*[-a—A' + 2B —pu-D+ DJ]—,—-—;
i a& an r
M (Ta . 8- . ’
=22{[—A’+——B’—D2] - D+ DJ|O"
ij n 9§ an
d - J - - o™
X 4|— A"+ —B'— D] - D + DJ 33
R - —_—
where
aem m
dor [A78,] (34)

8, 1s the Kronecker delta and a superscript asterisk denotes transpose of a matrix. Notice
the following identity:
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4 gen
6" — E (x)" (35)

r)w

Also notice 68"/80):; is not a function of w. Let

RIS I
am = A’+-—-B’—DZJ—D+DJ
Then Eq. (33) becomes
. M 4
—Z R*al = z z 2, wgag*ay (37)
i no g i
For simplicity, let
dy = 2 az*ay b = —Izj Ii‘*a’,” (38)
so that Eq. (37) can be written as
M 4
> 2 widim = by (39)
noq

representing the system of 4 X M linear algebraic equations for the 4 x M optimum
acceleration factors w. For example, if we are to combine M = 2 consecutive iteration
steps to extrapolate the solution, we periodically need to solve eight equations for eight
values of w.

COMPUTATIONAL RESULTS

It is known that for the case of a natural convection between two infinite parallel
plates the critical Rayleigh number [1] is approximately Ra = 1708. When the Rayleigh
number is larger than the critical value, a fluid motion occurs, driven by the buoyancy
force. Due to the difficulty associated with numerically simulating infinite parallel plates,
a finite computational domain surrounded by solid walls was considered in this study.
The aspect ratio of the computational domain was chosen to be 3. The bottom wall is
uniformly heated, while the upper wall is uniformly cooled. Both sidewalls are thermally
insulated. The wall boundary condition on pressure was obtained from the normal mo-
mentum equation. A mildly clustered grid of 60 x 30 cells was used (Fig. 1). Two
different cases were computed with both the Runge-Kutta (RK) time stepping method
and the Euler implicit method.

First, the flow with the Grashof number Gr = 3000 and the Prandtl number Pr =
I (that is, Ra = 3000) was computed. CFL = 2.8 and von Neumann number ¢ = 0.4
were used in this computation for the Runge-Kutta (RK) method, while CFL = 10 was
used for the Euler implicit method. The artificial compressibility coefficient 8 providing
the fastest convergence was found to be B = 5 for the RK method, while it was B =
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Fig. 1 An H-type computational grid of 60 x 30 cells used for a Benard convection problem.

I for the Euler implicit method. No artificial dissipation has been added for these com-
putations. The convergence histories (Fig. 2) show that the DMR accelerated the basic
RK method, resulting in 20% reduction in CPU time. Figure 3 shows that the compu-
tational savings of 60% in terms of both number of iterations and CPU time were achieved
by using the DMR method with the Euler implicit method. Figure 4 presents the computed
solutions, which agree well with the solution from the RK method. It is noticeable that
the isobar contours are not normal to the wall, which implies that the boundary condition
of dp/dn = 0 would have given erroneous results.

In another example, the computational domain was tilted by 30°. The Grashof
number in this test case was Gr = 3000. The Prandtl number was Pr = 1, which
corresponds to Ra = 3000. The same computational grid was used as in the previous
test case. The maximum allowable CFL number of 2.8 and the von Neumann number
o = 0.4 were used for the RK method, while CFL = 10 was used for the Euler implicit
method. Every 30 iterations, the DMR method was applied with two solutions combined
for the RK method. On the other hand, the DMR method was applied every 10 iterations,
while combining two solutions in the Euler implicit method. The DMR method was able
to accelerate both basic schemes (the explicit RK method and the Euler implicit method).
The reduction in CPU time was 40% for the RK method (Fig. 5) and 50% for the Euler
implicit method (Fig. 6). As a result of the tilt in gravitational direction, only onc
circulatory motion was generated (Fig. 7) with practically identical flow results obtained
when using either method.

Finally, one example of a mixed convection problem was considered where cool
fluid enters a U-shaped channel whose top and bottom walls were heated at a constant
temperature. A computational grid of 129 x 30 cells was used (Fig. 8). Only the explicit
RK method was used for this test case along with the DMR method. CFL number of 2.8
and von Neumann number of 0.4 were employed in this computation with a fourth-order
artificial dissipation (e = 0.25). The Grashof number of 3000 was imposed. which denotes
the temperature difference between the fluid and the wall. Note that the buoyancy effects
for this case are negligible. Effectively, the energy equation is decoupled from the
continuity and the momentum equations. Nevertheless, all equations including the energy
equation were solved simultaneously in this example. The artificial compressibility coef-
ficient was B = 10. Figure 9 presents the convergence histories in terms of the number
of iterations and the CPU time. With the RK method, reduction of 5 orders of magnitude
in initial residual was achieved in 6000 iterations, while 10 orders of magnitude reduction
was achieved with the same number of iterations when the DMR was applied, resulting
in 60% savings in CPU time. The isobar contours and the velocity vector plot (Fig. 10)
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Fig. 2 Convergence histories tor Benard convection problem with Gr = 3000 (RK).
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Fig. 3 Convergence histories for Benard convection problem with Gr = 3000
(Euler implicit).
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(a) Isobar contours

(b) Isotherm contours
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Fig. 8 An H-type computational grid of 129 x 30 cells used for
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(a) Isobar contours

(c) Velocity vectors

Fig. 10 Isobar contours, isotherm contours, and velocity vectors
for the U-shaped channel.
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indicate that a large separation occurs in the curved duct. Isotherm contours show thermal
boundary layers on both walls of the channel.
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