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Abstract

A complete system of partial differential equations
governing three-dimensional laminar flow of an
incompressible viscous neutrally charged carrier
fluid injected with an electrically charged fluid has
been elaborated. The model accounts for temperature
dependent physical properties via an extended
Boussinesq approximation while including a Joule
heating effect. The system of coupled partial
differential equations was solved using an artificial
compressibility formulation and explicit finite
differencing with a four-step Runge-Kutta time

- integration. Two-dimensional numerical results .

-~demonstrate - a case of an electrohydrodynamic
"“instability and several cases of bending of a stream of
" charged particles under the influence of an external
~ electric field. Transformation of an initially circular
domain of charged particles into oval and crescent
- shapes was also demonstrated with success.

Nomenclature
A = E-flux vector Jacobian in curvilinear
nonorthogonal coordinates
AR = aspect ratio (length/height)
b = charged particles mobility

coefficient [m2 s-1 V-1)

B = 1-flux vector Jacobian in curvilinear
nonorthogonal coordinates

Cp = specific heat coefficient [m2 K-1 5-2]

C = {-flux vector Jacobian in curvilinear

nonorthogonal coordinates
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= diffusivity of charged particles
[m2 s-1]
= differential operator
= diagonal matrix
= electric field vector [V m-1]
xEy.Ez =X,y and z component of the

oo

electric field vector
= x-flux vector in Cartesian coordinates

= =

= E-flux vector in curvilinear
nonorthogonal coordinates
F = y-flux vector in Cartesian coordinates

F = n-flux vector in curvilinear
nonorthogonal coordinates
gij . = metric tensor
g = gravity force per unit volume [N m-3]
G- - =z-flux vector in Cartesian coordinates
G = {-flux vector in curvilinear
coordinates
= electric current per unit volume
[A m-3]
= identity matrix
= heat conductivity coefficient
(kg m s-3 K-1]
= Boltzman's constant [kg-! s K]
= length [m]
= selection matrix (also latent heat)
= modal matrix
= unit vector normal to the solid wall
= pressure [N m-2]

St

e et

= combined pressure [N m-2]
= electric charge density per unit
volume [kg m-1 572 V-1]

IR a1

= residual vector

= solution vector in Cartesian
coordinates

= solution vector in curvilinear
nonorthogonal coordinates

Qo oOR



R = residual vector

S = source term vector in Cartesian
coordinates

) = source term vector in curvilinear
nonorthogonal coordinates

t = time [s]

T = temperature [K]

AT = temperature difference [K]

u, v, w = velocity components in Cartesian

coordinates [m s-1)

U, V, W = contravariant velocity components
[ms-1]

v = velocity vector in Cartesian
coordinates {m s-1]

X,y,Z = Cartesian coordinates {m]

= thermal expansion coefficient [K-1]

= artificial compressibility coefficient

= smoothing operator

= electrical permitivity coefficient

[kg m s-2 V-2]
(53 = second order artificial dissipation

m O™

coefficient

€4 = fourth order artificial dissipation
coefficient

A = eigenmatrix of a Jacobian flux vector

Eng = curvilinear coordinates [m]
= viscosity coefficient [kg m-! s-1]
= smoothing coefficient for residual
= boundary condition vector
= gravity potential [m? s-2]
= electric potential [V]
= artificial dissipation sensor function
= fluid density [kg m-3]
= nondimensional temperature
difference
subscripts
= cold wall
= electrical
= hot wall
= reference values
superscripts
= nondimensional values
T = transpose of a matrix

o T o o
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1. Introduction

This work is based on the fundamental paper by
Stuetzer! who clearly delineated
Magnetohydrodynamics (MHD) from
Electrohydrodynamics (EHD) as representing two
extreme models for a fluid flow under the influence
of electromagnetic fields. The MHD model assumes

that there are no charged particles in the flow field
and that there is no electric potential applied. These
types of flows have been discussed in a number of
publicationsz‘4. EHD on the other hand assumes that
there is no magnetic field applied1'5'9. Instead, an
external electric field is applied to an electrically
conducting fluid containing electrically charged
particles. These particles are convected with the flow
field in the case when there is a mean flow. At the
same time, the charged particles can diffuse and
move!0-12 under the influence of the outside
(imposed) and inside (self-induced) electric field.
When modeling EHD flows, in addition to complete
Navier-Stokes equations, one should add an equation
for electric charge preservation for each of the
electrically charged species7'13. One equation
governing the electric potential field must also be
added. In the momentum equation we will include a
thermal buoyancy force using the extended
Boussinesq approximation14 and an electrical
(Lorentz) body force!'15. In the energy equation we
will add a Joule heating term!>, while neglecting
viscous dissipation in accordance with the Boussinesq
approximation. Although relatively well documented
analytical models for EHD flows have been
developed1'5'9, somewhat incomplete versions of
these models have been numerically solved!6-19 in
the past.

The objective of this paper is to present a fully
three-dimensional mathematical model, a numerical
algorithm for its solution and computational results
for cases of two-dimensional steady laminar EHD
flows. The model consists of a neutral carrier fluid
with a single species of charged fluid. This model can
be easily extended to multi-species problems7'13
including non-neutral carrier fluids.

2. Analytical model

The system of governing equationsl'15 is derived
from a combination of Maxwell's equations of



electrodynamics and the Navier-Stokes equations. An
idealized charged fluid is assumed and therefore
magnetic fields can be neglected. Maxwell's equations
reduce to a charge conservation equation and
Poisson's partial differential equation for electric
potential since in this case the electric field E is
irrotational. It should be noted that the electric
permitivity € is assumed to be uniform. Thus, the
governing equations are:

Continuity

V.v=0 )

Momentum (including thermal buoyancy force and
electric Lorentz force)

D
poﬁvap-poagAT-a-V-(noVv)+qE )]

Energy (including Joule heating)

P o=V (kVT)+J.E 3

Electric charge conservation

% ,v.3=0 I @

Electric potential field

V.E = -‘t 5

The induced electric current per unit volume is given
by Ohm's law

J=q(v+bE )-DVgq 6)

The electric charge diffusivity coefficient D and
mobility coefficient b are related by the Einstein's
formula’

ky T
q m;

D= plb )]

where mj is the mass of a charged particle and pj is

the density of the non-neutral fluid. Since the electric
field is irrotational, it follows that

V XxE=0 ®

E=-Vo &)

where ¢ is the electric potential, so that equation (5)
becomes

vig=-1 (10)

Nondimensionalization can be performed with
respect to the reference values denoted by subscript

o0, so that
¥ «_ X t._Wc
v =v° X T X, T,
«__P . A . E
p= 2 Q =i E’= 10
povn A¢O A¢O
«_9 AT _B
=3 AT, g =g an

Here, T¢ is the temperature of the cold wall and Th,
is the temperature of the hot wall, so that AT =T -
Tc and AT = Th - T¢. Similarly, A@g is the
reference value of the difference of the electric
potential between the two electrodes. The following
nondimensional grpups should be recognized as

Reynolds number Re =-L"I°-
Mo
c 0 no
Prandtl number Pr= —%
0
2
po go ao ATO li
Grashof number Gr=—my——
2
Mo
%
Eckert number Ec = —
Cpo AT,
V2
Froude number Fr2=—
8o lo
Charge diffusivity number D, = Mo
pO DO
A
Lorentz force number Se= de q;°
Po Ve
Electric Prandd number ~ Pr, = ——°—
Po by AQ,
2
. qo ]o
Electric field number N, = (12)
£O A¢0

Fluid density, electric charge mobility and
coefficients of specific heat, thermal expansion,
viscosity and heat conduction can be expressed as



P=poP'(®)  b=byb(O) cp=cpc(6)

a=a,a'®) n=n,n0 k=k k(6) (13)
where the primed values denote generalized functions
of non-dimensional temperature. The non-
dimensional density p' can be expanded in Taylor
series while retaining only the first order term

p=1-0AT=1-0"6 (14)

where

ot =90 208000 130 ,p _ g 41,
06 96 p, AT, p,

(15)
It can be assumed that the coefficient of thermal
expansion, @, is constant in the range of temperatures
which are of interest in a particular case. When the
term (& ATp) « 1, starting with the complete Navier-
Stokes equations for compressible fluid flow,
equations more general than what is known as the
Boussinesq approximation can be derived!4 for the
- fluid with non-constant properties. Thus, the system
of equations (1-10) for incompressible flow of a
fluid with temperature dependent properties and
electric charges under the influence of an electric
field can be reduced!’ to

Ve.vt=0 16)
ov” + V. (v* v+ D= LV‘. (n' V‘ v
ot’ P Re n
Gro ., . e

*Rez 8 +8.q E an
06 .
a—_+ Ve.(8* v*) = 1 -V*. (k V°0)
t PrRec,

S. Ec
+—=

- - ] » L E ] L
@ O + g prs E )'RcheV )ET (18)

%
99" e [ o (us 1 ol
a:**v'[q v +RcPreE):|'

1 ] 1 e »
R—CV-(E;bV q") (19)

Avade] o =- N.q" (20)

. [
where p* = p* + Fr2 SO that g* = Vv* ¢*. It should be

pointed out that viscous dissipation is negligible!4-15

since its ratio with respect to the convective term in

. Ec
the energy equation is of the order Re

3. Numerical model

Based on the mathematical model derived above, a
numerical model has been developed. For simplicity
and clarity of notation, the asterisk symbol in the
system of equations (16-20) will be omitted. The
system can be written in fully conservative vector
form in physical Cartesian coordinates as follows

oE  oF oG
%(Q+'BY+3?+-E=

[%(D%%)+%(D%%)+%(Da§)]+s

@@

The solution vector Q is

(22)

—q—

where Q(%{_@Z represents artificial comprcssibilityzo,

and B is the artificial compressibility coefficient.
The generalized flux vectors are given by

_ u - — v —
u+p vu
uv Vz"'f’
E= uw F= vw
ub v
1
|9+ Repy, £5) 9vV+Repr, £Y)
_ w _
wu
wyv
G-= w2+p (23
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The source term vector S and diagonal matrix D are

- 0 -
Gr
Rez 08x * S A Ey
Gr
Re? Ogy + Sca Ey
S= Gr
Eciegz +S.qE,
SeEq 1 1
& 19V*Rer;, £) - e, Vq]'E
L. 0 .
0 T
nl
n'
1 '
D= Re | (24)
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Pr cp'
b
_ D,

The elect;ric potential field equation (20) is solved
separately. The electric field vector E and normal to
the wall n are written in terms of Cartesian

" . coordinates

E=(E, Ey E)T
g= (ng Bys gz)T

Here, the superscript T denotes the transposition of a
vector. After transformation to generalized
curvilinear non-orthogonal coordinates in
computational space, the system of governing
equations can be written as

9Q oE  oF aG
+—=+—
ot om 3

=D2Q)+S (25)

The solution vector, flux and source term vectors in
curvilinear coordinates are

N U
o Uu+E,p
Uv
...._l- v f__l_
Q) . =] Uw
0 ue
L
- a- | 9(Ugepr, Be)

Vu
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~ - D ~
=D 0200 = [32,(133) ] (28)
dEn,0)

where J = m is the determinant of the Jacobian
geometric transformation matrix from physical x,y,z
into computational 1, space, and g;j is the metric

tensor given by

8ij = VX'V x;' (29)

Contravariant velocity components are related to
velocity components in Cartesian coordinate system
as follows

Ul [e g & |®

Vi=l n, nm |V (30)
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Equation (25) constitutes a system of coupled

nonlinear partial differential equations. This system
can be solved using a four-stage Runge-Kutta explicit

time stepping method?? given by

60 = Qn
AQP=-yAt R™! m=1234
Qn+1 Qn+AQ4 (31)

The iteration level is denoted by n, and each stage of

the Runge-Kutta method by m, where the coefficients
are Y, = 1/4, 1/3, 1/2 and 1, respectively. The

residual R is defined as
= BE BF BG
R= — -D2(JQ) §
of 31’1 ag
92 + — JQ
a0
A KA Kl
" BIA [ag4 e aa]( Q ¢

A combination of second and fourth order artificial .

dissipation is necessary in EHD-type problems
because of the existence of sharp gradients in the
charged particle density distribution. The last two
terms in equation (32) represent second and fourth
order artificial dissipationzhzz terms which are
added to improve the stability of the scheme and to
prevent15 the electric charge signs from changing
locally in the flow field. The artificial dissipation
sensor function, y, was based on a normalized value
of the local gradient of the charge density
distribution. The influence of artificial dissipation
terms is controlled by €3 and €4 which are user-
specified small parameters. To further enhance the
convergence rate, implicit residual smoothing was
used. Poisson's equation was solved for the smoothed
residual after each stage of the Runge-Kutta
iteration.

VR, = (33)
This equation was discretized and numerically solved
by ADI scheme

- ms:;)ﬁi=ﬁmi

(1- 0)55&)(1- wﬁ,m)(l (34)

where the smoothing operator is denoted by & and ®
is a user-specified constant, while ﬁi represents the
smoothed residual.

4. Boundary conditions

By introducing the artificial compressibility term
in the continuity equation, the system of equations
becomes hyperbolic. Therefore, boundary conditions
have to be applied considering characteristic
directions. Proper boundary conditions are
determined from the nonconservative form of the
transformed system (25)

§+x§+§@+é@=maﬁ)+’s’. (35)
dg on ag

The eigenmatrix corresponding to the flux vector

Jacobian A is

A = diag(U-a,U+a,U,U,U,U) (36)

~where a is an equivalent speed of sound .

=\/u2 +BE2+ &2+ ED). 37

It can be concluded that one of the eigenvalues is
negative for the 'subsonic’ case. Therefore, five
variables must be specified as boundary conditions at
the inlet and one variable corresponding to the
negative eigenvalue at the exit.

Boundary conditions are imposed by
premultiplying the boundary equations by the modal
matrix M and thus transforming the system of
equations into characteristic form. Furthermore, the
equations are premultiplied by a selection matrix L
to select the variable which will be computed from
the equation. The equation corresponding to the point
at the boundary is

n
[LM'; + a—%]AQ =-'ymAt{LM2§m'] LR ]
aQ YmAt

The selection matrix and the boundary condition
vector for the inlet boundary are

(38)

L = diag(1,0,0,0,0,0) (3%
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Q= (O.u-up,v-vp,w-wp,B-Bp,q-qp)T (40)
The selection matrix and the boundary condition
vector for the exit boundary are

L = diag(0,1,1,1,1,1) 41)

Q = (p-p;,0,0,0,0,0)T (42)
Wall boundary conditions have the same form as the
inlet boundary conditions, except for the pressure
wiich is computed from the normal momentum
equation (17) as

~ 1 ' Gr 6
n. Vp=n. [ﬁ V. Vv) + Re?

g+S.g E] 43)

Boundary conditions for electric charges on the solid
boundaries were of the Neumann type. The Poisson
equation for the electric potential (Eq. 10) was
solved separately during each global iteration using
an ADI algorithm.

An extension of this formulation to include
multiple charged species and an electrically non-

neutral carrier fluid  should be conceptually -

_straightforward, although it would require a

‘substantial increase in computational resources.

5. Computational results

.Based on the analytical formulation and the
numerical algorithm, a two-dimensional flow
analysis computer code was written. The value of
the artificial compressibility parameter was § = 10 in
all computer runs. All computations were performed
on the Cray-YMP computer at NASA Ames Research
Center and postprocessed in our Computational Fluid
Dynamics Laboratory at Penn State University.

Two sets of computer runs were performed. The
first set consisted of two cases where the two-
dimensional flowfield was computed in the plane of
the mean flow. The second set consisted of four cases
where the two-dimensional flowfield was computed
perpendicular to the mean flow.

5.1. Computations in the mean flow plane

The first test case was a simple model for steady

flow in a rectangular electrophoresis chamber. A
charged fluid was injected at the centerline of the
electrically neutral carrier fluid flow. Temperature
was constant along the boundaries and Joule's heating
and buoyancy force effects were neglected, so that
heat transfer effects were not taken into account.
Numbers characterizing the flowfield are
summarized in Table 1. A computational grid
consisting of 60 x 60 nonclustered cells was used to
discretize the flow domain having an aspect ratio AR
= 10:1 with the mean flow running from left to
right. Initially, charges were specified only at the
injection point on the left vertical boundary. A fully
developed parabolic velocity profile throughout the
flowfield and a linear variation of the electric
potential between the top and bottom walls were used
as initial conditions. A constant electric potential
difference was applied at every station across the
passage starting from the inlet until a point located at
75 percent of the distance from inlet to exit. Thus,
along the top and bottom wall, no electric potential
difference was applied between 75 percent and 100
percent of the passage length.

The convergence rate was slow and could be
slightly improved by applying implicit residual
smoothing. As a consequence of the imposed electric
field, the charged fluid was deflected from the
centerline as it was carried by the carrier fluid along
the chamber. Since the nondimensional charge
density at the inlet boundary was specified as
smoothly varying over nine grid points (having a
value of one at the centerline), the given case
represented a difficult task from a numerical point of
view. We have attempted to overcome this problem
by explicitly adding a small amount of fourth order
artificial dissipation. However, it was found that even
a very small amount of artificial dissipation
necessary to enhance the convergence rate has a
detrimental effect on the accurate prediction of the
diffusion of charged particles (Fig. 1). To overcome
these difficulties and to eliminate high frequency
error modes, the charge density was explicitly forced
to be non-negative. Results obtained applying this
condition seem to be much better, but a new problem
has occurred. Charges were not conserved any
longer and the convergence rate was again not
satisfactory. Consequently, by trial and error, it was
found the combined artificial dissipation of second

and fourth order with coefficients having values of
€2 = 0.0004 and g4= 0.0005 gave acceptable results.



Specifically, for the case when the electric potential
difference was A@ = 70 V, the predicted electric
charge density profiles at different stations along the
channel (Fig. 2) indicate slight bending and diffusion
of the charged particle stream, while accurately
preserving global charge conservation at every
station (Fig. 3). Figure 4 depicts the monotonic
convergence history of the iterative process where
the grid point normalized sum of the residuals of the
system (Eq. 32) is plotted versus the number of
iterations. Figure 5 depicts the predicted stream of
charged particles, isobars and the electric potential
lines. Notice that the electric potential field is
influenced by the presence of the highly concentrated
stream of charged particles. Similar results were
obtained with an electric potential field difference of
A¢ = 100 V (Fig. 6 and 7) where slightly stronger
diffusion and bending of the charged particle stream
occurred. If the electric potential field difference is
increased significantly, the stream of charged
particles can be deflected so that it meets the side
wall (Fig. 8). In this case, the spurious negative
values of charges (Fig. 9) started to appear. This
problem could be.treated only by reevaluating the
artificial dissipation terms and by increasing the
order of accuracy of the numerical implementation
of the wall boundary conditions.

5.2. Computations in the cross plane

First, we shall demonstrate an example of the
fluid flow generated by the electric field. The
mechanism of such an instability can be seen by
analogy with the classical Benard problem.
Electroconvective vortices8-10:15 analogous to
thermoconvective vortices will be developed if
sufficient electrical potential energy can be released
by inverting a charged layer. In a closed chamber the
charged particles were uniformly injected through
the lower wall while treating the top wall as an exit
boundary for the charged particles since the side
walls had a Neumann condition imposed. An external
electric field was imposed by means of electrodes
along the lower and the upper wall. In this case,
Joule's heating and buoyancy force were taken into
account. Nondimensional numbers were Pr=1,

Gr=3000, Re = Grl/2, Ec=1, D¢ =*ng , Se=1,
Ne=1000, Pre=1. Temperature was kept constant

along the boundaries and pressure was computed

using the normal momentum equation along all four
walls. Figure 10 depicts the resulting flow field
consisting of two dominant vortices, a second pair of
vortices that were elongated and pushed toward
walls, and the development of a third pair of vortices
near the center of the chamber. Charge density
contours are shown in Figure 11 confirming that the
boundary conditions were satisfied accurately.

In free flow electrophoretic devices, it is of
extreme importance to understand and predict the
flow field in planes that are perpendicular to the
main flow direction. It is in these planes that the
characteristic oval and crescent shapesllvl7'23‘25 of
the charged particle stream cross sections are
observed. They have been attributed solely to
electroosmotic effects and the ratio of electric
conductivities and electric permitivities of the
charged particles and the carrier fluid. In our
studies, the carrier fluid was electrically
nonconductive and neutrally charged. A series of
computational runs was performed where the cross
section of an electrophoretic chamber was modelled
as a closed container with thermally insulated vertical
walls along which the electrodes were located. The
top and bottom walls were either kept at the same
temperature or had a constant temperature difference
of AT = 2 K in order to study the effect of a
thermally induced buoyancy flow. The aspect ratio of
the chamber was AR = 6:1. The chamber was
discretized with 180 x 60 grid cells that were
smoothly clustered towards the walls and the
horizontal and vertical axes of the channel. Initial
conditions assumed zero velocity in the entire domain
and a linear variation of the electric potential
between the vertical walls. A highly concentrated
area of electrically charged particles was initially
specified over the region occupied by 3 x 3 grid cells
located at the geometric center of the chamber. These
charged particles were consequently forced to move
under the influence of the Lorentz force and
thermally induced buoyancy. A summary of all the
characteristic flow variables may be found in Table
2.

In the case when the electric potential difference
was Ag = 70 V and the top and bottom walls were
kept at the same temperature, the charged particles
moved only slightly from the center while
undergoing diffusion and assuming a horizontal
elliptic shape (Fig. 11). The Lorentz force effects
resulted in the creation of two counter-rotating



.- increased to AR =

vortices positioned above and below the charged
particles (Fig. 12).

The next test case involved an electric potential
difference of A@ = 200 V, while keeping all other
parameters the same (Table 2). In this case, the
bottomn wall was kept at a uniform temperature that
was 2 K higher than the uniform temperature of the
upper wall. The electric charges moved significantly
(Fig. 13) and formed a characteristic wedge shape.
From the same figure, it can be concluded that the
opening of the wedge is enhanced by the locally
vertical velocity components due to recirculation. It
should also be noted that the recirculation intensity
increases towards the vertical side walls representing
the electrodes.

When the electric potential difference was
increased to A = 700 V, the charges were removed
from the entire field and deposited on the electrode
represented by the right side vertical wall. A very
strong recirculation pattern predicted in this case
(Fig. 14) is reminiscent of the thermal buoyancy due

to Joule heating as caused by a strong external
magnetic field.

In order to simulate a somewhat more realistic
configuration, the aspect ratio of the chamber was

number of grid cells and all other parameters the
. same (Table 2). In the case when A = 400 V, the
initially circular charge density pattern transformed
into a diffused and shifted arrow shape. Recirculation
was strong only close to the electrodes (Fig. 15).

When A¢ = 700 V, the electric charges' domain was

stretched until it reached the right electrode. The
recirculation pattern was similarly nonexistent except
next to the electrodes (Fig. 16). These test cases
converged smoothly although they took significantly
longer to converge because of the increased distance
between the electrodes and the initial location of the
charged particles.

Conclusions

An electrohydrodynamic flow model has been
developed and computations including thermally and
electrically induced motion have been performed
using a finite difference method. It has been found
that artificial dissipation causes excessive diffusion of
charged particles and influences the convergence rate

of the iterative process. The existence of cross plane -

20:1 -while keeping the same

electroconvective vortices analogous to
thermoconvective vortices has been computationally
demonstrated. Diffusion and convection of charged
particles under the influence of a steady electric field
has resulted in patterns that have been documented in
literature. An extension of this work to a fully
three-dimensional software package which will
include a multi-species environment, a magnetic field
and time-dependent processes is in progress.
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Apv) Re Ec Se D, Pre N,
70 400 86x10°9  5.83x103 25x107 02860 2521
100 400 86x10° 83x103  25x107 02004 17.64
S00 400 86x109  4.16x102 25x107 0.0400  3.53
Table 1.  Input parameters for AR = 10:1
electrophoretic channel.
Ap(V) Re Ec Se D, Pre Ne. Gr
70 9 128x109 1.067x10°2 1.11x109 0.2860 100.84 81
200 9 128x109 3.048x10°2 1.11x10% 0.1002 35.290 81
400 9 128x10°9 6.096x10-2 1.11x109 0.0500 17.145 81
700 9 128x10°9 1.067x10°! 1.11x109 0.0286 10.084 81
Table 2.  Input parameters for AR = 6:1 and AR =

10

20:1 closed chambers.
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Fig. 1 Antificial dissipation in the numerical
algorithm causes excessive diffusion of a charged
particle stream injected at the left boundary of an
electrophoretic channel.
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Fig. 2 An EHD channel with AR = 10:1. Electric

charge density profiles at successive cross sections
after 20 000 iterations with Ag = 70 V. Combination
of a small amount of second and fourth order
artificial dissipation was used resulting in a
physically diffusing and shifting profile.
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Fig.3 An EHD channcl with AR = 10:1.
Percentages of the local normalized error in the
integrated electric charge profiles at the successive

sections after 20 000 iterations with Ap =70 V.
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Fig.4 An EHD channel with AR = 10:1.

Convergence history for the case with Ag=70V.
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Fig. 5 An EHD channel with AR = 10:1. Electric
charge density distribution, constant pressure lines,
and constant electric potential lines after 20 000
iterations with Ap =70 V.
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Fig. 6 An EHD channel with AR = 10:1. Electric
charge density profiles at successive cross sections
after 20 000 iterations with A¢ = 100 V. Notice a
small amount of negative charges been created

although a combination of a small amount of second
and fourth order antificial dissipation was used.



HENEE

Fig. 7 An EHD channel with AR = 10:1. Electric
charge density distribution, constant pressure lines,
and constant electric potential lines after 20 000
iterations with Ap = 100 V.,
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Fig. 8 An EHD channel with AR = 10:1. Electric
charge density profiles at successive cross sections
after 20 000 iterations with A¢@ = 500 V. Notice a
larger amount of negative charges predicted although
a combination of a small amount of second and
fourth order artificial dissipation was used.

Fig. 9 An EHD channel with AR = 10:1. Electric
charge density distribution, constant pressure lines,
and constant electric potential lines after 20 000
iterations with A@ =500V,
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Fig.10 A closed container with AR = 6:1. Strong
electroconvective motion created by an electric
potential field between top and bottom walls. The
container is filled with an electrically conducting
fluid and has isothermal walls. Electric charges are
uniformly injected at the bottom wall.

Fig.11 Computed charge density contours for the
example in Fig. 10.

e .,

Fig.12 A closed container with AR = 6:1 and A =
70 V between the vertical walls and AT = 2 K
between the horizontal walls: a) electric charge
density distribution, b) induced streamline pattern,
and c) an elarged detail of the velocity vector
pattern. The charge pattern is a slightly diffused
ellipse.
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Fig.13 A closed container with AR = 6:1 and A = Fig.15 A closed container with AR = 20:1 and A =
200 V between the vertical walls and AT =2 K 400 V between the vertical walls and AT = 2 K
between the horizontal walls: a) electric charge between the horizontal walls: a) electric charge
density distribution, b) induced streamline pattern, density distribution, b) induced streamline pattern, c)
and ¢) an elarged detail of the velocity vector . elarged detail of the velocity vector pattern, and
pattern. The charge pattern is an arrow shape. d) enlarged detail of the charge density pattern.
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Fig.16 A closed container with AR = 20:1 and A =
Fig.14 Convergence histories for the AR = 6:1 700 V between the vertical walls and AT = 2K
chamber with AT = 2 K between the horizontal petrween the horizontal walls. Details of: a) electric
walls: Ap =70 V (---), A9 =200 V (- - -), AQ = charge density distribution, b) induced streamline
700V (- - ). pattern, and c) velocity vector pattern.
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