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A new method for enhancing the convergence rate of iterative schemes for the numerical integration
of systems of partial differential equations has been developed. It is termed the Distributed Minimal
Residual (DMR) method, and is based on general Krylov subspace methods. The DMR method differs
from the Krylov subspace methods by the fact that the iterative acceleration factors are different from
equation to equation in the system. At the same time, the DMR method can be viewed as an
incomplete Newton iteration method. The DMR method has been applied to Euler equations of
gasdynamics and incompressible Navier-Stokes equations. All numerical test cases were obtained using
either explicit four stage Runge—Kutta or Euler implicit time integration. The DMR method was found
capable of reducing the computation time by 20~80% depending on the test case. When directly
compared with an implicit residual smoothing, the DMR method performed consistently better and
more reliably. The formulation for the DMR method is general in nature and can be applied to explicit
and implicit iterative algorithms for arbitrary systems of partial differential equations.

1. Introduction

After linearization caused by the discretization, the systems of governing equations
associated with, say, fluid flows are recast into the following linear system of algebraic
equations:

Ax=b, (1)

where x is the vector of unknowns and 4 is an N X N matrix which depends on the discretized
scheme, and is assumed to be non-singular. The matrix A is usually sparse and as N becomes
larger, it is not economical to solve the system of equations directly. Instead, iterative
methods are usually utilized.

The conjugate gradient (CG) method and the conjugate residual (CR) method, are widely
used for approximating the solution of the system [1,2]. Both methods give the exact solution
in at most N steps in the absence of round-off errors. However, the CG method and the CR
method require the matrix A to be symmetric, positive definite. A large number of generaliza-
tions of these methods applicable to systems with a non-symmetric matrix have been made.
The success of the generalization of the CG and CR methods is reflected in the introduction of
a series of algorithms capable of treating non-symmetric problems (Orthmin [3], Orthdir and
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Orthres [4], GMRES [5, 6]). The Minimal Residual method [7] and the Generalized Non-
linear Minimal Residual method [8, 9] can be thought of as generalizations of the conjugate
residual method.

In this paper, a new method of enhancing covergence rate of iterative algorithms for
systems of partial differential equations is developed. The method is entitled Distributed
Minimal Residual (DMR) method [10-20]. It is related to a general Krylov subspace method.
Nevertheless, the DMR method differs from a Krylov subspace method in two aspects. First,
the DMR method attempts to improve on a straight application of a Krylov subspace method
by using a separate sequence of acceleration factors for each equation in the system. In
application of the DMR method to Euler equations of inviscid gasdynamics, for example, the
acceleration factors for continuity equation differ from those for the momentum equations and
for energy equation. This approach requires fewer consecutive solutions to be stored than
required by the GMRES method. The DMR method uses corrections from only two or three
consecutive solutions for a successful application. Effectively, the DMR method periodically
preconditions the system. Nevertheless, the DMR method does not involve the orthogonaliza-
tion procedure which most of Krylov subspace methods utilize to reduce the number of
numerical operations. *

The prime objective of this paper is to develop the theory of the DMR method and to
examine the effectiveness of the DMR method by applying it to different systems of partial
differential equations: Euler equations of inviscid gasdynamics and incompressible Navier—
Stokes equations. The Runge-Kutta time stepping method and the Euler implicit method
were used as two basic iterative algorithms. A thorough comparative analysis of the per-
formance of the DMR method [18] involves a varying number of consecutive iteration levels
combined, grid clustering, etc.

2. Distributed minimal residual (DMR) method

Let us consider a system of partial differential equations that are integrated iteratively so
that their residual vector at iteration level ¢ is given by
3E'  9F' 3G’
— +

R =t %yt o @)

where E', F', G' are the generalized flux vectors (at iteration level ) that act in the directions
X, ¥, z, respectively. The future residual at iteration level ¢ + 1 is given by
aE1+1 aF1+l aGH-I
R™'= + + : (3)
ox ay 0z
Assume that each component of the solution vector at iteration level ¢ + 1 is extrapolated from
the previous M consecutive iteration levels. Then, we can say that

+1 1 1 2 2 M M
97 =g+ w, Mgyt wiAgy+ - + w) AgY,

0y =gy + 0, Mg, + w3 gy + - + w3 Mgy (4)

97 =q,t 0 Aqp + @] Agy + -+ @) Ag) .






S. Lee, G.S. Dulikravich, DMR method for acceleration of iterative algorithms 247

Here, the subscripts 1, 2, . .., L designate the particular component of the solution vector Q,
that is, the particular equation in the original system (2). The superscripts 1, 2,..., M
designate the particular iteration level counting backward from the present iteration level, ¢.
Thus, the superscript 1 means the first previous iteration level. The superscript 2 means the
second previous iteration level, etc. This can be expressed in a more compact form as

M
Q1+1 — Qr + 2_1 @m , (5)
where
wT AT AT 0 0
mam m 0
O = wz’,Az = w, ¢ + w, 2 +“'+w'z . : (6)

Here, w’s are the acceleration (weighting) factors to be calculated, A’s are the iterative
corrections computed with the original non-accelerated scheme, M denotes the total number
of consecutive iteration levels from which the corrections are combined.

Using Taylor series expansion in time for R'*! and truncating the terms that are higher than
second order in At, (3) becomes approximately

& [ 9 3 d
t+1 —_ ! s t . + —_— I. + —_ I.jl m .
R R+"§1[axA 2y B —C'|0 (7)
The global domain residual can be defined as
R'=2RR", ®)
D

where L, denotes summation over the computational domain D, and the superscript t
represents transpose of a vector. In order to minimize the future global residual, R the w’s
are determined from the following conditions:

aR:+1
da”

=0. (9)
From (8) this leads to

0 d ae"
— . —_ ’.+___C’.]__m
%R [ax ayB 0z dw,

33 {[Ea e oo}

d ? d ,]a@"‘}
O s gt L. 10
{[a A +ayB MIFTAd I B (10)
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where
10
dw’”

=[476,,]

and 6, is the Kronecker delta.
However, from (6) we have that

L n
0 =3 o 0

q no
P dw,

Noticing that @"/dw’, is not a function of w, it follows that

Jfo ., o ., 8 . ] 0™
—_— — o — - — .
%R [axA ayB azC do!

r

M L nyt
=Ezzw:{[iA’.+iB’.+_a_C’.:|a_@_}
D q

p ax dy dz dw;,
d d d 1O
{[2ar 2 g 2] 297)
{[ax "oy azC dow,
Let
n a t a t a t ] a@"
= N o 4 — . 4+ — . _—
9 [axA ayB azC dw,

Then (13) becomes

M L
SR =22 wdlal.
D q9 D

n
For simplicity, let
nm __ nt m
Cor = Da . @,
D
and

b = -> R'la:" .
D

Then, the system of algebraic equations (15) can be written as

or

3 r - — -
1 1 21 M1 1 1
Ciiv €y -+ €1 Cp " Gy W, b,
1 11 11 21 ... Ml 1 1
Ciz2 € "7t €2 S 707 Cr2 W, b,
11 11 : 11 “21 . ‘M1 1 | 1

Cir € 7 S Cpp T Cpyp w, |=| b |

12 12 12 22 11 2 2
Civ €1 ot Sy S vt €L 1 by
M 1M ' 1M 11 : MM ‘M ‘M
LCIL Coyp =+ € G "0 Cpyp Wy by

. - - - 4

(11)
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(14)
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(16)

(17)

(18)

(19)
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representing the system of L X M linear algebraic equations for the L X M optimum accelera-
tion factors w. For example, if we are periodically to combine corrections from M =2
consecutive iteration levels to extrapolate the solution and to solve a system of L = 4 partial
differential equations, we need to solve simultaneously L x M = 8 algebraic equations for 8
values of w. In practice [10-20] M is less than five, making this operation relatively
inexpenstve.

Notice that when the convergence is achieved, the b’s become zero (17), thus making the
w’s zero. In other words, the accuracy of the fully converged solution will not be affected by
using the DMR method. Furthermore, if the matrix c,, is positive definite, it can be shown
easily that the w’s minimize the global residual, R'*!, at iteration level ¢ + 1. This fact can be
used as a criterion for determining whether or not the DMR method should be applied at the
particular iteration level. Using a different sequence of acceleration factors for each partial
differential equation in the original system is equivalent to using a different time step for each
equation or selectively preconditioning the system. The DMR method, therefore, can be
understood as the combination of a preconditioning method and a Krylov subspace method.
Also, we can think of the DMR method as an incomplete Newton iteration. This point can be
illustrated by the following fact. When the acceleration factors vary not only from equation to
equation, but also from grid point to grid point, and when we use one set of acceleration
factors for each iteration level, that is, M =1 in the DMR formulation, it can be shown that
the DMR method is equivalent to the Newton iterations. As a result, the DMR no longer
needs other schemes to provide the corrections.

The storage requirement of the DMR method for a two-dimensional problem is approxi-
mately NX L X M X (L +1)+2x NX L x (L +1), while the storage requirement of the
basic scheme is 6 X N X L + 10 x N for the Runge~Kutta method and 2 X N X L*>+4 X N x
L +10x N for the Euler implicit method. Here, N is the number of grid points. This
requirement is estimated assuming that the Jacobian matrices and metrics are evaluated once
and stored. The number of operations involved in the application of the DMR method is
MLN(5L + 1) for a two-dimensional problem.

3. Application of the DMR method to Eule: equations of gasdynamics

The introduction of the successful numerical algorithms such as the Euler implicit method
and the explicit Runge-Kutta time stepping method made it relatively inexpensive to perform
the numerical integration of the systems of partial differential equations governing compress-
ible flows. Most of such algorithms, however, suffer from slow convergence at low Mach
numbers. The reasons for this are the rapidly increased stiffness and the singular behavior of
the original system of compressible flow equations at low Mach numbers. The singular
behavior of the system near Mach number zero can be removed by eliminating the singularity
of the system by a perturbation technique [21, 22]. The stiffness of the system at low Mach
numbers can be reduced by preconditioning the system [22,23]. The DMR method is used to
alleviate the difficulty associated with the increased stiffness of the Euler equations for low
Mach number compressible flows.

3.1. Euler equations for compressible flows

The Euler equations for a two-dimensional unsteady inviscid flow expressed in a generalized
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non-orthogonal curvilinear coordinates (£, n) without body forces or heat transfer, can be
written in a vector form as

§_§+%§+%§=o, (20)
where
p pU pV
e R R
€, (e, + p)U (e, + p)V

The subscripts x and y represent first (partial) derivatives with respect to x and y, respectively.
Here 7 is the time, p is the density, p is the thermodynamic pressure, e, is the total energy per
unit volume, while u and v are the Cartesian velocity components along the x and y axis,
respectively. J is the Jacobian determinant, a( ¢, ) /a(x, y), while U, V are the contravariant
velocity vector components defined as

M HE | (22)

3.2. Numerical algorithm

The artificial dissipation suggested by Steger and Kutler [24] was used in the form

D(IQ) = g7 VU0, (23)

where V* is the biharmonic differential operator in £, n coordinates. The residual vector R of
Euler equations for compressible flow including the artificial dissipation is
s JE  IF
R=S+—+F

¢ on 8JAT vivel. (24)

After discretization, the governing equations become a set of ordinary differential equations,
which can be integrated by the Runge-Kutta time stepping method [25].

~

0°=0",
A= ATR', k=1,2,... K, (25)
Q~I+l=él+AéK,

where a, are the coefficients for each of the K stages of the Runge—Kutta scheme required to
advance the solution from the iteration level ¢ to the iteration level ¢+ 1. For example,
a,=1/4,1/3,1/2 and 1 for the four stage Runge-Kutta scheme.
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The time steps for each direction are estimated [26] from

CFL N CFL
T = ~ ,
T V] + e+ 1)

Ar, = 3 ,
U+ e+ ED?

(26)
where c¢ is the local speed of sound and CFL is the Courant—Friedrichs—Lewy number. The
maximum time step is given as

A'ré A’Tn

AT R van

(27)

The implicit characteristic boundary procedure of Chakravarthy [27] was used, though the
scheme itself is explicit. Entropy per unit mass (s = p/p”), total enthalpy per unit mass,
h,= (e, + p)/p, and flow angle (tan(a)=v/u) are specified at the inflow boundary. For a
subsonic downstream outflow boundary (¢ = constant), the equation corresponding to the
negative eigenvalue, U — c(£2 + §§)”Z, is substituted with a constant back pressure, p,. For a
solid wall boundary (n = constant), the equation corresponding to the positive eigenvalue,
V+c(n:+ nzy)“z, is substituted with a tangency boundary condition, V=0.

Upon applying the DMR method to the system of Euler equations of gasdynamics, (14)
becomes

m 4 ~, 9 ~, ] YoM
= —_— . + —_— . + .
a, [ag A an B DJ 60)'; ’ (28)
where A and B are the Jacobian matrices in the transformed coordinates
. JE - oF
A=—%, B=—%. (29)
o0 a0

Inclusion of the boundary points when computing a; did not make any difference in the
convergence rate.

3.3. Results for compressible Euler equations

A two-dimensional flow analysis code has been developed in FORTRAN according to the
previous theory for Euler equations of gasdynamics. All computational results were obtained
on CRAY-YMP at NAS facility using automatic vectorization.

The test case for the code was flow around a circular cylinder. The outer boundary of the
computational domain was located at 20 times the radius of the cylinder. A 66 X 32 cell
computational grid was used in this test case. The computations were performed with and
without the DMR method in conjunction with the four stage Runge—Kutta (RK) scheme. The
convergence histories are plotted in terms of the number of iterations and in terms of the CPU
time (Fig. 1). The maximum allowable CFL number (CFL = 2.8) was used in both accelerated
and non-accelerated computations. The free stream Mach number was chosen to be 0.05
which is practically an incompressible flow. The DMR method saves 60% of the total CPU
time in this critical flow test case. The surface pressure coefficient (Fig. 2) matches well with
the potential solution.
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Fig. 1. Convergence histories for the inviscid flow around a circular cylinder with M_ = 0.05.

With the increase in Mach number, and especially in the transonic regime, the effectiveness
of the present formulation of the DMR method deteriorates [10-20]. This brings up the
question of whether it would be more appropriate to use a characteristic decomposition and
apply different sequences of w’s to each characteristic variable [28]. The other equally
appropriate approach would be to use the locally streamline aligned (canonical or natural)
coordinate system instead of the x, y, z Cartesian system [29]. The first suggestion implies that
certain variables (or information) propagates faster than the others. The second concept
suggests that the same information propagates faster in certain directions than the others. A

Wall Pressure Coefficient
T T T

00 530 0070 500
Theta

Fig. 2. Wall pressure coefficient distribution for the inviscid flow around a circular cylinder with M_ = 0.05.
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combination of the two concepts seems to be the most promising avenue of future research on
the general DMR methodology.

4. Application of the DMR method to incompressible Navier—Stokes equations

The main difficulties associated with the incompressible flow computations are caused by
the absence of a time derivative term in the continuity equation. One of the methods for
solving the incompressible Navier-Stokes equations was originated by Chorin [30]. In this
concept, an artificially time dependent derivative term d(p/B) /9t is added to the continuity
equation with a user specified control parameter 8. The artificial time derivative added to the
continuity equation diminishes as the solution converges to its steady state. The added term
forces the system to be of a mixed parabolic—hyperbolic type, which allows the use of time
marching techniques. Later, Choi and Merkle [31] and Kwak et al. [32] used an Alternating
Direction Implicit (ADI) method in conjunction with the artificial compressibility method.

4.1. Incompressible Navier—Stokes equations

The two-dimensional Navier-Stokes equations in the general non-orthogonal curvilinear
coordinates £, n are given as

3Q/o7 +9E/3¢& + aF lan=D"> . (30)
The solution vector and the flux vectors in the transformed coordinates are given as

- 1 P/B ~ 1 u ~ 1 v
Q.__‘7 u |, E=>|Uu+¢pl|, F==|Vu+np|, (31)
v

where p is the pressure. Notice that the artificial compressibility has been added in the
continuity equation. The physical viscous terms in the general coordinates are given by

D= [; g,,(Jé)_,] (32)

g
where g, is the contravariant matrix tensor
=Vx!Vx!. 33
gl} { J

Here, x; means ¢ or 5 depending on the index i

1
= - di 34
S Re diag(0,1,1), (34)
where Re is the Reynolds number.
The Navier—Stokes equations are mixed parabolic—hyperbolic partial differential equations.
According to the eigenvalue of the hyperbolic part of the equations, the Jacobian matrices in
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the transformed coordinates have real eigenvalues

oF

~

oE

A=—==KU,¢.¢), B=22=kK(V.q, , 35,36
Y (U, & ¢,) Y Von,m,) ( )
where the matrix K is defined as
0 k, k,
K(k, kl,kz)z Bkl k+k1u kzu . (37)

Bk, kv k+ kv

Here, k, and k, are either ¢, and &, or 0, and 7, depending on the direction to be considered,
and k = k,u + k,v. The eigenvalues of the matrix K are given by

A=diag(k —c, k + ¢, k), (38)

where the equivalent speed of sound, c, is given as

c=Vk*+ BkI+ k). (39)

Notice that one of the eigenvalues is negative. This means that the incompressible flow is
equivalently ‘subsonic’ in the sense of different signs of the eigenvalues and that ¢ will
influence stiffness of the system. Thus, the direction of characteristics should be considered
when applying boundary conditions.

4.2. Numerical methods

The residual vector including the fourth order artificial dissipation (23) is defined as
R=06E/3¢ +3F/on—D*+D | (40)

After spatial derivative terms were discretized, the governing equations were integrated either
by the explicit Runge—Kutta time-stepping algorithm (25) or by an Euler implicit method with
approximate factorization [33]. To reduce the computational effort, the artificial dissipation
and the viscous part of the residual are calculated only once every global time level and kept
unchanged during the four stages of the Runge—Kutta scheme. This does not deteriorate the
stability of the time stepping algorithm.

The Euler implicit scheme with factorization for the incompressible Navier-Stokes equa-
tions gives

O L 70| R YR

=—-A7R. (41)

4.3. Time step limitations and boundary conditions

The allowable time increments of the explicit scheme are severely restricted by the stability
limit, while for an implicit scheme the time step restrictions are caused by the factorization
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errors. The time step is determined by considering the hyperbolic part of the system and the
parabolic part of the system separately and by combining these time steps, as suggested by
MacCormack and Baldwin [26]. The system becomes hyperbolic when viscosity is neglected.
Then, the stability bound of the resulting system is determined by the CFL (Courant-
Friedrichs—Lewy) number. The maximum allowable time steps for each of the coordinate
directions are defined as

CFL CFL
Ar,, = m , Ar, = W , (42)

so that the combined maximum time step for the hyperbolic part of the system is defined by
A7, = A‘rhé AThn/(AThg + A’Thn) . (43)

When the convective part of the acceleration is neglected, the system becomes of parabolic
type. The stability of the parabolic type system is dictated by the non-dimensional number o
(Von Neumann number). For each generalized coordinate direction, the maximum time steps
are defined by
o Re o Re
ATPE = ’ A7, = ’ (44)

pn
143 82

and the combined maximum time step for the parabolic part is given by

A7, = AT, AT,,,,/(A’T,,g +AT, ). (45)
The total maximum time step is estimated conservatively as

Ar = AT, A7, /(AT, + Ar)). (46)

For the explicit Runge-Kutta method, (46) was used to estimate the maximum time step.
However, for the Euler implicit method, only CFL limitation was used to compute the time
step, that is,

At =Ar,, A7, [(A7,, + A, ). 47)

It was assumed that the flow is inviscid at the inlet and at the exit plane thus causing the
system of equations to be hyperbolic in time near the inlet and exit. As stated earlier, the
incompressible Navier-Stokes equations have one negative eigenvalue and the rest of the
eigenvalues are positive. Thus, one equation should be considered with two boundary
conditions at the inlet. At the exit, two equations with one boundary condition must be
applied. At the inlet u and v velocity vector components were specified, while the back
pressure p was specified at the exit. Also, the flow is assumed to be locally one-dimensional at
the inlet and exit boundaries in order to transform locally the equation into the characteristic
form. At the solid wall, the velocity vector components were set to zero, and the surface
pressure was extrapolated from the grid points next to the wall from the condition that
opl/an=0.
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4.4. Residual smoothing

One of the successful attempts to accelerate the convergence of the Runge-Kutta scheme is
Implicit Residual Smoothing (IRS) introduced by Jameson and Baker [34]. With this method,
it is possible to use much higher values of CFL. The residual is smoothed through the
following equation:

[1-66;][1-682]R*=R, (48)

where &° designates the central difference operator for a respective second derivative and @ is
the smoothing coefficient. Thus, when using the IRS we have to solve two scalar tri-diagonal
matrices. Since their coefficients are constants, the tri-diagonal matrices are decomposed into
upper and lower bi-diagonal matrices so that at every application of the IRS only forward and
backward substitutions are needed to get the smoothed residual.

The application of the DMR method to incompressible Navier-Stokes equations differs
from the formulation for its application to the Euler equations of gasdynamics only by the
following term:

O™
awq

a’"=[i/§’-+i§’-—D21-+DJ-] (49)

a& an
4.5. Computational results for Navier—Stokes equations

A steady, laminar, viscous flow normal to a solid wall (Hiemenz flow) was the first test case.
Reason for this choice of the test case is that the analytic solution to the Hiemenz flow is
known [35]. The accuracy of the codes (the explicit Runge—~Kutta method and the Euler
implicit method) can be verified by comparing the computed solution with the analytic one.

The flow corresponding to the Reynolds number 400 based on the free stream velocity and
a body dimension, R, of the wall was computed with and without the DMR method in
conjunction with explicit and implicit codes. The computational grid consisted of 60 X 29 cells,
and the dimensions of the computational domain were H = R, and L = 2R,,. In the case of an
explicit Runge-Kutta (RK) method, the maximum allowable CFL number of 2.8 was used
and the Von Neumann number was o = 0.4. A small amount of the fourth order artificial
dissipation was added to get a smooth solution (& = 0.05). Using numerical experimentation it
was found that the fastest convergence is obtained with the artificial compressibility coefficient
B =2, and that the DMR method should be applied every 10 iterations by combining 3
consecutive solutions.

The computed distribution of the wall surface velocity gradient, du/dy, was compared with
that of the analytic solution (Fig. 3), showing an excellent agreement. Figure 4 shows that the
residual was reduced 12 orders of magnitude in 5000 iterations without the DMR method,
while the same reduction in residual could be achieved in 2000 iterations with the DMR
method indicating a 60% reduction in CPU time. The implicit residual smoothing was also
implemented with and without the DMR method. The basic RK method gives the slowest
convergence, the IRS gives faster convergence than the basic RK method, while the DMR
method gave an even better convergence. The most rapid convergence in terms of the number
of iterations was achieved by combining the implicit residual smoothing and the DMR
method. However, the DMR method alone needed the least CPU time.
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Velocity Gradient at the Wall
T i T

T

20.0

0.0

du/dy

-10.0

-20.0!

0.0 =45 5.0 0.5 1.0
Fig. 3. Distributions of wall surface velocity gradient for Hiemenz flow (RK: solid line; analytic solution: circles).

The implicit code was also exercised for the test of the Hiemenz flow with the same flow
and grid conditions as in the test case for the explicit code (Re = 400). The computed surface
velocity gradient distribution was compared with the analytic solution (Fig. 5). Good
agreement can be observed. A CFL number of 10 was used in this computation. Also, the
fourth order artificial dissipation with & =0.25 was added. The optimal value of the artificial
compressibility coefficient 8 was found by numerical experiments to be 8 = 5. When applied
to the implicit Euler scheme every 5 iterations by combining 5 consecutive solutions, the DMR
method was found to give the fastest convergence. Figure 6 shows that the DMR method
offers 60% reduction in CPU time indicating that the DMR method can be successfully

Convergence Histories Convergence Histories
T T T T T 7 T

T

-a.0 -a.0 4
-6.0 6.0 §
g -8.0) g -8.0) .
= g
§ -10.0 g -10.0 -
-12.0 -12.0 4
-14.0 -14.0, Ixs -
DMR IRS+DMR
- ) ] - ] i 1 |
16.0 10000 2005030000 4080.05000.0 16.0g VI 74D W0 800
Number of Iterations Cpu Time (sec)

Fig. 4. Convergence histories of the RK method for Hiemenz flow with Re = 400.
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Velocity Gradient at the Wall
T T T

20.0;

10.0

du/dy
(=]
o

- |
30.0+ =35 o0 05 10

Fig. 5. Distributions of wall surface velocity gradient for Hiemenz flow (Euler implicit: solid line; analytic solution:
circles).

applied to implicit methods. Our results indicate that the basic implicit code is considerably
slower compared with the RK method. This should not be a general situation, since our
version of the Euler implicit scheme was not vectorized. On the other hand, the RK method
was fully vectorized.

The next test case was a laminar flow around a circular cylinder. The computational highly
clustered grid of 66 x 44 cells was used. Flow with Reynolds numbers of 20 was computed with
the RK method and the Euler implicit method. The CFL and Von Neumann numbers were
CFL=2.8 and o = 0.4, respectively, for the RK method, and CFL = 10 was used for the Euler

Convergence Histories Convergence Histories
T T T T T T

T
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Logl0 (Res)
1
(=]

o
Log10 (Res)
1
«©
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~14.0

- I 1 1
6.0 2000 3000 4000 0.0 14.0 O] 100.0 5570 300"
Number of Iterations Cpu Time (sec)

Fig. 6. Convergence histories of the Euler implicit method for Hiemenz flow with Re = 400.
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Fig. 7. Convergence histories for viscous flow around a circular cylinder with Re = 20 (RK).

implicit method. The DMR method was applied every 30 iterations for the RK method, and
every 10 iterations for the Euler implicit method. For both methods, two consecutive iteration
levels were used with the DMR method, though these combinations of the number of
iterations and the frequency of the DMR application are not optimal. The artificial com-
pressibility coefficient was B =1 for both methods. The convergence histories of the RK
method and the Euler implicit method with and without the DMR method are presented in
Figs. 7 and 8. The DMR method offers more savings with the Euler implicit method than with
the RK method. The wall pressure distributions and the wall vorticity distributions were
compared with the computational results of Choi and Merkle [31] in Figs. 9 and 10.
Reasonable agreement with the other results can be observed.

Convergence History Convergence History
T T T T T T T

T T T

-6.0 . -6.0 .
g I
§ -8.0 . € _g.0 .
-10.0 - -10.0 .
-12.0] ~ ~12.0, 4
EULER
-14.9 -1 -14.0) 7
000 200.0 30504000 S00.0—£00.0 TO0-0 2000 30070 4000 500.0600.0700.0
Nurber of Iterations CPU Time (sec)

Fig. 8. Convergence histories for viscous flow around a circular cylinder with Re = 20 (Euler implicit).
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Fig. 9. Wall pressure coefficient distributions and vorticity distributions for flow around a circular cylinder at
Re =20 (RK). (a) Pressure coefficient. (b) Vorticity.

Although the DMR method requires information from only a few consecutive iteration
levels, determination of the optimal number of the levels M combined during each application
of the DMR method needs to be resolved. In addition, the question of optimal timing or
optimal frequency of application of the DMR method remains to be resolved. An approach
based on monitoring the slope and curvature of the residual versus iteration number curve [36]
is a possibility. A more reliable formulation would be the one which involves both the number
of iteration levels combined, M, and the optimal number of non-accelerated iterations, N, as
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Fig. 10. Wall pressure coefficient distributions and vorticity distributions for flow around a circular cylinder at
Re =40 (Euler implicit).
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integral parts of the future residual, R'*'. Hence, the optimal values for M and N could be

obtained in the same way as the optimal values for w.

5. Conclusions

The present form of the DMR method was found capable of reducing the computational
time 20-80% depending on the test case. When directly compared with an implicit residual
smoothing, the DMR method performed consistently better and more reliably. The DMR
method requires considerably less additional memory compared to the GMRES method. The
new method was successfully applied to both explicit and implicit algorithms.
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