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The effects that artificial dissipation has on numerical solutions of the transonic full potential
equation (FPE) are investigated by comparing the artificially dissipative FPE to a physically dissipative
potential (PDP) equation. Analytic expressions were derived for the variables C and M, that are used
in the artificial density formulation. It was shown that these new values generate artificial dissipation,
which is equivalent to the physical dissipation which exists in the PDP equation. The new expressions
for the variables C and M. can easily be incorporated into the existing full potential codes. which are
based either on the artificial density or on the artificial viscosity formulation. Comparisons of physically
dissipative potential (PDP) with the artificial density or viscosity (ADV), artificial mass flux (AMF),
and ADV with variable C and M, formulation (MCC) illustrate the fact that the ADV dissipation
creates excessively large amounts of equivalent entropy. As an alternative, AMF and MCC physically
consistent formulations offer considerably lower equivalent entropy jumps across shocks.

1. Introduction

A mathematical model for nondissipative, irrotational, compressible, inviscid flows is
known as the full potential equation (FPE). Numerical techniques for integrating the FPE in
transonic shocked regions require addition of artificial dissipation in an attempt to stabilize
these schemes.

The artificial dissipation must be added in a fully conservative form if shock strengths and
locations are to be computed accurately. Although the common belief is that the shock jumps
are independent of the details of the artificial dissipation, we have found that this is not true
when computing equivalent entropy jumps. The artificial dissipation usually has the form of
artificial viscosity [1], artificial density [2, 3] or artificial mass flux [4,5]. In this work, the
artificially dissipative FPE, that is, FPE with an artificial density or viscosity formulation
(ADV) and the FPE with an artificial mass flux (AMF) formulation were compared to a
recently derived physically dissipative potential (PDP) equation [6].
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From these comparisons, a new form of numerical dissipation has been derived which has

physical origins and an analytic formulation for the constants presently used in the ADV. This 38

new formulation is termed variable M, and C or (MCC) formulation. Our objective is to §

demonstrate that the ADV formulation generates large amounts of entropy and that AMF and 2

MCC formulations generate considerably less entropy across a shock.

2. Physically dissipative potential (PDP) equation

Dulikravich and Kennon [6] have derived a new mathematical model which governs 4

irrotational, non-isentropic, viscous flows of calorically perfect gases without body forces, ¥

surface tension, radiation heat transfer, internal heat generation and mass sources. This model
includes the physical dissipation due to certain effects of shear viscosity, secondary viscosity §
and heat conductivity. The full three-dimensional version of their physically dissipative %
potential (PDP) equation can be expressed [6] in a canonical nondimensional form as ’

2 1
A= M6, + 6+ 91 5 (8, +26,8,)]
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Here, s is the locally streamline aligned coordinate direction and m and n are the mutually 4
orthogonal remaining coordinates of the locally streamline-aligned Cartesian coordinate
system. The left-hand side of this equation represents the nondissipative FPE and the 3
right-hand side represents physical dissipation due to viscous effects and heat conduction. |
Since Reynolds number, Re, is the common denominator of the entire right-hand side, the
PDP equation is applicable to flow fields with negligible vorticity and very high Re number, 3
that is, outside the boundary layer. Notice also that the PDP equation does not use small
perturbations and that it represents a more complete version of the well-known transonic-

viscous (T-V) small perturbation equation model [7, 8] which contains only the essential .3

nonlinearities. Here, p is the local fluid density, ¢ is the local velocity potential function,
(V=V¢), a is the local isentropic speed of sound, ¢ is the time, w is the coefficient of shear
viscosity, A is the coefficient of secondary viscosity, w” is the coefficient of longitudinal
viscosity u”=2u + A, vy is the ratio of specific heats, M is the local Mach number, Re is the
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Reynolds number [7], Pr” is defined [8] as the longitudinal Prandtl number Pr'=Pr u"/u
where Pr= C G./k., is the Prandtl number and k is the coefficient of heat conductivity.
All quantities in (1) have been nondimensionalized, that is,

by ‘2 =2 " A 3
pP T 2 a 122 k A
=L T ==%, ¢=M,, p=%, k==, A==,
p p* T* ai * K My k,, Moy
Re ‘=_’:Z’°- , x=—i€—, (2)
psay L, L,
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quantities have an overbar. Coefficients A, u and k& are treated as constants. The one-
dimensional version of (1) for steady flows,

' ” _— 1 ¢ Y —_ 1 [.L” 1
v (1 50) S0 T (o -

p(l M )d)xx Re 1 Prl' aZ ¢xxx a2 Re Pr// (¢xx) O’ (3)
was numerically integrated using a fourth-order Runge-Kutta integration scheme with Ax =
1077 and several values for A/@&. The results indicate (see Figs. 1 and 2) that the PDP can
produce shocks of various total jumps depending on the specified value of the ratio of
viscosities A/u. Specifically, Stokes hypothesis that A/u = —2/3 leads to Rankine—Hugoniot

shock jumps, and A/u = —2 leads to isentropic shock jumps [9]. Other values used in all test

5
cases were Pr=2, y=1, Re= 10"

| 1
0.9+ -
| !
| |
I 7
\ |
0.8 _j; i
it ! 1 ] : ,[ 0.7 I Il Il 1 ! ‘
0.0000  0.0005  0.0010  0.0015  0.0020 v.0000  ©0.0010  0.0020  0.0030  0.0040
X S

Fig. 1. PDP formulation: Variation of critical Mach Fig. 2. PDP formulation: Variation of critical Mach
number through normal shock using A/u = —0.666 number through a normal shock using A/ = —2.118
which produces Rankine-Hugoniot shock jumps: which produces istentropic shock jumps: A
AAAA (@) =115 +——+ (4,)-.=120; (¢,)..=115, +F++ (6,)_.=120; x>

e (P,)_,, = 1.25. (¢,)_.=125.
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3. Entropy generation
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where @ is the viscous dissipation function and S is the specific entropy. All the variables wer¢,
consequently nondimensionalized with their critical values. Also, £” and A were nondimen-%
sionalized with &_, & with k_ and S with R, where the speed of sound is @° = yRT. Then X

and the nondimensionalized one-dimensional steady version of (4) becomes

dS — " 2 lzx(‘y - 1)')’ 2 '.
Re pTa, G =m'(6,)' = D2 kg6, 5 (1. ©)

Notice that

Then, the normalized entropy generation equation for one-dimensional steady flows without
radiation and internal heat sources is

S G

dx ~ pTRel\" Pr/ ¢, Pr’ (8)

If, for simplicity, we neglect the influence of entropy generation on the variation of density, }
the nondimensional entropy generation equation becomes '

ds _ i [<1 1 ) (6) as,,x]
dx e Pr” ) Pr’ J-
+1 -1 = «
Re[yz - yz (d’x)z]y

9) ]

Notice that S in this equation is actually a nondimensional quantity $ = S/R. Equation (9) was i
integrated using the fourth order Runge~Kutta scheme and several values of (b,)_.and A/, B
while Re = 10°. For comparison, the exact values of the total entropy jump across a normal &
shock satisfying Rankine-Hugoniot conditions can be found from 2

y 2 y—l} 1 [ 2y, y—l] : 4
AS = [ s + + - , 10
S y—lln (y+1)M; vy+1 y—llny+lM‘ v+1 (10)
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Fig. 3. PDP formulation: Variation of nondimensional
entropy through a normal shock using A/u = —0.666:

EEA (b)) =115 +—F—++ (¢,)..=1.20:

e (b)) =1.25.
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Fig. 4. PDP formulation: Variation of nondimensional
entropy through normal shock using A/u = -2.118:
ot (é) =115 T+ (,)..=120;

¥ (@ )_, = 1.25.

where M, is the Mach number ahead of the normal shock. Comparison of the numerically
computed and the exact values of the total entropy jumps are good (Figs. 3 and 4), despite the
fact that we have used an isentropic relation for the density, p, in (9). This result provides a
detailed picture of entropy variation through the compression shock showing that it has a
strong maximum in the middle of the shock [6]. Nevertheless, the objective of this work is not
to study the structure of shock waves. Instead, our goal is to demonstrate the capability to
compute and compare the total entropy jumps across the shocks by using different formula-

tions for artificial dissipation.

4. Artificial density or viscosity (ADV) formulation

It was shown by Dulikravich [5] analytically that the conventional formulation for artificial
density [3] generates (in the one-dimensional steady case) the following terms:

p{(1= M)e,, + COr® - DY

xxx

+ c[(M2 - MHQ2-(@2-y)M?)

(y +1)
aZ

# L 2 = M) |3, | =0,

(11)

where the constants C and n, and the constant cut-off [10] Mach number, M_, are the
user-specified input parameters. This equation is a result of using the following values of
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Fig. 5. ADV formulation: Variation of critical Mach number through a normal shock using C =0.001 and {

M. =0.70: &2 (¢,) ., = 115, +—+——+ (4,)__ = 1.20; s (4. ) =1.25.

artificial density, 5, and the switching function, &, in the conventional form [3] of the artificia] 3
density or viscosity (ADV):

2
c

M 2\n :
zW:}(IW) . (12) .

pP=p~ fp,, ﬂ=CmaX{0. 1-

Both C and M, are arbitrary constants in the conventional ADV formulation [3]. The 4
coefficient C is usually chosen to be of the order one [5]. The exponent n [5] is usually zero.
The cut-off Mach number M_ is usually chosen (1] as having the constant value between 0.8
and 1.0. It should always be less than the post-shock Mach number [5].

Although M_ does not affect the total shock jump. it strongly affects the shock thickness.
Since the artificial viscosity formulation is a truncated version of the artificial density
formulation and since the directionally biased flux formulation [11] is equivalent [5] to the
ADYV, only ADV will be discussed. Critical Mach number variations through a normal shock
resulting from the numerical integration of the ADV formulation (11) are shown in Fig. 5.
The total Mach number jumps correspond to the isentropic shock strengths [9].

5. Effects of the numerical dissipation based on ADV

Equating the coefficients of like derivatives (¢ and ¢
simultaneous equations, namely

) in (3) and in (11) produces two

xxx
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u” y—1 ¢x _ 2 2
I{—e<1+W ?—CP(M -M)). (14)

These two equations can be solved for (u"/Re),, and for (1/Pr"),,. The result is

“” _ Cbaz 2 Y'+1
(a—e)eq' o {(MZ-M§>((2— VIM = 1) = = Mz (15)
and
1y Cpa* 1 2 vy+1 1
<Pr">eq oo (WRe {(M "M@= =M+ o Mi} 6.
16
Thus /P 1e)
" —— r
(/.L )eq - (1/Prﬂ)eq . (17)

These expressions provide physically equivalent values for (u"/Re),, and (1/Pr") , gener-
ated by the conventional formulations [3] of the artificial density where C and M_ are kept
constant. Thus, we could now analyze the physically equivalent dissipative features of the
ADYV formulation. For this purpose, (15) and (16) were substituted in the entropy generation
equation (9) and integrated. The results indicate (see Fig. 6) that the ADV formulation
generates entropy which could even be larger than the entropy generated by Rankine-
Hugoniot shocks. Moreover, when (17) is plotted (see Fig. 7) for three different constant
values of M, it is noticeable that u, is not contant. Similar results are obtained (see Fig. 8)

when the equivalent Prandtl number, (Pr"),,, is computed from (16).
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Fig. 6. ADV formulation: variation of nondimension- Fig. 7. ADV formulation: Variation of equivalent

al equivalent entropy through a normal shock using nondimensional longitudinal viscosity ([J.")eq using

C=0001 and M _=0.70: A&A (¢,)_.=1.15; C=1.0. ©66 M_=080; +—+—++ M. =0.75;

1 (d,) . = 1.20; > (¢,)_, = 1.25. ¢ M_=0.70.
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6. Artificial mass flux (AMF) formulation

In addition to PDP and ADV formulations, it is possible to work with an artificial mass flux
(AMF) dissipation [4, 5, 12]. Here, the entire mass flux (p¢,), instead of just density, p, is
differentiated in the locally upstream direction

V-(ov)= (L e+ 2 6) (1(p8,) ~ (p,),16, + (98,06, =0. (18)

where é, and é, are the unit vectors in s and n direction, respectively.
In the two-dimensional case, the resulting artificially dissipative full potential equation
contains non-physical dissipation [5] of the form

1
L= M), + 6,1+ AL % B+ 7= 9,8,
, 1 :
+l3+2(y—1)M‘— 7:2 ] (d:;;) }=0, (19)
where ( 1>
" (y-1\4- 45
_ M 2 y_ Pr
A= Re (y 1)2(1 IL"> and u"= T52(7=1) (20)

The switching function [ and the constant C in the AMF formulation were evaluated [5] by
equating the coefficients multiplying ¢,,, and ¢ ¢,, terms in the full two-dimensional AMF
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equation and in the PDP equation. Figure 9 demonstrates that the AMF formulation provides
shock jumps [9] corresponding to isentropic shocks and that it produces positive entropy
jumps (see Fig. 10) which are significantly smaller than the entropy jumps produced by the

ﬂu.x : ADYV formulation (see Fig. 6). AMF formulation requires the Reynolds number as the only
nis input parameter [5] since y = and Pr = ? for diatomic gases.
18) 7. Variable C and M_ (MCC) formulation

If (13) and (14) are solved simultaneously for C and M_, the result is an analytic expression
ion for variable values of C and M, that are consistent with the physical dissipation generated by
the PDP equation. Hence

M2{<1 + %)[2— Q= y)M+(y- 1)(1 - p—L‘)}

| M; = : (21)
= Y (Y
<1+ 7—’1> 2 u
C= Pr a (22)
20) T p(MP-M)Re
by The new variable values for C and M, in the ADV formulation are analytically defined so that
AF they duplicate the physical dissipation from the one-dimensional version of the PDP equation.
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Fig. 11. MCC formulation: Variation of M’ with M: Fig. 12. MCC formulation: Variation of C (multiplied ;

S5~ A/ = —0.666 (producing Rankine-Hugoniot with Re) S-S A/u =0.666; producing Rankine- 3
shock jumps); 4+—+—+—+ A/u = —2.118 (producing Hugoniot shock jumps; 4—t—A 7/ = ~2.118 produc- 3
isentropic shock jumps). ing isentropic shock jumps. ‘

Notice that the new formulation gives vanishing value for C as the specified value of Re is

increased, that is, C is not grid dependent. Substituting (21) and (22) in (11) and using the 2

fourth order Runge—Kutta integration scheme produced the results shown in Figs. 11 and 12.
Thus, the variable M, and C formulation (MCC) is capable of producing Rankine-~Hugoniot 2
shock jumps if A/u = —$ and isentropic shock jumps if A/u = =2, :

8. Summary

The artificial density or viscosity (ADV) formulation as used in the existing computer codes }
for the solution of the transonic full potential equation utilizes constant, user specified values ¥
for the cut-off Mach number M_, and a constant C in the switching function &. Numerical
results demonstrate that such an ADV formulation generates entropy jumps across the shocks.
These jumps are not small; they are actually larger [13] than the entropy jumps generated by §
the physically dissipative potential (PDP) equation when using Stokes hypothesis, that is, j
Rankine—Hugoniot jumps. New analytic expressions for both M_ and C were derived that °
introduce the effects of physical dissipation and reduce the number of user specified j
parameters to only one Reynolds number. The existing full potential codes that use artificial .
density formulation can easily accommodate this physically consistent numerical dissipation by
evaluating C and M, analytically at every point in the flow field. Moreover, full potential codes
could be used for computing flows with either isentropic or Rankine—Hugoniot shock jumps. }
Consequently, the strengths and thicknesses of the resulting shocks and the amount of entropy -3
generated can be controlled with the physically known coefficients Pr”, u” and Re needed in
the new (AMF and MCC) physically consistent artificially dissipative models.
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Finally, Table 1 summarizes the analytic forms of all three artificial dissipation formulations
(ADV, MCC and AMF) and compares them with the physically dissipative potential (PDP)
flow formulation.
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