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ABSTRACT

A new approach to the inverse design of two-
dimensional aerodynamic shapes has been developed. This
formulation is based on a Stream-Function-Coordinate
(SFC) concept for steady, irrotational, compressible,
inviscid, planar flows. It differs from the classical stream
function formulation in that it treats the y-coordinate of
each point on a streamline as a function of the x-coordinate
and the stream function ¢, that is, Y = Y(x,$). This new
formulation is especially suitable for the computation of
stream line shapes, and therefore, for determination of
aerodynamic shapes subject to specified surface pressure
distributions. = An additional advantage of this new
formulation is that it requires the generation of only a one-
dimensional grid in the x-direction. The grid in the y-
direction is computed as a part of the solution since y-
coordinates of the streamlines are treated as the unknowns
in the SFC formulation. In addition, the SFC method is
equally suitable for the analysis of the flowfields around
given shapes. A computer code has been developed on the
basis of SFC formulation. It is capable of performing
flowfield analysis and inverse design of airfoil cascade
shapes by changing a single input parameter.

INTRODUCTION

In a recently published article, Huang and
Dulikravich® gave detailed derivations of the new Stream
Function Coordinate (SFC) concept for inviscid, steady,
two-dimensional and three-dimensional compressible flows.
The SFC concept reflects the main objective of the inverse
design where the ultimate goal is to determine the shape,
that is, the coordinates of a surface contour which is
compatible with the desired surface pressure distribution.
Thus, it is logical to solve for the coordinates directly.
Recently, Chen and Zhang? have published a paper on
inverse design of multiple cascade shapes. They used a
special form of the SFC formulation suitable for
axisymmetric surfaces of turbomachinery and they have

successfully computed shapes of simple cascades as well as
shapes of multiple cascades with splitter blades inside the
flow passages. Oven and Pearson® have developed a
complete threedimensional formulation based on a general
concept by solving directly for the coordinates. They have
applied their formulation to different duct flows and to free
jet flows*.
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ANALYSIS

Instead of using the standard formulation where the
stream function ¢ is a function of the x and y coordinates
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Huang and Dulikravich [1] performed a transformation

¥ = ¥(x,y) -= Y = Y(x,¥) (2)

which transforms (1) into the SFC equation
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where the Y-coordinate of each streamline is treated as an

unknown and x and ¢ are known. Here, the compressibility

coefficient K? is defined as
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where p is the local density and a is the local speed of
sound. Details of the derivation and evaluation of K* are
given in Appendix A. The SFC formulation has significant
advantages over the classical stream function formulation
where ¥ = ¥(xy). For two-dimensional problems SFC
requires only a one-dimensional grid in the x-direction. The
other family of grid lines is determined as a part of the
solution where Y are the unknown coordinates of the
streamlines ¢ = constant. Because of the SFC
formualation, true upwind differencing could be achieved
without the complexity of determining the direction of the
local velocity vectors since one family of the grid lines
corresponds to the streamlines. This simplifies the
extension of the code to transonic flows’. Huang and
Dulikravich® clearly pointed out that the SFC formulation
where Y = Y(x,¢) is singular at all locations where the x-
component of the velocity vector becomes zero. These
singularities are nonphysical since they are created by the
transformation and cannot be eliminated simply by using
grid clustering within the regions of singular points®. Thus,
strictly speaking, the SFC formulation is suitable for the
flow field analysis and shape inverse design of objects
having cusped leading and trailing edge points where there
are no stagnation points. In practice, leading and trailing
edges are often® modified when using the SFC formulation
by adding artificial cusps to them.
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Notice that
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where T is the absolute temperature, T, is stagnation
temperature and T. is the critical temperature. In terms of
local Mach numbers this becomes
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Since the compressibility coefficient K is defined as
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it follows that A.7 (ivided with (4-1) becomes
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At the same time notice that
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Finally, A.10 becomes
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Since Y, and Y, will be changing during the iterative
process, this means that
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‘Thus, at every point in the flow field for the given

instantaneous values of Y, and Y, we can iteratively
determine the corresponding instantaneous local values of
the compressibility coefficient K. Second order (modified)
Newton's iteration yields
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where the superscript n is the iteration counter.
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Fig. 1 Initial Y-x grid consisting of (20+20+20)
x 20 cells for the flow through a cascade
of dipoles
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Fig. 2 Final streamline shapes for the flow
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through a cascade of dipoles
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Computed isobars for the M_ = 0.05 flow
through a cascade of dipoles
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Analytic values for isobars for an
incompressible flow through a cascade of
dipoles

Fig. 5

Fig. 6
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Superimposed analytic and computed
surface C, values for the M_ = 0.0 and

M, = 0.05 flow through a cascade of

dipoles

Intermediate shapes of the bottom wall
during the inverse design from a cascade
of dipoles to a straight channel
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Convergence history for the inverse design
from a cascade of dipoles to a straight
channel




