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of the grid size). The solution is considered converged when
the maximum absolute residual is one order of magnitude
smaller than the truncation error. The convergence history for
the stream-function vorticity formulation is similar. The resid-
val of the linear Poisson equation for the stream function is
always of machine accuracy and the residual of the vorticity
transport equation reduces quadratically; convergence is ob-
tained after six iterations. For the biharmonic equation, con-
vergence takes six iterations and is also quadratic. The solu-
tions in terms of the wall skin-friction distribution are
presented in Fig. 2. The results for the three formulations are
in excellent agreement and correlate well with the skin-friction
distribution presented by Briley.?

Next, the model problem of a separated flow in a symmetri-
cal diffuser, introduced by Inoue,® is examined. The diffuser
problem is solved using the stream-function vorticity and the
biharmonic formulation. The inlet and outlet boundary of the
diffuser are at x = — 1.0 and x = 3.0, respectively. The shape
factor of the diffuser wall A = —0.08%. The centerline is lo-
cated at y = 1.0 and the Reynolds number based on this refer-
ence length and the free-stream velocity is R = 6250. The
inflow conditions provide the initial conditions for the entire
flowfield. Convergence is quadratic and machine zero is
reached in 6-7 iterations. The solutions in terms of the wall
skin-friction distribution are shown in Fig. 3. The results for
the two formulations are in excellent agreement and correlate
well with Inoue’s results, except for the outflow conditions. In
Fig. 3 the solution for the higher Reynolds number,
R = 12500, with a larger separation region is also presented.

The biharmonic equation is the most efficient of the three
formulations in terms of CPU time and storage requirements.
The biharmonic program is more than two-times faster and
requires more than a factor two less memory than the stream-
function vorticity program. The primitive variable method is
the slowest among the three formulations and it puts severe
demands on the computer storage requirements. In this case
the bandwidth is 0(6/N) and this coupled with the increase in
the number of variables results in more than a four-fold
increase in storage and CPU time as compared to the bihar-
monic program.

Conclusions

Three formulations of the two-dimensional Navier-Stokes
equations are solved numerically using Newton’s method and
a direct solution routine for banded matrices. The fully im-
plicit solution techniques use second-order central differenc-
ing for all the terms and are shown to be reliable and to
provide quadratic convergence. The biharmonic formulation
is most efficient in terms of CPU time and memory without
loss of accuracy.

Finally, while it is well known that iterative methods (line
overrelaxation or ADI) for biharmonic equations have very
slow rates of convergence, the present study, using direct
solvers, indicates that the biharmonic formulation is the most
recommended.
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Acceleration of Iterative Algorithms
for Euler Equations of Gasdynamics

Seungsoo Lee* and George S. Dulikravicht
Pennsylvania State University, University Park,
Pennsylvania 16802

Introduction

NE of the successful, explicit methods used to solve Euler

and Navier-Stokes equations governing compressible
flows is the finite-volume, Runge-Kutta, time-stepping al-
gorithm.! Several attempts have been made to accelerate the
iterative convergence of this method. These acceleration meth-
ods are based on local time stepping,' implicit residual
smoothing,' enthalpy damping,' and multigrid techniques.?
Also, an extrapolation procedure based on the power method
and the Minimal Residual Method (MRM) were applied? to
the Jameson’s multigrid algorithm. The MRM has not been
shown to accelerate the scheme without multigriding. It uses
same values of optimal weights for the corrections to every
equation in a system. If each component of the solution vector
in a system of equations is allowed to have its own conver-
gence speed, then a separate sequence of optimal weights
could be assigned to each equation. This idea is the essence of
the Distributed Minimal Residual (DMR) method,? which is
based on the General Nonlinear Minimal Residual (GNLMR)
concept.?

Time-Dependent Euler Equations

The system of time-dependent Euler equations of gasdy-
namics in a two-dimensional space can be written in a general
conservative form! as

aQ dE oF
— 4+ —+—= (1)
ar 3t I
where the global solution vectors combining mass, £-momen-
tum, y-momentum, and energy conservation equations are
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Here 7, p, u, v, p, e, are time, density, x and y components
of the velocity vector, thermodynamic pressure, and mass-
specific total energy, respectively. In addition, U, V, £, 4, and
D are the contravariant velocity vector components, non-
orthogonal curvilinear computational coordinates, and deter-
minant of the Jacobian of the transformation d(¢,7)/d(x,y)
respectively.

Distributed Minimal Residual Method

Local residual of the finite-volume method at the global
iteration level t can be expressed as

S U laE o
r'=H%Q—dS=~\ <——+?—>d5 3)
oL T o

at Iy
where S is the surface of the single grid cell, and the compo-
nents Q', E', and F' are defined in Eq. (2). In the DMR,
corrections from M consecutive iteration levels are used to
update the value of Q to (1 + 1) global iteration level. Thus,

Q'+ = Q1+Egm (4
where
Wi A7
o= | )
wl A7

Here, A™ are the corrections computed with the basic al-
gorithm and w7 are the weights for each of the 1 =1..., L
equations in the system [Eq. (2)] at each of the m =1,..., M
consecutive iteration levels. Therefore, the new local residual
for the single grid cell will be

aEH»l aFl+l
4l= ds 6
’ ”( T an> ©

Using a Taylor series expansion of £7*! and F'* ' in time and
truncating it after the first term results in
Mo o

fel M d [ oL aF!
reEr E”{as<ag'9>+an<aofﬂ

Define the global residual R'*! at the global iteration level
(¢ + 1) as a sum of the squares of the local residuals, that is,

I
Rl+l=22(r1+l)‘(rl+l) (8)
i

where / and J define the grid size, and the superscript *
designates the transpose. The objective is to find optimum
values of L sequences of M values of w{” that will minimize the
global residual R’*! at the next global iteration level (1 + 1).
To minimize R'*1, it is necessary to use the values w{ that
satisfy

aRl+l
dol’

=0 &)
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for all m and 1. Thus, from Egs. (7), (8), and (9) it follows

that

! J . 1Y 3 [ 3E! i 5 [ oF' i N
EEl - LN (G ) 5 ()] o)
\’ \ 3 (9E' 9a™\ 8 (oF' Q™
W 5Gasm) " 560 5 dst =0 (10)

where
aQﬂl
= (A7 6 ) (1)
dwy
and &, is the Kronecker delta. Notice that
I aQn
=) = o (12)
q q
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Fig. 3 Constant pressure contours for DMR-accelerated algorithm:

transonic channel flow with M = 0.675.

Let

Am_mz<e£@1>+i<£?ﬂ>]ds 13)
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Note that A" is not a function of w’s. Then, Eq. (10) becomes

I J M L . I J .
LY YAn are = L Ar (19)
i J o n g 7
Let
I J . 1 J .
o= R AN arsr = LU0 Ar (15)
i J L

The result is a system of L X M algebraic equations
M
Y (e + WICE + SICH + . +W[C) =B (16)
n

for the L x M unknown optimal acceleration factors w{". The
DMR applied to the finite-volume scheme! in the two-dimen-
sional case needs approximately a 150% increase, and in the
three-dimensional case, it needs approximately a 175% in-
crease in computer memory over the original nonaccelerated
algorithm.! Boundary conditions on the residuals in the inte-
grals of Eq. (13) used extrapolation of the residuals from the
interior of the flowfield.

Results

All computations were performed on a VAX 11/8550 com-
puter in a single precision mode. The first sequence of tests
was performed on the internal two-dimensional (L = 4) flow
problems by combining four consecutive time steps (M = 4).
This means that a 16 x 16 matrix [Eq. (16)] needs to be in-
verted. The test geometry was a 10% thick circular half airfoil
on a wall of a straight two-dimensional channel. The H-type
grid size was 65 x 17 points. The calculations were started
with uniform flow, and the DMR was applied once after every
30 steps performed with the original unaccelerated code.! Fig-
ures 1 and 2 depict the convergence histories of flow calcula-
tions with M, = 0.5 and M, = 0.675. For the entirely sub-
sonic flow (M, = 0.5), the number of iterations needed to
achieve the same level of residual is reduced almost by 60%,
and the saving in computational time is about 50%. Both
figures indicate that DMR in its present version does not
accelerate transonic flow (M, = 0.675) computations. Super-
imposed constant pressure contours (see Fig. 3) of the entire
flowfield for both the nonaccelerated and the DMR acceler-
ated schemes confirm that the DMR method does not ad-
versely influence the quality of the solution.

The second test case was a flow around a circle. An O-type
radially clustered grid consisting of 64 X 32 grid cells was
used. We applied DMR after every 60 iterations by combining
four consecutive time levels. When the critical freestream
Mach number (M., = 0.4) was used, Figs. 4 and 5 indicate that
the DMR method in its present form offers practically no
gain. At very low freestream Mach numbers, the system of
Euler equations becomes very stiff, thus, rapidly reducing the
convergence rate of the nonaccelerated scheme. On the other
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Fig. 4 Convergence histories in terms of iteration numbers: non-
accelerated- (—-———-—- ) and DMR accelerated ( ) algorithm:
circle flow.
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Fig. 5 Convergence histories in terms of the CPU time: non-
accelerated- (-—~---—- ) and DMR accelerated ( ) algorithm:
circle flow.

hand, when using M, = 0.1, the DMR offers over 70% sav-
ings in the CPU time (see Fig. 5) over the nonaccelerated
scheme.

Notice that all numerical results were obtained without the
standard acceleration techniques such as explicit and implicit
residual smoothing, enthalpy damping, multigriding, and vec-
torization. These methods could be added to further accelerate
the algorithm. The method seems to offer substantial time
savings when applied to compressible flow codes at low Mach
numbers.

Conclusions
A new method for the acceleration of explicit iterative al-
gorithms for the numerical solution of systems of partial
differential equations has been developed. The method is
based on the idea of allowing each partial differential equation
in the system to approach the converged solution at its own
optimal speed and at the same time to communicate with the



rest of the equations in the system. The DMR method com-
putes a separate sequence of optimal acceleration factors to be
used for each component of the general solution vector. The
acceleration scheme was applied to the system of time-depen-
dent Euler equations of inviscid gasdynamics in conjunction
with the finite-volume, Runge-Kutta, explicit, time-stepping
algorithm. Using DMR without multigriding, between 30%
and 70% of the total computational efforts were saved in the
subsonic compressible flow calculations. The DMR method
seems to be especially suitable for stiff systems of equations
and can be applied to other systems of differential equations
and other numerical algorithms.
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Oscillatory Shock Motion
Caused by Transonic Shock
Boundary-Layer Interaction

B. H. K. Lee*
National Research Council, Ottawa, Canada

Introduction

ERIODIC shock motions on airfoils at transonic flow
conditions had been observed experimentally'™ for more
than a decade. They have also been detected from numerical
solutions of the Navier-Stokes equations® and recently by an
unsteady viscous-inviscid interaction method.é Attempts have
been made to formulate a model to predict the unsteady shock
motion, but so far a satisfactory explanation of the mecha-
nism of self-sustained shock oscillation and a method to esti-
mate the frequency about which the shock wave oscillates are
still lacking.
Spark schlieren photographs! of the flowfield over a super-
critical airfoil with flow separation have indicated clearly the
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Fig2 Region of shock oscillation for BGK No. 1 airfoil.

presence of upstream moving waves originating at the trailing
edge and near-wake region. They are associated with wake
fluctuations due to unsteady shock motions. A possible mech-
anism of the self-sustained shock-wave oscillation caused by
unsteady transonic shock boundary-layer interaction on a su-
percritical airfoil with fully separated flow at the shock wave
is illustrated in Fig. 1. The case of a shock wave oscillating on
the upper airfoil surface about a mean position is considered
(corresponding to Tijdeman’s’ type A shock motion). Because
of the movement of the shock, pressure waves are formed
which propagate downstream in the separated flow region at a
velocity a,. On reaching the trailing edge, the disturbances
generate upstream moving waves at velocity a,. These waves
will interact with the shock and impart energy to maintain its
oscillation. The loop is then completed and the period of the
shock wave oscillation should agree with the time it takes for
a disturbance to propagate from the shock to the trailing edge
plus the duration for an upstream moving wave to reach the
shock from the trailing edge. In this Note, experimental results
supporting this model for self-sustained shock oscillation are
presented.

Experiments

The investigation was carried out in the high Reynolds
number Two-Dimensional Test Facility® of the National Aero-
nautical Establishment. The airfoil tested was the BGK No. 14
with design Mach number and lift coefficient of 0.75 and 0.63,
respectively. The chord ¢ was 10 in., and thickness-to-chord
ratio was 11.8%. The Reynolds number based on the chord
was 20 x 108, In addition to the 50 pressure orifices on the
airfoil upper surface and 20 on the lower surface for steady
measurements, unsteady pressure data were obtained from 16
fast-response miniature transducers installed on the upper sur-
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