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Numerical Simulation of Unsteady Flows Generated by
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An explicit time accurate predictor-corrector scheme, similar to MacCormack’s, has been used to simulate
unsteady nonequilibrium laminar chemically-reacting diffusion-reaction generated flows. A zonal approach, along
with nonstructured boundaries, allows computation of internal and external flow with the same computer code.
Results for equilibrium flows generated by dissociating, vibrationally relaxing nitrogen in a rectangular chamber are
presented. The unsteady flows were generated strictly by the chemical reactions and concentration gradients.

Nomenclature ' A = thermal conductivity
C = atomic concentration of N u = coefficient of shear viscosity
C, = specific heat at constant pressure He = coefficient of bulk viscosity
D = computational domain or subdomain (also P = density
diffusion coefficient) T = viscous stress tensor
E,p = vibrational energy of diatomic molecules T, = vibrational relaxation time
e = internal energy per unit mass
h = enthalpy per unit mass Symbols . L
h, = total enthalpy per unit mass d/dt = Lagrangian derivative
1 = identity tensor d/ot = Eulertan derivative
k = reaction rate constant (also, Boltzmann 0/6t =6, =time derivative following a point
constant) X = vector or tensor product
K = equilibrium constant )] = product
L, = Lewis number: L, = pC,D/A Subscripts
m = specie molar mass .
" = mixture molar mass: b = backward reaction
- . = equilibrium
i = (T, mX)N i, X)) (eq) . .
n = unit vector normal to a surface pointing to / - formatloq (also .forwa.rd reaction)
the exterior s = monatomic or diatomic specie
n, = number of species ! = total
P = thermodynamic pressure Superscript
P = Prandtl number P, = uC,/2 0 = initial
9 = total heat flux t = transpose of a matrix
R = gas constant
T = ablsollute temperature Introduction
u = v:icci)ccliti)sl ‘llzcc:;(r)r:em velocit ACCURATE prediction of all aspects of hypersonic flows
% B f ecific I‘:, olume y around realistic configurations recently has been empha-
= Specill . sized in several projects.!-3
X = chemical (molar) concentration : . .
¥ = species source term due to chemical reactions At the very high Mach numbers, behind a strong shock, air
feact P is dissociating, vibrationally excited, and out of equilibrium.
Moreover, radiative effects can become very important,* and
Greek Letters ionization can develop. Very few experimental data are avail-
AH = (or AH}) enthalpy of formation of diatomic able, and very few fagilities are able to reach the ope'rating
(monoatomic) specie range of these new vehicles. Thus, one has to use sophisticated
0, = characteristic temperature for vibration of a computer codes to predict the complex aerothermal fields
diatomic specie around such hypersonic vehicles from the limited amount of

data available. Perfect (nonreacting) equilibrium flow compu-
tations are available>’ and have been successfully compared
with experimental data for simple geometries.® Nonequi-
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Park'3 has shown the need for a two-temperature model for
the correct representation of chemical rates. Most of the
available codes do not take into account vibrational relax-
ation, thus limiting either their range of applications or their
accuracy.

The code that we present in this paper gives the time depen-
dent solution for a two-dimensional flow of multicomposi-
tional reacting gas. It takes into account vibrational relaxation
of diatomic molecules and nonequilibrium chemistry. The code
is capable of treating internal or external diffusion-generated
laminar flows. Provision has been made for possible displace-
ments of the grid points, allowing the use of optimal grids.'*
An explicit MacCormack scheme's has been chosen for its
suitability for vector computation and its high time accuracy.
The use of nonstructured boundaries, as well as a zonal
approach, allows for more versatile applications.

Governing Equations

When the body forces, electromagnetic and radiative
effects, are neglected, then the species continuity, momentum,
and energy equations can be written in a compact form as

Y
XV w—w VX,

ot
X, ,
=V- (pDiV ;> + X i=1,.n, (1)
dpu , 9
—5—’—+V'(puxy+Pl—r)—y-pr=0 (2)
dpe, ,
7’—+V‘(pye,+c_1+Pz_4~r‘y)—y'Vpe,
D, _ X,
=SV () (E=vE AH,.,. 3
;V [(ph,)<Xin)]+ react (3

This system must be complemented by the vibrational energy
equations, for each diatomic specie

E:. ) .
— 4V (Elp) —u’ - VEiy,
ot
Eiib(eq) - Eix’b

T

4)
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ph.= Y ph (11)

i=1

These governing equations include the term u’ - V{X,pu,
penEi’ib}" .

This term is similar to the one introduced by Brackbill,'6
and allows movements of the computational grid as a func-
tion of time. Optimized solution adaptive composite grids
could be used, such as the one developed by Kennon et al.'*

Thermodynamic and Transport Properties
The specific heat of the mixture is obtained from

C,,=Zm,-X,.Cp,- (12)

where C,, is the specific heat at constant pressure of compo-
nent / at the temperature 7 of the mixture. C,, is obtained by
interpolation of thermodynamics data from Miner and
Lewis.!” For each species, the viscosity y; is given by a curve
fit relation

#y = 107" exp(C)T¢~T+ Ed(kg m=15-1) (13)

Here, T is the absolute temperature in K, y, is the viscosity;
and 4, B, and C, are given by Miner and Lewis.!” Then, u,
for laminar flow is obtained by Wilke's semiempirical'®
relations .

= e (14)
i=] Z X.-‘I’,-,-
=1
where
x; = Xsm/m, (15)

u; 1/2 mj 1/47)2 m, 1/271-1
oGV G TIAC2)T oo

Similarly, we obtain'® the coefficient of heat conductivity A
for each specie i from

_#'k Cpiml' 5)
li-m,(R -&-4 n



he variables that we use are: X, | .
system also needs the following state relations and definitions:

P =< 5° X,)RT (5)

=1

ny

p=3 mkX, (6)
s= ]
2
t=p(Vu +Vu) + Mg =3 H (V- u)l )
For monatomic species
5 u?
=403 iXi‘
ph; X,<2 RT) +m 3 (8)
For diatomic species
TRT 4 Elyy )+ mx, '
phi = X,<5 RT + vib [ty 2 (9)
AHreacl= Z X,ire-dAHﬁ (10)

i=1

en, the total thermal conductivity for laminar flows is
pu, pe, and E.,. This

< xd;

A=Y (18)

The diffusion coefficient is obtained from

_ALe; (19)
i pC,,

where Le; is the Lewis number of specie i, assumed to be
constant!” and equal to 1.4.

Chemistry

Near a strong shock wave, the vibrational temperature is
not at its equilibrium value and can be very different from the
translational temperature. Park'> has shown the importance
of the correct evaluation of this temperature for the purpose
of computing the chemical rate coefficients. An approximation
of the model of vibrational relaxation of Landau and Teller,
detailed by Vincenti and Kruger,'® has been adopted. In this
model the relaxation time t, is given by

exp(k,/T)'?
T, =4 % (20)
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and the equilibrium vibrational energy is

6.R

Eep - Tv7r
it exp(0,/T) — 1

(21

The values of constants A, k3, and 6, can be found in
Vincenti and Kruger."

Even though the governing equations take into account any
number of monatomic or diatomic species, the results shown
correspond 1o a system of two chemical species: N, and N.
The relevant reactions are dissociations of N, with N or N, as
catalysers.

Ns +Nk’i—:_sz+N (22)
k
Ny + N, é{ 2N + N, (23)

Equations governing the evolution of the concentration X, of
N, and X, of N,, starting from a given initial state X1.X9,
are obtained by introducing the equilibrium constant X from
Eqgs. (22) and (23).

dXx, 2
F = z(klel + kszz)(KXz —-X7) (24)

Xi+2X3=C=1x, +2x, (25)

If a time step Ar is used for governing equations (1-4), the
integration of Egs. (24) and (25) will give the concentrations
X1(Ar) and X,(At) after Ar. Therefore, the source terms are

XA = X (A1) — X, i=12 (26)

Frewct

The reaction rate constants ki, ki, and the equilibrium
constant K, based on concentration, are dependent on temper-
ature 7 and are obtained from Rakich et al.2°

. Td;
k{T) = a,T* exp(— ?), i=1.2 (27)

Td
K=(4,+ A,T + 4, exp(— ?> (28)

Since MacCormack’s explicit scheme is used, source terms are
evaluated at time step n, where the temperature T is known
everywhere. ) .

In the most general case, with a large number of species, the
system of ordinary differential equations obtained for the
evaluation of the concentration needs to be solved numeri-
cally. Moreover, its stiffness makes it necessary to use appro-
priate routines such as DGEAR? from the standard IMSL
library of mathematical subroutines or the one proposed by
Radhakrishnan.?2 -

But in the case of two species, the system can be integrated
exactly as detailed next. Substituting Eq. (25) into Eq. (24),
one obtains

dx, ks /.. X KC
d—l-—z[(k,,,——z— Ytk (4K -] (29)

Let us introduce

2 K2+ /A
a=Xioke, - KRVA +‘/_,

4 2

d=1</2;\/Z=. _xu (30)

Then if 2k,, # k,, the solution X, obeys
J(X) = f(X,%)e ~ ka/at—10) (31
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where a = ky, /(2k,, — k,,) and
SO =X, +ale=a=D .y 4 ple-ax6—a
X+ d| - axa - (32)
If 2k, = k,,, the solution X, must obey
8(X)) = g(X,%)e ~ka i~ (33)

where
8X\°) = (X, + b)(x, +d)[“=» (34)

In both cases, X, is given by an implicit relation. These
relations are easily solved in a few Newton iterations, with a
high precision. Moreover, an adequate change of variable can
significantly improve the convergence rate of the iterative
method. For example, introducing

X0~ xee
=_— 35

a X, = X7 (35)

where the superscript eg refers to the equilibrium value of X,
we can define ¢(a) = log[ f(X)]. Then

X 0o __ Xee

Xy=xp4 21 (36)
a

X\ x5

¢(@) = (a — b)a — d) log|(X? + a) +

| X0~ Xy

+ (b —a)b —-d) log|(X3? + b) +

0 __ ye
(Xfa_,_d).,_’\,’TX” (37)

+(d —a)d — b) log

We want to find « such that [from Eq. (31)]
&) = —(kyp/a)(t — 1,) (38)

Notice that ¢(x) also can be considered as a function ¥(u), of
u = log a. Thus, we have to find ¢ = e“, verifying that

¢(@) =Y (u) = —ky/a(t —1,) (39)
We can apply Newton’s method to find u (or a)

d  (a=b)a—d)

"(“)=E 1+ X{%+a
X —xw
b-ab-4a
d—a)d-b 40
[ Xrap\tU-9d-b (40)
X —x
The objective is to solve
$@) =Y(u) = —(kpp/a)t — 1) = h (41)
Newton’s method, applied to «, yields an iteration of the type
h —y(u)
n+1 — —_ T\ 42
O T S eu (42
Thus
"t =a"exp ik L) (43)
Kk(a)

Such an iteration converges considerably faster than the
primitive Newton’s method applied to X,.
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Fig. 1 Geometrical definition (indexing) of boundaries.

The same principle could be applied to the case of adiabatic
reactions instead of isothermal reactions, as assumed here.

Since MacCormack’s scheme is used to solve the governing
equations, the source terms X’,.mm are evaluated at predictor
step and also at corrector step, using the updated values of
temperature.

Numerical Methods
The system of governing equations can be put into the form

2—{= —diviF(f)] + S (44)
where fis a vector whose n components are the unknowns P,
pu, pe,; X, the chemical composition, and E vin the vibrational
energy. Here S is the vector containing n source terms for the
components of f. Fis a function of fproducing a matrix (n,2)
in the 2D case, corresponding to the flux terms.
To integrate the differential system [Eq. (1)}, our scheme is
a modification of the classical two-step explicit method of
MacCormack.'* These classical two steps are replaced in our
computer code by three steps. The first two steps are strictly
symmetrical, and thus allow use of the same subroutine to
evaluate the new value at predictor and corrector steps. The
last step is an averaging step. The splitting of a corrector time
step into two substeps is just a gimmick. The final result is
exactly the same as with the original MacCormack’s solver,
and it retains the same precision and properties.
" =f"—[DIV{F(f")] — §™) dr (45)

» =

¢ =

THU=fit ! —[DIVR(F(f* D =82+ Y de (46

AL SIVARY /) (47)

DIVg and DIVy represent forward and backward discretiza-
tion of the divergence operator, subscript p refers to predicted
values, subscript ¢ refers to corrected values, superscript n
indicates the time step at which the values are evaluated,

To increase the versatility of the code, a zonal approach
similar to the one used by Veuillot and Meauze® has been
introduced. The computational domain D can be decomposed
into subdomains D,,D,,...,D,,. In each of the subdomains,
different densities of grid points can be used. To allow an easy
definition of complex shapes and boundaries, an indirect
addressing technique is used (Fig. 1). Two_ Integer arrays store
the indices i,,(n,i,), jro(1,iy) Of the nth point of the boundary
I The artificial boundaries (connection between two do-
mains) are defined in the same manner.

This technique can be extended to three-dimcnsional codes
(Fig. 1). It allows the use of the code for internal as wel] as
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Fig. 2 Validation of the ODE solver for the time evolution of atomic
oxygen: 1) analytic; 2) Newton’s iteration.

external flows, with very simple changes in the set of input
data.

At the current time, eight types of boundaries have been
introduced in the code. They are: inlet, isothermal wall,
adiabatic wall, exit, secondary inlet (to simulate injection of
chemical species in the field), connection between domains, far
field, and symmetry.

Results

Before running the code, it is necessary to assess the validity
of the chemical kinetics solver. Therefore, the subroutine used
to predict the evolution of species concentration, with New-
ton’s iteration technique, has been tested separately. These
resuits have been compared with the theoretical curves ob-
tained by plotting time vs the evolution of concentration that
is given explicitly by Eq. (31). This test has been done for the
dissociation of O, (Fig. 2) and the dissociation of N, (Fig. 3).
In both cases the solver proved to be accurate and very fast.

Then, the complete hypersonic flow analysis code was
applied to three different test cases. For all three cases, the
geometry is a rectangular box (Fig. 4), closed and filled with
a mixture of molecular nitrogen, N,, and with atomic nitro-
gen, N. The walls were treated as isothermal and noncatalytic,

For the first test case, the nonpartitioned box is filled with
a mixture of N and N, at a given uniform temperature T and
pressure P. Nevertheless, the initial concentrations of N, and
N do not correspond to equilibrium composition for the
initial pressure and temperature. A very small time step is
therefore chosen, adapted to the chemical reactions
(Ar =1E — 18 5). The temperature and pressure of the mix-
ture increase and, in turn, the equilibrium composition is
modified. A steady equilibrium is finally reached, as shown by
the plot of pressure vs time at a point near the vertical walls
(Fig. 5). The recombination of N yields a tinal pressure and
temperature higher than their initial values.

In the second test case, the box is initially partitioned by a
membranc. The zonal approach was used to discretize each of
the two halves of the box. Uniform coarse computational grid
was used in both domains, with overlapping cells at the
location of the membrane (Fig. 4). The pressures and temper-
atures on the two sides of the box were the same. but the
compositions were different. For this test case, we froze the
chemical reactions; that is, we imposed a species production
term always equal to zero. In this situation, the possible
physical phenomena are limited to diffusion and convection
only. These processes are considerably slower than the chemi-
cal reactions. as the flow is nearly motionless; therefore. a
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Fig.3 Validation of the ODE solver for the time evolution of atomic
nitrogen: 1) analytic; 2) Newton’s iteration.

domain 1 /P ) domain 2
overlapping

region
Fig. 4 Two-dimensional test case geometry: domain 1 and domain 2
are unit squares,
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Fig. 5 Time evolution of thermodynamic pressure ( ), concentra-

tion of molecular nitrogen {........ ), and concentration of atomic nitrogen

(-e---- ) having a uniform initial composition.

much larger total time is needed to reach the equilibrium. As
expected, the concentrations of N, and N tend to become
uniform in the box (Fig. 6), and the pressure returns to its
initial value.

The third test case differs from the second case only by
taking into account the equilibrium chemistry. The diffusion
of mass, momentum, and energy is a relatively slow process.

2.21 202000 Dll D2

[N} | P

1.9 | 198000

0. t (=) 4.0—4

Fig. 6 Time evolution of thermodynamic pressure and concentration of
atomic nitrogen at the left wall (A) and at the midsection (B) for
nonuniform initial composition (frozen chemistry),

4 220000
.1
P
[N]
_____ a —_ A
_____ B vereeeeeee B
o 205000
O. t (s) 1.5e—4

Fig. 7 Time evolution of thermodynamic pressure and concentration of
atomic nitrogen at the left wall (A) and at the midsection (B) for
nonuniform initial composition (equilibrium chemistry).

The convective terms also appear. Thus, the main effect is
caused by the chemical reactions. The initial condition corre-
sponds to a mixture with a concentration of N that is higher
than the equilibrium value for the local pressure and tempera-
ture. Thus, the atoms of N will tend to recombine, as in the
first test case. At t =0, pressure and temperature are the same
on both sides of the membrane. But the density and molar
masses are different, since they correspond to different equi-
librium compositions. In turn, the heat released by the chem-
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ical reactions on the two sides of the membrane will be
different for ¢ > 0. Therefore, strong gradients of pressure and
temperature appear. As a result, an acoustic wave develops
and propagates into the box,® as shown in Fig. 7. The
frequency of this wave corresponds clearly to the first longitu-
dinal mode of excitation of the box. A strong damping of the
wave also can be observed in Fig. 7. The last part of the curve
corresponds to convection and diffusion processes, tending to
produce a uniform temperature and composition. This com-
putation is performed with quite a large time step
(At = 2E — 75). One thousand iterations, for 110 grid points,
took 8 min on a VAX 8550. It should be pointed out that even
though this test case corresponds to equilibrium chemistry, we
let the complete hypersonic flow analysis computer program
compute the source terms as the limit of nonequilibrium
chemistry source terms.

Summary

A block-structured computer code was developed that is
capable of predicting unsteady convective processes arising
from chemical reactions involving nitrogen and the unsteady
convective processes resulting from a pure diffusion of nitro-
gen atoms and nitrogen molecules. In general, the computer
code is capable of predicting hypersonic unsteady laminar
flows with nonequilibrium chemistry of air. It allows for
computational grid movements and multiple domains. An
efficient and accurate computation of chemistry is demon-
strated that is based on a special variable transformation.
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