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Abstract

A complete three-dimensional mathematical
model has been developed governing steady, laminar
flow of an incompressible fluid subjected to a
magnetic field and including internal heating due to
Joule effect, heat transfer due to conduction, and
thermally induced buoyancy forces. The thermally
induced buoyancy was accounted for via
Boussinesque approximation. The entire system of
eight partial differential equations was solved by
integrating intermittently a system of five fluid flow
equations and a system of three magnetic field
equations and transferring the information through
source-like terms. Explicit Runge-Kutta time-
stepping algorithm and finite difference scheme with
artificial compressibility were used in the general
non-orthogonal curvilinear boundary conforming
coordinate system. Comparison of computational
results and known analytical solutions in two and
three dimensions demonstrates high accuracy and
smooth monotone convergence of the iterative
algorithm. Results of test cases with thermally
induced buoyancy demonstrate the stabilizing effect
of the magnetic field on the recirculating flows.

Introduction
It is a well-known fact that magnetic field has a

strong effect on fluid flows. For example, a
Poiseuille velocity profile flattens due to the applied
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magnetic field. In the presence of the magnetic field,
the strengths of vortices produced by thermal insta-
bility can be reduced. Engineers have used the
properties of the magnetic field in applications
ranging from flowmeters to space processing.

Despite its importance in engineering applica-
tions, only few attempts [1,2) have been made to
simulate magnetohydrodynamic phenomena numeri-
cally. However, these works were restricted to two-
dimensional problems. In the present paper, a
complete three-dimensional numerical simulation of
steady, laminar, magnetohydrodynamic incom-
pressible flow was performed, although the
procedure can be extended to
compressible flows. The first part of this paper
presents a mathematical model of magneto-
hydrodynamics. The electric field vector is
eliminated from the Maxwell's equations using
Joule's law. This results in magnetic transport equa-
tions, which consist of three partial differential
equations of mixed hyperbolic-parabolic type. These
magnetic transport equations are integrated along
with Navier-Stokes equations. The second part of the
paper presents the numerical method for solving the
system of the governing equations. The system of
equations is split into two systems of equations: the
system for the fluid flow field and the system for the
magnetic field. Such a splitting approach was used
by a number of researchers to solve the Navier-
Stokes equations with k-€ equations of turbulence
[3,4]. One of the advantages of this approach is that
the additional equations (turbulence, magnetic field,
etc.) can be included without modifying existing
basic flow solver. On the other hand, slightly
adverse effect on numerical stability could be
expected as the result of partially "decoupling” the
global system.
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formed in conjunction with an explicit Runge-Kutta
method. The stability analysis was performed by con-
sidering an equivalent multi-stage scheme similar to
the split Runge-Kutta procedure. Stability results
show that the split procedure does not change the and energy conservation:

stability of the global scheme significantly. As long

‘as the CFL condition for each individual system is T, + (va) = xTj+ __‘E.L (7
separately satisfied, the stability condition for the ’ J po

split approach is satsfied.

- agi(T - Tc) (6)

where g;, p, p, and T are the gravity components, the

fluid density, the sum of hydrodynamic pressure and

.Governing Equations the hydrostatic pressure, and the temperature,
‘ respectively.  Here, M, &, x and cp are the

i After ignoring the electric displacement vec- coefficients of viscosity, thermal expansion, thermal
itor, Maxwell's equations [5] can be written in diffusivity, and specific heat, respectively. The third

! Cartesian tensor notation as term on the right hand side of the momentum
_equation is the Lorentz force due to the magnetic

H;;=0 (1)  filed. The last term on the right hand side of the

e H _=4_7" 3. @) .momentum equation is the them?al }?uoyancy force.
BTk T e Notice that the viscous dissipation terms are

(3)  neglected, while the Joule heating is included in the
energy equation in accordance with the Boussinesque

, T . approximation.
where gjjk is the permutation symbol, and commas Eliminating E; between the Maxwell's equa-

designate differentiation. Here, Hj, and Ej are the tions, Egs. (1), (2) and (3), we have the so-calle 4

i magnetic transport equations.

Eijk Exj= - % Hi.

- components of the magnetic field vector and the
relectric field vector, while ¢, u, and t are the speed
Lof light, the magnetic permeability, and the time, c2 i
respectively. The equations are cast in Gaussian units Hip + (viH - viHj) 5 = mHi‘ﬁ (®)

‘and the repeated index denotes the summation over
the index. Joule's law is given by From the definition of the current density vector,
Eq. (4), and the vector identities, the momentum

uations, Eq. (6), can be written as
L= C‘(Ej + %Edjkijk) 4) €q Eq

where J;, and v; are the components of the current Vie® (vivj T 4n HiHj)\'\ TTp Pi
density vector, and the fluid velocity vector,
respectively. Coefficient ¢ is the electrical con-
ductivity.

With the aid of the Boussinesque approximation [6], where the combination of the hydrostatic, hydrody-
Navier-Stokes equations for the incompressible namic, and magnetic field pressure is

electrically conducting homo-compositional fluid

+ % viji - 0gi(T - Te) (9)

flow including buoyancy force are given by mass . pH;H;
conservation: P =P+ Tgn 10
vii=0 (5) For convenience, the superscript * will be dropped.

momentum conservation:



Non-U'imcuasionalization

It is desirable to non-dimensionalize the
governing equations in order to simplify the study of

the relative importance of each physical phenomenon
involved. The following non-dimensional form of the
governing equations is obtained

vii=0 (11)

H .
Vit+ (Vivj - —"—FRHihjlj =-Dpj
1 Gr

+ Re Vidi -@eie (12)
8 ——'1‘—6" (13)
8.1+ (v8)j = PrRe Odi + Em
and
: 1
Hi,+ (VJ'Hi - ViHj)'j = Em—Hl‘U (14)
T-T,

Here, © is the normalized temperature,™ =, and
AT = Ty, - T¢, where Ty, and T, are two reference

temperatures. The unit vector in the direction of
gravitational vector is designated as ej. The term due

to Joule heating becomes
EcH12
€m = RmRe2 &ijkEilmHk jHm,] (15)

and the non-dimensional numbers are given by

\4
Eckert number Ec = = ArT
‘ pagllAT
Grashof number =Ty
/ 8]
Hartman number Hi = pl H; &2n

] 4TUO VL,
Magnetic Reynolds number Rm = RePm = — 37—

pvrly

Hydrodynamic Reynolds number Re = _Tl—

47

Magnetic Prandtl number Pm= oc2

A

Prandd number Pr 2%

Numerical Algorithm

The equations (11), (12), (13) and (14) repre-
sent a giobal system of highly coupled non-linear
partial differential equations. For simplicity of com-
puter programming the system is split into two
systems. Equations (11), (12) and (13) constitute the
first system, and Egs. (14) constitute the second
system. Each system is integrated by the explicit
Runge-Kutta time stepping method [7] in an alter-
nating manner.

After transformation to generalized curvi-
linear non-orthogonal coordinates, the systems of
governing equations can be written in fully conser-
vative form as

?a-?+%g-+%n3+%‘g-=02+n (16)

.For the flow field part of the global system, the so-

lution vector Q, the flux vectors E, F, G and the

:source vector D are given by

0 R T R 2
u Uu + Exp Vu + Txp
Qzlf v E:lj Uv + &yp F% Vv +nyp
w Uw + &.p Vw + 1,p
o L Us - L ve
- W 0]
Wu + {xp d2
G=11- Wv + Lyp D=|d3 (17)
Ww + {,p dg
- W - | ds_|

where J = %%—;]% is the Jacobian determinant of the

geometric transformation from x, y, z into & 7, {
computational space.
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o [ng(JQ) } (20)

e g gl
2= RmRe L0§ ml ] oCl ] ‘
gij = Vx'iVx'; (21)
’_G'_e'ei 1 1 1 1
2 - di 4 11
ReJ §= dxag{ 0, Re’ Re’ Re’ PrRe} (22)

. :
Hi2 [ py {HE } {HnH2} {II:IQHZH The contravariant components U, V, W of the ve-
o L6

d3 = RmRe o J j] locity vector are related to the velocity components
u, v, w in the Cartesian system as follows
(GO
R°2J o U E..x &y gz u
‘ 2 [ 5 ffes - - Vi={ My Mz |v (23)
e gl ]
d4=Rmnc[a§ Tt T el wd L& &L,
! .. . A A A
L ) . Similarly, the contravariant components Hg, Hy, Hg
| 2
! Re”J ¢ of the magnetic field vector are defined as
EcHi2J A H
ids="T"""3 [Al +A2+A3} (18) Hﬁ Ex gy &z 1
RmRe? A
, Hp|=| Tx My Mz Hy (24)
li where Hj, Hy, H3 are the components of the magnetic 1’31{ - gy - u '

field vector in Cartesian coordinates, and

In order to integrate the system simultaneousl
Hat, - H Hamy - Hon g y y
=§i—3—éj—£§—z} + i[__?a_y___;_ and obtain a time-asymptotic solution, an artificial

9(p.
a[H3L, - HaL, compressibility (8] term , 5?([3]1 is added to the so-
y
+ a‘l;{: J ] lution vector resulting in
_ 0 ngz'H?agx] _[Hlnz H3T\x] p/b
A2=3 ] o I "
1
=Tl Vv 25
o[Hils - Hsly] Q=3 @3
T3 J w
L 6
An = %{HZZEJX - Hl‘iz] + @{Hﬂlx - H]T\v]
379 J o J For the system of magnetic field equations, the
solution vector Q, the flux vectors E, F, G, and the
H -HL source vector D are given by
+ai£[ ZCXJ 1 X] (19)
H H,U - uf: HyV - ufly
<
Q=t| B2 |E=| Hou - vl |F=1| Hpv - VA
The physical viscous dissipation term is transformed A e A 2V - VHE 1 T=) 2Y - ¥in
A
to | H H3U - wihig H3V - why



(26)

where I is the identity matrix of rank 3.
The Runge-Kutta time stepping method [7)
given by

QO =Q!
AQK = - g AtRK-
Qi+l =Q'+4Q"

was used in time-integration of both systems. Here
the residual vector is defined as

<= 1,2,..,K  (27)

JdE JF oG
2= .22 p2
R ag*an“‘ aC D

5[4 o4 o4
'D+§JE[5?+ it B_C“](JQ)

The last term of the residual vector is the fourth
order artificial dissipation [7] where & is the user
specified small parameter and At is the time step.
For the four stage (K=4) Runge-Kutta method, ok =

1/4, 1/3, 1/2 and 1, respectively.

(28)

Boundary conditions

The system of the flow field equations is char-
acterized by its hyperbolic nature. Therefore, the
boundary conditions have to be applied by
considering the characteristic directions. The
eigenvalues of the Jacobian matrix of the flux vector
E are

L = diag(U-a,U+a,U,U,U) (29)

where a is the equivalent speed of sound

a=\/U2+ﬁ{é§+¢§+ai}.

At the inlet boundary, one of the eigenvalues is
negative. As a results, four boundary conditions
should be imposed there. In this study, the incoming
velocity components, u, v, w and the temperature, 6,
are specified. The pressure, p, is computed from the
characteristic equation. At the exit boundary, one

(30)

boundary condition should be impcsed. We « zcified
the pressure, whije the velocity components and the
temperature were obtained by integrating the
charactenistic equations.

The application of the boundary conditions is
given as follows [10,11]. Premultiplying the cqlua-

tions by the similarity transformation matrix, M ¢ (in

¢ direction), Eq. (27) results in the characteristic
form of the equations. The equation corresponding
to the negative eigenvalue is to be selected at the
inlet, while at the exit the equations corresponding to
positive eigenvalues are chosen. This selection pro-

. cedure can be thought of as a matrix operation, and
‘we designate the operator as L. If the boundary
condition is given by Q, then

otl=q'+ g—gAQ (31)
or g—g-AQ =-Q (32)

and the equation (32) is added to the transformed-
selected equations, that is, '

Q7]+ _ oy, Qb
aQ:IAQ =- akA[[M éR + akAt] (33)

At the inlet plane,

[LM-g +

L = diag[1,0,0,0,0] (34)
T
Q =0, u-up, v-vp, W-wp, 6-6p] (35)
At the exit plane,
L = diag[0,1,1,1,1] (36)
T
Q = [p-py,0,0,0,0] (37)

so that g—g = diag[fJ,0,0,0,0]. The subscript p denotes

the prescribed value and the superscript T designates
the transpose of a vector. Along a solid wall, the
velocity components were set to zero. The pressure
was extrapolated from the interior point, while the
temperature was either specified or extrapolated
depending on the boundary condition type (Neumann
or Dirichlet boundary condition).

The system of the magnetic field equations is
also of hyperbolic type in time. The eigenvalues of



the Jacobian matrix of this svstem are L=diag[U,U,0]
in case of & direction. At the inlet plane, therefore,
two components of the niagnetic field vector are
specified, while the axial component Hj of the
magnetic field vector is evaluated from the charac-
teristic equation. The transformation matrix for the
magnetic transport equations is given by

koav-kjow  k3jw-kazu  kjou-kayv
-1
Mgs kaawksv kapu-kppw o kipv-kosu
-Exk123 -EyK123 -Ek123
(38)
where )
kyp =8&3 - Ex&y
2
k3 =8 - éygz
2
k3 = 52 - ézéx
ki23 =kj2 + k23 +k3; (39)
and
L = diag[1,1,0] (40)
T
Q =[ Ha-Hap, H3-H3p, 0] 41

At the exit plane, all three variables are updated by
integrating the goveming equations.

Let () denote the jump across the boundary. If
the wall is a perfect conductor, the tangential com-
ponent of the magnetic field experiences the discon-
tinuity, but the normal component should be con-
tinuous

nx(E)=0

nH=0 (42)

If the wall is a perfect insulator, the boundary con-
dition takes a simpler form

(H)=0 (43)
Stability Analysis
Consider a model system of equations
Q. ,9Q_
ot A % = 0 (44)

{ }
UZ

- The amplification matrix of the Runge-Kutta method
| for the unsplit approach can be found as

a a12} 45)

ay) dp

N2 N3 N¢

T G=1-N+7Z -+ (46)
 where

- i 411 312

; N=i 54——2{‘“ IXA" } 47)
: 4y 2y

| To be stable,

i

l

i D\vlmaxAt

3 CFL = “Ax S 2V2 (48)

i

' The Runge-Kutta method with the split approach can
- be thought of as a 2K stage multistage method, that
' 18,

a,; a k-1
Qk:QO-akA({ (1)1 éz}é%- for k=1,-.., K
0 0

k-1
Qk=QK. akA{ 8y 2y }i%x- for k=K+1,...,2K;

Define the provisional amplification matrix G for

the first K stages as
Q*=6,Q° (50)

Then we have the recursion formula for the pro-
visional amplification matrix

where
.sin(xAx) 211 212
Gy=1 Nl:lT{O O} (52)

Similarly, define the provisional amplification matrix

fork =1,-,K (51)

G, for the second K stages as

Qk=5,Q% (53)



we have
G, =T1- 0, AR,G, , for k=K+1,--,2K (54)

where

. sin{xAx 0 0
GK = I Nz—l ﬂazl 322] (55)

The amplification factor of the Runge-Kutta method
for the split approach can be found as

If each amplification matrix satisfies the stability
condition independently, that is, if

p(Gy) < 1 p(Go) <1 (57)

ithen there exists a consistent norm [13] such that

NGyl < 1 ”GZKH <1 (58)
However from Eq. (55)
P(GKGZK) < IIGKGZKII < IGkl IIGZKH <1 (59

where the first inequality is true for every norm, and
the second inequality comes from the consistency of
the norm. Thus, the split approach is stable. Notice
that the actual stable region is broader than what is
mentioned above. In general, if we split the system
of equations into a number of systems, and if the sta-
bility conditions for each system are satisfied, then
the complete system remains stable.

Computational Results

The first test case is the two-dimensional
Hartman flow, which is equivalent to the Poiseuille
flow in fluid dynamics. An H-type orthogonal grid
of 50x20x20 cells was used in this computation (Fig.
1). The length of a duct was 15 times of the half
height of the channel. The y-component of the
magnetic field, Hp, on the solid walls was kept
constant. As a result of the Lorentz force, the
velocity profile is flatter than the velocity profile
without the magnetic field. The hydrodynamic
Reynolds number, Re based on the average velocity
and the half of the channe] height, was Re = 10 while

the mag:.cuc Reynolds number was Km = 10. The
Hartman number based cn the imposed magnetic
field a::d the half of the channel height was Ht = 5.
The artificial compressibility coefficient of B = 10
was used.

In this computation, the influence of the buoy-
ancy force was neglected. Therefore, the energy
equation was decoupled from the rest of the
equations. The imposed inlet velocity profile was
that of Poiseuille flow. Since both Reynolds numbers
are small, the flow develops fully over a short
distance (Fig. 2). The pressure gradient becomes
constant near the exit. Figure 3 compares the
computed velocity profile with that of an analytical
solution [5]. In Figure 4, the computed induced axial
component of the magnetic fie'd was compared with
the analytic solution, showing excellent agreements.
The relative error compared to the analytic solution
is about 0.88 % for the axial velocity component, and
0.04 % for the axial component of the magnetic
field. The convergence history of the test case is
shown in Fig. 5. The code runs with 14 p-sec per
grid point per iteration on the Cray II computer.

The next test case is an equivalent Hartman
flow in three dimensions. The computational domain
was discretized with 50x20x20 rectangular clustered
cells (Fig. 6). Both hydrodynamic and magnetic
Reynolds numbers were 10. The value of the arti-
ficial compressibility coefficient was § = 10. Figure
7 shows the prescribed inlet velocity profile, which is
fully developed laminar flow profile without mag-
netic field. The carpet plots of the analytic and com-
puted x-component of velocity vector are shown in
Fig. 8. The maximum relative error of the com-
puted solution is 0.73 %. Figure 9 shows the analytic
and computed x-component of the magnetic field.
The computed solution deviates by less than 0.74 %
from the analytic solution.

For completeness, the analytic solution [18] of
the three-dimensional Hartman flow are given here.

u 4
uav=n3 (‘SFRcﬁx

né;dd{l - cosh{% (ax - 1)}sinh{%x}sinh'l (}g)
-cos}i%x}mh{%ﬁi X IJ}Smh-l(]gH n3b



The 11] normalized with given H, component is

Rm Rc
Hz 7[3

3 Ho(y yHeyl 1 H
n_}iﬁ[l - smh{2 ( -1)}smh{ a }smh @
. (nnz

sty Yy _— iy
(61)

" Here, a and b are the width and the height of the
. channel, while

cosh| = jcoshl 7
ﬁ?gﬁ(:)zm‘gmn 1*(:)2@1;)2 mh(‘H)
sinhl =
2

where the hydrodynamic and magnetic Reynolds
numbers, Hartman number and the normalized pres-
sure gradient are given by

(62)

PuUay @ _a op
Re= n k= puz, ax
) 4TCU,a
Ht = paH, &n =2 (63)

Figure 10 shows the pressure, developing
velocity profile, and the axial and vertical com-
ponents of magnetic field vector normalized with the
applied magnetic strength along the vertical mid-

z
plane (; = 0.5). Both, flow field and magnetic field

develop within two channel heights downstream from
the inlet. The convergence history is plotted in Fig.
11. For this case the code executed at 15 p-sec per
grid point per iteration on Cray Y-MP computer.
The next example is the Benard cell problem
under the influence of magnetic field. The imposed
magnetic field is paraliel to the gravitation. To study
the relative influence of the magnetic field, the
computations were done both with and without the
applied magnetic field. The Hartman number was 5,

co

and the Grashof number was 3000 with: the bottom
wall hot, the top wall cold and the side walls
thermally insulated. Since there is no reference
velocity, the reference velocity was obtained by
equating the magnitude of the buoyancy term to that
of viscous term [14]. An orthogonal grid of 60x30
cells was used in this computation (Fig. 12). The
artificial compressibility coefficient of B = 1 was
used for both computations. Both the magnetic
Prandtl number and the hydrodynamic Prandtl
number were 1. Although no artificial dissipation
was added, smooth solutions were obtained. The
pressure along the solid wall was computed from the
normal momentum equation [14].

Figure 13 shows isobar contours for com-
putations with and without the applied magnetic field.
As can be seen, the usual boundary condition for

d

pressure, gn, would have given erroneous results

both with and without the influence of the magnetic
field. The isothermal contours for both cases are
plotted in Fig. 14. Figure 15 represents the stream-
lines for both cases. With the applied magnetic field,
the strength of the vortices was weakened and the
cells were elongated, which was predicted by
Chandrasekhar [6] through a hydrodynamic linear
stability analysis. Figure 16 depicts the lines of mag-
netic forces. They would be straight vertical lines
without the flow induced by buoyancy. Figure 17
shows the convergence histories for both cases. It is
noticeable that the convergence rate for the case with
the applied magnetic field is much slower than with-
out the magnetic field. It was found that with the
Hartman number of 10 the circulatory motions from
the thermal instability were damped significantly
(Fig. 18). Though a thorough parametric study has
not been performed, it is believed that the critical
Hartman number beyond which the circulation would
be entirely suppressed at Grashof number of 3000 is
between 10 and 15.

Conclusions

Using the explicit approach, the governing
equations of magnetohydrodynamics were solved
with high accuracy. The stability analysis for a
sample system shows that if each individual system
satisfies the stability conditions, the complete system
is stable. Numerical examples including the two- and
three-dimensional Hartman flow were computed.



Recirculating flow generated by a thermally induced
buoyancy was suppressed by the magnetic field.
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Figure 7. Inlet velocity profile
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Figure 8. Axial component velocity profile
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Figure 9. Axial component magnetic field vector
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Figure 10. Solutions of three-dimensional Hartman
flow (- = 0.5)
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Figure 11. Convergence history (two-dimensional
Hartman flow)
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Figure 12. Computational grid of 60x30 cells
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Figure 16. Lines of forces

Figure 13. Isobar contours
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Figure 17. Convergence histories

Figure 14. Isothermal contours
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Flgure 18. Interaction of a thermally induced flow
and a strong magnetic field (Hartman
number Ht = 10):
. A) isobars; B) isotherms; C) magnetic force lines;
D) streamlines
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