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Artificial density or viscosity (ADV) and artificial mass fiux (AMF) concepts used in the iterative algorithms fo
the numerical solution of the transonic full potential equation (FPE) have been analyzed and compared with the exad
physically dissipative potential (PDP) flow equation. Coeflicients of the derivatives in the existing artificial dissipa
tion models were found to produce only several of the physically existing derivatives. Moreover, the common artificig
density and artilicial viscosity formulations generate terms of the wrong magnitude, and even of the wrong sign, whe
compared to the PDP formulation. The AMF formulation, although imperfect, is shown to offer an alternative to th

artificial density and artificial viscosity concepts.

Introduction

OMPUTATIONAL fluid dynamics of transonic flows

were based for a number of years on the transonic full
potential equation (FPE) as a viable mathematical model. The
iterative algorithms capable of capturing isentropic discontinu-
ities in the solution of the artificially time-dependent’ and ar-
tificially dissipative’* FPE became a standard aerodynamic
analysis and design tool.

In addition, type-dependent rotated finite differencing’ is
usually emploved to numerically mimic the locally proper ana-
lytic domain of dependence of the governing partial differential
equation. This means that the second derivative of potential
function ¢ in the streamline direction s should be evaluated
using upstream differentiation only when the FPE is locally
hyperbolic (M= > 1). Conscquently. only coalescence of a pre-
ferred family of characteristics (compression waves) is aliowed
to occur, resulting in acceptable isentropic discontinuities
(compression shocks). Expansion shocks, which are impossible
for calorically perfect gases, should be thus avoided. Explicit
artificial dissipation of the artificial density® or artificial viscos-
ity>* type is added in a fully conservative form® in an attempt
to nullify the truncation errors introduced when using up-
stream differentiation locally in supersonic regions of the
flowfield. The similarity of artificial density and its truncated
equivalent, called artificial viscosity. is outlined in Appendix A.

Numerical solutions of the multidimensional FPE with the
artificial viscosity™" or the artificial density? frequently exhibit
spurious oscillations behind the she. .« (Fig. 1) and sudden
overshoots ahead of the shock.® Although the computed pres-
sures on the surfaces of the objects are seemingly correct, the
computed shocks diffuse quickly with the growing distance
from the boundary (Fig. 2). These numerically generated phe-
nomena can be observed on a fine grid when the entire ficld of
1sobars 1s plotted.

A number of different analvtic formulations®® for the artifi-
cial dissipation were developed in the past. Nevertheless, there
were only a few isolated attempts®'? at analytically analyzing
these concepts and suggesting possible reasons for the numeri-
cally obtained results.
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The objective of this paper is to expose clear}

gencrated by the artificial density® or visc
schemes, the artificial mas¢ flux (AMF)%'¢ s
directional flux biasing (DF 3)''-1* formulatio
them to the terms that exist in a PDP flow eq

The Full-Potential Equation

Mass conservation for steady homentrop
ergetic irrottional flows of inviscid fluids with
and withou. mass sources or sinks is given as

V- (pV)=V-(pV¢) =0

where p is the local fluid density and V the local
For the sake of simplicity, further analysis will
two dimensions. Expressed in a locally streaml
orthogonal, two-dimensional coordinate systq
comes '
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where ¢, and é, are the unit vectorsin sand nd
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Fig. 1 Iso-Mach lines for a fine grid (256 x 48) solution of an FPE with
ADV formulation. Airfoil is NACA 0012 with M =0.94. Notice a
“checkerboard” pattern along the shock.

In order to simplify notation, let
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Then, from Eq. (7) it follows that

0
*

- i -1 ’ _l_._l
Py = & [’—*—-—’——(@)2]7-' (~66) (9
p PL 2 2

since ¢, = 0 by definition [Eq. (4)]. Hence, from Eq. (9) and
Eq. (6) it follows that -

P, ¢?

—¢s=—’_2¢n=—M2¢n (10)
p a
where the local Mach number is defined as
= -% z1 (11
a

The FPE {Eq. (5)] in its final nonconservative canonical form?
then becomes -

V(o) =pl(1 - M)y + ¢,n) =0

The FPE is a homogencous, quasilinear, partial differential
equation of mixed elliptic-hyperbolic type and represents an
exact nondissipative analytical model that conserves mass and
energy but does not satisfy momentum conservation. Instead,
it implicitly satisfies the constant entropy condition throughout
the flowfield.

(12)
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Fig. 2 Enlarged region of the shock wave showin
pressures computed with ADV could quickly diffuse,

Artificial Density or Viscosity Conce
The artificial density* or artificial viscosity®
erating the artificial dissipation in a locally su
generally formulated as
p=p—Cip,
Here, C = const having the units of length, an
priate switching function. The derivative of ¢

performed in the locally upstream direction.
conservation then becomes ' :

7 0
+(p — Cidp,)$,é,)

Hence

v (ﬁv¢) = p:¢: + pd’n‘ - Cﬁ:p:¢: - Cﬂphﬁ;y— Cﬁp:¢n
1T

+ pn¢n + p¢rm - Cﬁnps¢n - Cﬂpsd’m -

Since ¢, =0, it follows that

V- (5Ve) = p{[du, +";’ ¢, + ¢M]

-~ px: ps ps ..p
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[ p p¢ p¢ K p.d
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Table 1 Summary of the most prominent forms of the artificial dissipation based on the
modified density formulation
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Modified density formulation

Reference

. 1

1 p=p—<l—m>p,
. 1

2 p=-C l—m IA

. M?
3 p=p—~[1- il &
4 p=p—CM*—1)p,
5 ﬁ=( ))2( 1)(20—l—x)/+w
6 p=p—C(l—p"p,

Hafez et al.* (and Jameson and Caughey?? see
Appendix A)

Amara et al.”
18<Cg22

Jameson'® (see Appendix A)
08<M2<10

Roach and Sankar;® Xu et al.®
C=20 0.1£C£06
Amara et al.”
2050530
1.0sx<s8
00Sw<10

Sherif and Hafez'¢
C<l,n=1

From Eq. (10) it follows (since ¢, = 0) that
1
Pss = —;1—4 {[p.r¢.v¢.u + p(¢n)2 + p¢s¢sn]a2

[ .
T -1
i A ¥
Using Eq. (10) and Eq. (11) in Eq. (17) results in

2
B, = - Mg+ M- -1 EE )

5

The artificially dissipative FPE, i.e., mass conservation equa-
tion based on the ADV concept, then dssumes its most general
form
V- (6V¢) = pl(1 - M*)$,, + $pul + EApv =0 (19)
A common perception is that E,py contains only the term
¢..-* This term produces linear dissipation; hence the expres-
sion artificial viscosity. The actual content of the term E,pyv
has never been correctly analytically determined.®!® From Eqgs.

(10), (16), and (18) it follows that the most general exact ana-
~ lytic form of E,py is

3 2 2 2 (d’ )?
- Eppy=CpM3¢,, — AM?[(2 —y)M* - 2] —
+ M "”;"’"" -,qus,,} (20)

for any arbitrary switching function j.
The conventional form of the switching function i used in
ADY concepts can be generalized as

2
p =(1 -ﬁg> (M7 (21

where M, is the cutofl®> Mach number (M2 £1) and n is an
integer (Table 1). This expression for j is deduced from the
form of truncation errors resulting when applying locally up-
stream differentiation to the term ¢, that multiplies the

(1 — M?) term in the FPE [Eq. (12)]. For the ‘ ralized con-
ventional value of g given by Eq. (21), it is g possible to
resolve analytically the corresponding artificial idi§sipation, ac-

tually the error term E,pvy, given by Eq. (20). $ince
2 2 ﬁ
JPNCAEICH @

with the help of Eq. (6), it follows that

il
(M?), = [2¢,¢,,a (¢,)2(—’T) 2 5,,] (23)

This can also be written with the help of Eq. (‘6}1 as

J P L2
= (¢,)]+(y :

Finally

¢,

wooo
(M?), = (7+1) <t =—[24+0-1Md. (25

&,

so that the generalized conventional formulationy Eq. (21)] for
1 gives

g=0+1)—— (M2+n(M’4- M2 (26)

?,
Thus, with the convenuonal formula for the switghing function
£ (Eq. (21)}, the artificially dissipative FPE [Eq? 9) and (20)}
and based on the ADV concept assumes the fallowing exact
general analytic form:
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The full effect of using the conventional formulations for the
generalized switching function /i [Eq. (24)] is now available for
inspection. Actually, there were several additional attempts at
creating a better model for the artificial dissipation. One such
attempt’ uses a model that involves local grid spacing behind
the shock wave. The model used by Sherif and Hafez'6 uses a
switching function (Table 1) of the type g =1 — p. With the
help of Egs. (10) and (20) it can be seen that this results in the
error term of the form

Exov=Cp (( 1= M+ (1 = popa* 202
2 2 (¢I|’)
+ M@= DM =241 = p) + pM?} = ) (28)

Consequently, the following questions could be asked:
1) what are the effects of the artificial terms on the solution of
exact nondissipative FPE [Eq. (12)]; 2) do these terms have
effects similar to the physical viscous dissipation; and 3) what
should be the appropriate form of the switching function j that
will make the artificially dissipative FPE [Eq. (27)] look as
much as possible as an exact physically dissipative potential
transonic flow equation?

One candidate for a physical dissipative model is the small
perturbation viscous-transonic (V-T) equation that was
derived by Cole,!” Sichel,'® and Ryzhov and Shefter.'® It can be
expressed as

—'(7 - 1)(px(pxx + (pyy P

' (1 41 1><pm—0 (29)
which is a combination of the small perturbation transonic
potential equation and Burgers equation.'® It includes certain
aspects of the heat conductivity and the longitudinal viscosity
of the gas. Here, P is the Prandtl number based on longitudi-
nal viscosity u”, @ the velocity perturbation potential, and R,
the Reynolds number. This equation was successfully numeri-
cally integrated by Chin® and Sator.”

Actually, a more complete, nonlinear, PDP flow equation
was derived recently by Dulikravich and Kennon.!* They com-
bined mass, momentum, and energy conservation equations
into a single mass conservation for a calorically perfect gas

1 1 14 V-V
p{ o _1y. o [(v Y w—]}
pa* FE at

=._-a—13<pV-[Vx(Vx W+ V{2V 4V

+V x [V x V)] + V[A(V - V)]})

(30
Here. ® is the viscous dissipation function
d)=2u{V~[(V-V)V]+ %(Vx N—V-v(V- V)}
+ (V-2 310

From the expanded Crocco-Wazsonyi equation'® for viscous
compressible fluids

TVs =Vh, ==V x (V x V)+%—i/
1
—; 2V(uV - -V xu(Vx N+ VLV- N} (32)

where s is the specific entropy and h, the specific stagnation
enthalpy: they have derived the vector operator form of the
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PDP equation

82 (Vo -V :
oS80 e 8]

ar ot

l
=-=V¢ [V"Vie)

~1
+?—;;—<2u{v (Vo - V)VP] — (Vo - VIV - Vo) }

1,0

PURCA U ol SN A
+z(v¢)>+ VGV =5 N (33)

The nondimensional canonical form of this efjuation for two-
dimensional, steady flows is

PL= M, + bl + 2 {(1 + —,—,—) 2206+ )

(80" + (B2n)?
-o-n(t-g ()

—y- 1)2(1 -2 f—) $ssfrm

1 2
+(y—-1)2<-[—,;—2 >( ’3}:0 (34)

Here, u = u/u., is the shear viscosity coefficient, 1 = 4/, the
secondary viscosity coefficient, u” = 2u + A the longitudinal!®
viscosity coefficient, k = k /k, the heat condugjvity coefficient,
C, the coefficient of specific heat at constapg pressure, and
P? = C,u"/k the Prandt! number based on longitudinal viscos-
ity.!® The coefficients g, 4, and k are assumed| fo be constants.
It is now obvious that the V-T equation [E (29)] contains
only the most dominant linear dissipation terg, since all othcr
nonlinear dissipation terms were omitted durifg the lineariza-
tion process. Therefore, it would be appropfiate to compare
the corresponding terms in the artificially dissipative FPE {Egs.
(27) or (28)] and in the PDP [Eq. (34)] rather than in the
linearized small perturbation V-T equation [Bf. (29)]. Conse-
quently, the ratio of terms multiplying (¢,,,) I Eqgs. (27) and
(34) is (Fig. 3)

g AMF

o—o0—0—o—o reference 16
X n=l; M =0.95
+——+——+ n=0; M7=0.95
2.0 LA-A-AA n=l; M =0.80
GC-6-6-6-© n=0; M '=0.80

I
NN nNno

(ALPHA) sss

1.0+ ?

0.0+

_ ! H | +

27 1.0 1. 1.4

(M) *

Fig. 3 Ratio of coefficients multiplying ¢,,, s in the one-
dimensional versions of FPE with the corresponding coefficients in
ADV and in the PDP equation: (M‘),=l.2. Alpu=—2.118; u°/
R, =C =0.00001985; P.=3/4.
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R, Pl Ja R, P; o—-——0—o Teference 16
(M2 —-M? 0.8 M3y D=l M =0.95
x ['—};—- (Mz)"azp] (35) ————t 7=0; M =0.95
s fage = =Y
The ratio of terms multiplying (¢,,¢,,) in Egs. (27) and (34) is g 0.5- G-6-6-6-0 ;
(Fig. 4) o
(M? — MM : e
Cp — j 0.3+
¢s -~ s
Agsnn = ll" 1 P . _',_,,‘,-.z’-‘-'
“2r=-D==(1-2—= . ROt
(} ) Re aZ ( #”> 0.0 - R o
-C M=MY
PG P [ ) (M*)"a"p
2()’—1)7{—'(1—2—;) ’ -0.31-
The ratio of terms multiplying (¢,,)? in Eqs. (27) and (34) is 0{8 1{0 11,2 11.4

(Fig. 5)

(y+ 1) M:+n(M— MY
) {[2—(2 WM+ }

2
5 ” 1
-~ (1 —~)(v— 1)

[(w - M}
x ———————

a

b, 7

It would be ideal to have a,,, = 1, «,,,,, = 1, and @2 = 1 over the
entire range of Mach numbers. Nevertheless, from this com-
pdrison it is clear that the ADV concepts? both generate terms
that do not have the same magnitude and often not even the
same sign as the physical dissipation terms. The true nature
and effect of the introduction of the cutoff Mach number M,
can also be analyzed.

A somewhat different formulation is known as the DFB
scheme,''"!* which modifies the density according to

M 2)"azp]

~ 1 el
Pore =P _5— {p[(¢:]2+(¢n)‘]i}: (38)
Actually, it can be shown that the DFB formulation is equiva-
lent to the ADV formulation (Appendix B).

Artificial Mass Flux Concept (AMF)

Instead of using the artificial density (compressibility)* or
the artificial viscosity? formulations, the AMF®!® concept is
hereby suggested as an aliernative. The basic idea is to up-
stream differentiate not only the density but the entire stream-
wise mass flux at every supersonic point. The objective of the
AMF formulation is to duplicate the physical dissipation as
closely as possible.

The general AMF formulation applied to the mass conserva-
tion can be written as

v-GP) =(.3é,+—f—e‘,)
s on
“{l(pg,) — Cv(pd,).1é, + [pn)é,} =0
From Egs. (12) and (39) it follows that

V(P = (a +a)

: {[:(/"ﬁ:) —Cv (p.\'¢: Mz p:)]é: -+ [p¢n]én} =0 (40)

(39)

(M) >

Fig. 4 Ratio of coeflicients multiplying ¢,.¢,, t
dimensional versions of FPE with the correspondi

s in the one-
coefficients in

ADV and in the PDP equation: (M*),=1.2, A/pl=—2.118; u"/

R, =C =0.00001985; P, = 3/4.

or, finally,
V- (oW) = (3., + (0b)n + Eamr = pl(1 = M

where

!
P=p~— Cv<l "XF)”’ =p - Chp

and the AMF sWitching function f is defined as

. 1
(-5

)¢y + bl
(41)

(42)

(43)

The exact general analytic form of the error (“af|

ificial dissipa-

tion”) term E.nr [EQgs. (20) and (41)] then begpmes

= x 23:)2
EAMF = Cp{.uM2¢:.u - ”le(z - )’)Mz - 2] [ ¢
+aM? d"f + M3 %} (44)
From Eq. (43) it follows that
. 1 (M?),
&= ":(1 - W) Ve (45)
With the help of Eq. (25) this becomes
. 1 ¢
i, = \'_‘(l —F) +v(y + I)‘ﬁ (46)

As a result, the AMF concept produces the foll
form of the modified FPE:

V(W) = pl(1 = Mg, + bl + Cp(vw’

T

pwing general

D
)2

G0+ 1)}(

- v{(Mz - DR -7M2-2] + 3

¢,,¢
¢

s

+ V(Mz —_— (Af2 - 1)¢::)

b

(47)
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The formulation of v could be deduced in a number of ways.”!°

Since the main objective of the AMF is to make the coefficients
multiplying the ¢, term have the same sign and magnitude in
both Eq. (47) (artificial dissipation) and in Eq. (34) (physical
dissipation), then the adequate value for v should be

u” y—1\¢,
—(l+—— 1=
_ R,( + P, )a'

A
LW R .2 (48)
Co(M*=1) Cpa*(M-°—1)
where
B y—1
A=—1i1 49
R, ( * P; ) (49)
The AMF switching function consequently becomes
1 A A1
f=wl-—F=a—s=2 50
a V( M') Cpa*M* " Cpo, (50)

Notice also that the AMF concept [Eqgs. (41), (42), (49), and
(12)] creates a familiar form of artificial density:

p_f ¢II
=p+d—
b.p a*

The nonphysical terms arising from the AMF formulation can
now be written as

¢.|' ¢J.\'¢’l’l + [

f=p—Clp,=p—4A (sn)

G+D
a}(M?-1)

S o + 3
a* a-

2
—(2—7):w2—2]ﬂ+pv,wz - 1>9¢,,}
a A

Eame = A{

(52)

From Eq. (48) it follows that
A [¢pa*(M?—1) —[ppa¥(MP—1) + o.0(a%).]
e lpa*(M? - 1)]?

(A,{2 - l) + ¢xpa2(M2)s
lpa*(M* - 1))?

4

(53)

Implementation of Egs. (10) and (25) [together with the fact
that (¢,)® = a*M*} in Eq. (53) results in

. ‘/12

G+ ] (54)

A ¢ .
L, 2 Y e LR
Vs cpa=(,»12—1)[ ty M1 a*

Introducing Eq. (54) in Eq. (52) results in the desired form of
the AMF formulation

V- (p¥) = pl(1 = My + bon] + A{%

0+ H]e)?
+ [3 +2(y = DM — T—} ——}

1
¢s.u + — ¢J.\'¢nn
a

(5%
PE

We can now perform the comparison of coefficients of the
derivatives generated by the AMF concept [Eq. (55)] with
the coefficients of the like derivatives in the PDP [Eq. (34)]
equation:

- Y (56)
Y

a
=1 57
) (57
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Fig. 5 Ratio of coefficients multiplying (¢,,)* tern
sional versions of FPE with the corresponding coeffi
the PDP equation: (M*), =12, ifu=-2
0.00001985; P, =3/4.

From Eq. (57) it follows that

”

A
a=-L¢ —1)2(1 2 £
Re H )

Notice that the Prandtl number P7, based on
cosity u”, can be related to the Prandtl number
shear viscosity u as follows:

in the one-dimen-
nts in ADV and in
8 u'/R,=C=

(58)

ongitudinal vis-
P,, based on the

»

(59)

From Egs. (49), (58), and (59), it follows thatithe condition for

%,ne = | is satisfied if

]
(y—l)(4——>
P, y —
N T | =2
+[ -

K= -y

r

Since the exact expression should be u” =]

Resnn = 1'

}/ 2y — 1) (60)

u + 4, Eq. (60)

indicates that A = —{2 +(y = 1)/P.]/(2y — l)‘lih order to make

The problem arises, though, with the rat

y of coefficients

multiplying the (¢,,)2 term in Egs. (55) and!(34). Using Eq.
(59), it follows that
11
A[3+2(7 —nmr -1 -
a
] (61)

ag, = .
. I _L G-
R\ Pu) &

follows that the ratio of terms multiplying (¢

2 resulting from

After introducing Egs. (49), (60), and Eq. (ﬁ in Eq. (61), it

the AMF concept [Eq. (55)] and the tetms m
the PDP flow equation [Eq. (34)] is

2 4P, +2; -1 @+D+0)

tiplying (¢3,) in

. l)(¢s) :

or = s (62
1+ G- DEB=4P) G+ D) = 107 ©2)
For diatomic gases (y = 7/5 and P, = 3/4) it fpliows that
196 2
, _196+(4) (63)

1 =7 S
5 6-10,)"
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Fig. 6 Runge-Kutta solution of the one-dimensional form of the FPE
with the ADYV formulation (C = 0.00001985; M. = 0.77, y = 7/5) and
with the AMF formulation (4”/R, = 0.00001985; P, = 3/4).

For monoatomic gases (y = 5/3 and P, = 2/3) it follows that

364+ (6)?
4=

Thus, for AMF formulation the ratio of coefficients multiply-
ing the (¢,,)? term varies over the Mach number range (F ig. 5).
Nevertheless, it has the correct sign. In addition, one-
dimensional versions of the FPE with the ADV formulation
and with the AMF formulation were integrated using the
fourth-order Runge-Kuuia scheme. The shock profiles indicate
éhe shock symmetry resulting from the AMF formulation (Fig.
).

~w al =

(64)

Conclusions

Using strictly analytic tools, it was determined that the com-
monly used artificial density and artificial viscosity dissipation
models for the numerical solution of the nondissipative FPE
governing transonic steady flows produce a variety of addi-
tional terms. Some of these terms are of the same general type
as the terms that exist in a PDP equation. Nevertheless, their
coefficients have often entirely disproportionate magnitudes
and signs, suggesting that the existing artificial dissipation
models give seemingly accurate results because certain artificial
dissipation terms compensate for some of the remaining artifi-
cial dissipation terms.

On the other hand, the AMF dissipation concept offers an
alternative approach, since several of its terms can be matched
with the corresponding terms in the PDP flow equation exactly.
Moreover, the AMF formulation can be easily incorporated in
the existing FPE solvers by introducing a new form of the
switching function given by Eq. (51). The details are given in
the Appendix C.

Appendix A
The artificial density* and the artificial viscosity® con-
cepts are essentially the same* as confirmed by the following
derivation.

Mass conservation with the artificial densify
pressed as

can be ex-

Bu), + (Pv), =(ou+ D), + (v + R),I&=0  (Al)

where
Q = - Cﬁpsu
R' = —Cﬁp:v

From Egq. (10) it follows that

M? q
I(bu_ —ppd)::

It is also easy to show that

¢.u = (]/q2)(u2¢xx + 2uv¢xy + 02¢_)1y

Ps=—p

where
@?=ul+v2=V¢ -Vé

Hence, the elements of the artificial density are

0 = (Cpii/a)u/q) ', + 2uvd,, + v}
R = (Cpii[a®)(v/q)u* e + 2uvd,, + v}

The artificial viscosity>> formulation uses the fo
cated version:

0 = (Coit|a®)(u* ¢y + uvd,))
R = (Cpiija*)uvd,, +v*d,,)

Appendix B

The directional flux biasing (DFB) scheme u

(A2)
(A3)

(A4)

(A3)

(A6)

(A7)
(A8)

)
)

lowing trun-

(A9
(A10)

s the follow-

ing form of artificial density in the locally supefsonic flow:

Pors = (1/6.Xp¢,) — {pl($.)* + (4n)

ﬁDFB =p = (l/¢:){p:¢: +p % [(¢:)2
+ (071712 26,0, + 2040}

Nevertheless, ¢, = 0 by definition. Hence

P

}s (BD)

(B2)

Pore=p —[p: + p(S/P] =p — [p, - p(

Finally,
Pors=p —[1 = (1/M3)}p, = fany

Appendix C
The artificial mass flux (AMF) formulation [ B
recast in the familiar artificial density form, i.e,

(Bds); + (p¢n)n =0

can be written as

AN CIAS

mle QiR
QIR o

1
y M2>] (B3)

(B4)

. (41)] can be

(CH

¢.
C2
¢"} (€2

b

P

 reragren v i

e 2 gye ey mA e e s
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or u v
_5¢: —_p¢n
AR A SRR R K
? _5¢s _p¢n
q g

Nevertheless, ¢, =0 and ¢, = q. Hence
(B, + (p$a)n = (Bu) + (Bv), — [(qu 4%.) (ﬁ ¢,.) ]

x

q
(C4)
Since
¢, = (1/g)(ud. +vé,) (C5)
it follows that
Gox = (1) . +0¢.,) (C6)
Similarly, since
¢, = (1/g)(—vd. +u¢,) =0 (%))
and Eq. (C6), it follows ghat
Gpe = Gny =0 (C8)

Hence, the AMF can be expressed in a typical ADV form:

(Pu); + (), =0 (C9)

where, after combining Egs. (51), (58), and (60), it follows that

p 2y =1 1+2(y -1
=p —— | = Cl10
el [ (y—1>[4—(1/P,>1]¢”( )
or
IR+ -UPG - D,
P=PTR 120 -1 P (1
or
 [1R+G-yPG - 1
p=r [R, T2 -1) p¢,]"‘ (€12

Thus, the AMF formulation requires only one physical input
parameter besides the Prandtl number. This input parameter is
the Reynolds number R,.
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