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Abstract

Using incompressible stagnation, viscous flow
as a testbed, a comparative analysis of the perfor-
mance of the Distributed Minimal Residual (DMR)
method was conducted. The DMR method was
applied to explicit Runge-Kutta time-stepping and to
the implicit Euler integration scheme in an artificial
compressibility code with and without implicit
residual smoothing. Parameters that were varied
included: computational grid refinement, clustering,
and skewness, CFL number, Reynolds number, arti-
ficial compressibility coefficient, frequency of appli-
cation of the DMR, and a number of consecutive
corrections combined. In all of the tests the DMR
:method demonstrated a consistent ability to reduce
ithe number of iterations and the CPU time required.
The DMR was also found to enhance the stability of
the basic algorithms.

Introduction

The DMR method is a new scheme for
improving convergence rates and stability of iterative
algorithms used for the numerical integration of
arbitrary systems of partial differenual equations.
The DMR method belongs to a class of time extra-
polation algorithms’ where each of the L equations in
a system is iteratively updated using a separate
sequence of weighting factors, ©, that are
multiplying corrections, dg, from M preceding con-
secutive iterations.
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Here, superscript n designates the iteration level,
while g are the variables. Thus, in the case of an
iterative algorithm for the solution of a general
system of partial differential equations of the form
(in two-dimensional space for the sake of simplicity)
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‘the local residual, R, at iteration level n+1 is given
by
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J is the Jacobian of a geometric
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Here Q7}" is the solution vector QY =
n+1 n+1

Q2 4L Jij
transformation  9(§,1n)/9(x.y), E';}'] and F';}'l are the
components of the convective flux vector,
D2 (7 QU}') is the dissipation and D (J QF}") is the
artificial dissipation. Assume that the solution at the
next iteration level n+1 is extrapolated from the
previous M consecutive iteration levels. Then, we can
say that

M
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'Here, o's are the acceleration (weighting or relax-
ation factors) to be calculated, 5q™ are the
corrections computed with the original non-
!gccelgratcd scheme during each of the consecutive
ifterations, M denotes the total number of consecutive
iiteration levels combined, and L denotes the total
:numbcr of equations in the system.

{ Optimal values of the weighting factors, w7, are
gdetcrmmcd from the condition that the L2-norm of
;thc future global residual is simultaneously mini-
‘mized with respect to each value of @Y.

; Using Taylor series expansion in artificial time,
n, and_ neglecting all terms that are higher than first
‘order in &n, one gets approximately that
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The global residual for the entire domain can be
defined as

R=3 ®TH-RYY o
ij

.where the superscript T designates transpose

of a vector, so that minimization of
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representing the system of MxL linear algebraic
equations for the L sets of M optimum acceleration
factors . Coefficients ¢ and b are known, since they
are functions of the corrections from M previous
iterations. Let us say that we want to combine
corrections fornm M = 3 consecutive iterations to
extrapolate the solution in an iterative algorithm for
two-dimensional incompressible Navier-Stokes
equations with heat transfer. In this case we need 10
solve MxL = 4x3 = 12 algebraic equations for 4x3 =
12 values of ® after every 10 iterations of the basic
non-accelerated algorithm. .

Earlier publications contain details o the DMR
method as applied to Euler equations of com-
pressible, inviscid flow?3“ and to Navier-Stokes
equations of incompressible, laminar flow without 36
and with”!) heat transfer. The purpose of this paper
is to present an exhaustive and objective evaluation of
the performance of the DMR method as apphed 1o
explicit and implicit algorithms for the solution of
Navier-Stokes equations.

Test Cases

A stagnation-point steady viscous flow
(Hiemenz flow) normal to a solid wall (Fig. la) was
chosen as the test case, since the analytic solution to
the Hiemenz flow is known!?, and the accuracy of the
artificial compressibility'® codes (the explicit Runge-
‘Kutta method and the Euler implicit method) can be
.verified. This test case was used 10 examine the
effectiveness of the DMR method and its sensitivity
1o a variety of flow and grid conditions. The inflow
velocity components (u and v at the top boundary, j =
jmax) and the pressure at both side boundaries (i =
imin and i = imax) were specified by the values from
the analytic solution to the Hiemenz flow. The
remaining variables along the boundaries were
evaluated by using characteristic formulation'. The
flow corresponding to a Reynolds number of 400
based on the free stream velocity and the domain
height!? was computed with and without the DMR
method applied to explicit and implicit integration
schemes. The clustered computational grid consisted
of 60x29 cells (Fig. 1b) with maximum aspect ratio
ARppay = 6.65 at the bottom wall.

In case of the explicit Runge-Kutta (RK)
method, the maximum allowable CFL number of 2.8
was used, while the von Neumann number was
o = 0.4. The Implicit Residual Smoothing (IRS)
method!’ used CFL = 5.0. Smoothing parameter
6 = 1.0 was used in both x and y direction. A small
amount of fourth order artificial dissipation
(e = 0.05) was added to obtain a smooth solution’®,
Using numerical experimentation it was found that
the optimal antificial compressibility coefficient for
this test case was P = 2, and that the fastest
convergence is obtained when the DMR method is
applied every 10 iterations by combining corrections
from 3 consecutive iterations.

A first order Euler time integration impheit
code was also exercised for the test case of the
Hiemenz flow with the same flow and grid conditions
as in the test case for the explicit code, except that
CFL = 10.0 and € = 0.25 were used. The optimal
value of the anificial compressibility coefficient was
found by numerical experiments 1o be B=5 The
DMR method was found to give the fastest con-
vergence when applied every 5 iterations by com-
bining weighted corrections from 4 consecutive



iterations. Figure 2 shows the computed results
(using both explicit and implicit codes), demon-
strating an excellent agreement with the analytic
solutions.

Performance Analysis

; The convergence properties of the antificial
.compressibility method and the DMR method depend
ialso on the artificial compressibility coefficient, B.
'To find the optimal artificial compressibility
\coefficient for this test case, a series of computations
lwere made. The Reynolds number was kept at Re =
1400 and the same grid was used where ARpmax= 6.65.
‘The RK method was tested with the DMR and with
ithe IRS. The results are summarized in Fig. 3 and
'Fig. 4. The number of iterations and the CPU time
.are the values needed for the initial residual to be
reduced by 10 orders of magnitude on CRAY-YMP
‘computer. Both non-accelerated schemes show high
dependency on the artificial compressibility
coefficient, f. When combined with the DMR
method, they are considerably less sensitive to the
artificial compressibility factor . For the entire
range of P, it was found that the DMR method gives
better convergence rates showing 25-50% reducton
in CPU time with the RK method and 25-60%
reduction in CPU time with the Euler implicit
method. The combination of the DMR method and
the IRS was also applied, but failed to give further
reduction in CPU time.

The success of the DMR method also depends
on how often the DMR method is applied and how
many consecutive solutions are combined each time.
Tables 1 and 2 indicate that the best convergence
rates for this test case were obtained by applying the
DMR method every 10 iterations with weighted
corrections from 2 consecutive iterations combined
for the RK method, while application of the DMR
method every S iterations with weighted corrections
form 4 consecutive iterations combined gives the best
results for the Euler implicit scheme. Due to the
progressive increase in the memory size, combining
corrections from more than 5 consecutive iterations
was not considered here. The optimal values of the
artificial compressibility coefficient, B, were used
for both explicit and implicit methods.

The dependency of the DMR method on the
various flow conditions and grid conditions were
explored through a number of computations. To
isolate the effect of the DMR method, the artificial
compressibility coefficients, B, were kept at their
optimal values for both the explicit and the implicit
method. The DMR method was applied by using the
optimal frequency of the DMR applications and the
optimal number of combined consecutive solutions
for both basic methods. The other parameters, such
as CFL number and von Neumann number, were
kept the same as in the previous tests. The Reynolds

number of 400 and maximum grid aspect ratio
ARpmax = 6.65 were used as basic values, unless

specifically mentioned for cach test case. For the
sake of comparison, the IRS method was tested along
with the RK method. The purpose of these senies of
tests was 10 show the dependency of performance of
the DMR method on each of these parameters.

The equivalent speed of sound, a, in incom-
pressible flows is a function of not only the solution,
but also the grid conditions.

a=«/v2+ B(Ls + &) 9)

Here U is the contravariant velocity component
normal to a constant § grid line, and &y, Ly are
metric derivatives. It is expected that the con-
vergence behavior is also significantly affected by the
grid clustering and grid skewness. First, the per-
formance of the DMR method was examined as a
function of the grid clustering toward the bontom
wall. Figures 5 and 6 show the number of iterations
and the actual CPU time required by the RK method
and by the Euler implicit method to reduce the initial
residual by 10 orders of magnitude as a function of
the grid aspect ratio. As expected, the basic codes
suffer from the rapidly deteriorating convergence
rates with the increase in grid clustering. The
effectiveness of the DMR method in conjunction with
the RK method deteriorates also with the exceeding
grid clustering. Compared to the performance of the
DMR method, the IRS offers less savings. Actually,

the IRS fails to converge with a highly clustered
grid, thus showing high sensitivity to grid clustering.
“The reduction of the sensitivity of the IRS to gnd
clustering could be atternpted by allowing the
residual smoothing parameter 8 to vary throughout
the domain!?. In the present study, however, this
cumbersome and unreliable approach was not
adopted. On the other hand, the DMR method gives
consistent acceleration of the Euler implicit method
in the range of grid aspect ratios where the Euler
implicit method converges, although the number gf
required iterations rapidly increases with strong grid
clustering.

The skewness (non-orthogonality) of a compu-
tational grid also influences the convergence
behavior of an iterative scheme, since the equivalent
speed of sound depends on the grid skewness as well
as the grid clustering. The sensitivity of the DMR
method to grid skewness was examined by inclining
vertical grid lines shown in Fig. 1. The grid skew
angle, ¢, is defined as the angle between the vertical
and the £ = constant grid lines.  As can be seen in
Figures 7 and 8, both explicit and implicit schemes
are less sensitive to the gnd non-orthogonality than
to the grid clustering. The DMR method with the
RK method gives consistently superior convergence




rates compared to the IRS method. For the skew
angle larger than @ = 10° the IRS method fails to
converge, while the combination of the DMR method
with the IRS converges until @ = 15°, indicating the
stabilizing effects of the DMR method. When applied
alone, the DMR method successfully accelerates both
the RK and the Euler implicit method for skew
angles as large as ¢ = 30°, offering 35-55% re-
duction in CPU ume.

In general, the convergence rates of iterative
algorithms vary as the number of grid cells increase.
Three levels of grid were used to examine the effects
of the grid refinement. The grids consisted of
30x15, 60x30, and 120x60 cells, and were generated
with the same clustering function'®. The results are
summarized in Fig. 9 and 10. Note that the vertical
axes of these two plots use logarithmic scale, while
the horizontal axis is the ratio of the average size of
the grid cell to the average size of the coarse gnid
cell. The DMR method shows the same general trend
as the RK method, the IRS, and the Euler implicit
method. The results of the DMR method with the
Euler implicit method on the finest grid were
obtained by applying the DMR method every 10
iterations with weighted corrections from 3 con-
secutive iterations combined, since the DMR method
failed to enhance the convergence rate on the finest
grid when applied every 5 iterations with corrections
from 4 consecutive iterations combined. This
demonstrates the importance of the choice of
frequency of the DMR applications and the number
of consecutive iterations combined.

A series of test runs were made in order to
show how the DMR method behaves as the Reynolds
number varies. Figures 11 and 12 summarize the
results. These figures show the number of iterations
and the CPU time required to reduce the initial
residual by 10 orders of magnitude. Both explicit
and implicit methods show best convergence when
the Reynolds number is approximately 500. This
behavior of the basic schemes can be understood by
noticing that the non-skewed grid clustering was
optimal for this Reynolds number. The Euler
implicit scheme appears to be more sensitive to the
variation of the Reynolds number than the RK
method. While IRS is more costly than the DMR
method and diverges for Re > 500, the DMR method
maintzains stability and gives 50-70% reduction in
CPU ume.

The performance of the RK, the Euler
implicit, and the DMR method varies also as the CFL
number varies. Figures 13 and 14 show that the
DMR method accelerates the basic schemes over the
entire range of the CFL numbers used. It is notice-
able that the IRS converges slower when compared
with the RK method at the same CFL number. For
CFL numbers greater than 12, the non-accelerated
Euler implicit method fails to converge. When
combined with the DMR method it converges.

Forv

both explicit and implicit schemes, application of the
DMR method decreases sensitivity to the choice of
the CFL number.

The accuracy of the schemes was examined on
the three levels of computational grid after the
residual was reduced by 10 orders of magnitude.

“The first column of the Table 3 and Table 4 shows

the ratio of the average length of the grid cell 10 the
average length of the cell on the coarse grid. The
second column shows the L-2 norm of the combined
relative error, and the third column shows the L-2
norm of the point-averaged error of the schemes. As
can be seen in Tables 3 and 4, both the RK method
and the Euler implicit method show the convergence
characteristics typical of the first order schemes,
even though the second order spatial differencing
was used for both schemes in the computational
domain. This can be undersiood by noticing that the
first order boundary treatment was used.

Conclusions

Based on the extensive testing of the DMR
method using viscous incompressible Hiemenz flow
as an example, the following conclusions can be
drawn. The DMR method performs equally well
with explicit and implicit algorithms. It consistently
provides reduction in the number of iterations and
the computing time, while requiring additional com-
puter memory for corrections from up to four
previous consecutive iterations. The method 1is
capable of significanty increasing reliability of the
basic algorithms by reducing their sensitivity to the
choice of various user specified flow field
parameters and the computational grid quality.
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ax Q- Q. Q- Q,lis
A Qi number of gnd
points
1.0 3.71x10 1.29x10%
0.5 8.84x10% 1.54x10%
0.25 2.19x10% 1.92x10¢
Table 3 Convergence test for the Runge-Kutia ime stepping
method
A I1Q- Q. Q- QM
Axg I Q,ll, number of grid
‘ points
1.0 3.43x10% 1.20x10°%
0.5 8.35x10° 1.46x10°%
0.25 2.24x10% 1.96x10%

| Table4 Convergence test for the Euler implicit method

\
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(analytic solution)
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Computational grid

Fig. 1 An H-type computational grid of 60x29 cells
used for Hiemenz flow computations
(AR = 6.65)

(a) Isobars (RK method)

Isobars (Euler implicit method)

(b)

Fig. 2 Computed solutions for Hiemenz flow
(Re = 400)
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