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Abstract—A new exact analytical model was derived for the irrotational flows of compressible fiuids when
the effects of heat conductivity and molecular viscosity are allowed. This new model satisfies conservation
of mass, momentum and energy exactly. In addition, it satisfies physical irrotationality conditions.
Compared to the classical small perturbation viscous-transonic (V-T) equation, the new physically
dissipative potential (PDP) equation contains a number of additional terms that are highly nonlinear. The
new model is derived in a general vector operator form and in a scalar canonical form. The PDP equation
is able to produce shock waves of different strengths depending on the ratio of secondary and shear
viscosity coefficients. The one-dimensional, steady flow version of the PDP equation was integrated using
a Runge-Kutta scheme and different values of the ratio of the two viscosities. The computed shock
structures are symmetric. Rankine-Hugoniot shock jumps were obtained when Stokes’ hypothesis was
used in the PDP equation and isentropic shock jumps were obtained when the longitudinal viscosity was
negligible.

INTRODUCTION

An exact analytical model for nondissipative, irrotational, inviscid, heat nonconducting, com-
pressible fluid flow is the full potential equation (FPE). During the late forties, Cole [1] derived
a new analytic model for potential, steady, two-dimensional flows by partially incorporating heat
conductivity and secondary viscosity effects. Linearization based on small perturbation theory is
a possible reason why this original viscous—transonic (V-T) equation retains only the most essential
physical nonlinearities. Actually, as clearly stated in the works of Sichel [2, 3], the V-T equation
represents a combination of the classical transonic small perturbation potential flow equation
which contains the most essential nonlinearities of inviscid flows, and the Burgers equation which
contains the most essential linear dissipation effects. Ryzhov and Shefter [4] used physical
arguments to justify small perturbation linearization processes used in the derivation of V-T
equations for planar and axisymmetric flows. These authors succeeded also in obtaining analytic
solutions for V-T equations governing transonic flows about thin airfoils, thin projectiles and
through shock waves. Chin [5] successfully integrated the V-T equation numerically for a steady
two-dimensional transonic flow around an isolated airfoil.

The objective of this work is to derive an exact physically dissipative potential (PDP) flow
equation without resorting to linearizations. Thus, the intention is to create a physical model that
is more complete than the classical V-T equation and the FPE, and which is based on a single
dependent variable.

CONSERVATION LAWS

The equation of state for a thermally perfect gas
p=pRT (1

links thermodynamic static pressure, p, density, p, and absolute temperature, T. From equation
(1) it follows that

Inp=Inp+InR+InT. 2)
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For a perfect gas, the specific gas constant is R = const. Then, the total time derivative of the above
equation becomes '

1Dp 1Dp 1DT

7D =D T TDr @
Mass conservation can be expressed as
Dp
p(V-V)= ~D; T™ C)

where m1 designates the rate of generation of mass per unit time per unit volume and V is the local
fluid vetocity vector. After introduction of equations (3) and (1), the mass conservation equation
becomes

pDT 1 Dp
V)y=>Z — —— — .
PV =T "Rr D T )
Energy conservation can be expressed as
Dh Dp ) L p V'V
—_X_o . . v N - 221}
"D " Ds +V-(kVT)—-V-q,+ Q0 m<e+p 7 ) 6)

Here, e is the internal energy per unit mass, 4 is the static enthalpy per unit mass, k is the heat

conduction coefficient of the fluid assuming Fourier’s law, @ is the viscous dissipation function,

q, is the time rate of radiation heat flux vector and Q is the time rate of internal heat generation.
The viscous dissipation function @ is defined in its vector operator form as

@ =2u{V-[(V-VI)V] +3(V x V) = (V-V)(V-V)} + A(V- V), M
where u is the shear viscosity coefficient and 1 is the secondary viscosity coefficient. For calorically
perfect gases

h=CpT=e+§, @®)

where the specific heat at constant pressure, C,, is constant. Therefore, equation (6) divided by

C,T can be rewritten as
p DT 1 Dp 1 . . . V-V
—— =t — | O+ V- (kVT) -V - —— .
D 1o Ter| 2tV VD -V 0 - 2 )

Substitution of equation (9) (energy conservation) in equation (5) (mass conservation) results in

(€)

1 1 \Dp 1 . V-V
V= — == | —+—=——=| (kVT)—V-4g —m{h——— . (1
p(V-V) (CPT RT)D:+CPT[ +V-(kVT)—-V-q,+Q m( 3 >]+m (10)
Note that
1 1 -1 1
)= () (11)
C,T RT yRT yRT a
where y = C,/C, and a is the local isentropic speed of sound. Then, equation (10) becomes
I D -1 . V-V
pOVVy=—— 24 o 4 V-V = Vg + O —mi[h—— | [+ (12)
a* Dt a 2
Momentum conservation can be expressed as
DV
Vp = pb—p—Dl— —mV + {2V(uV-V) = V x (uV x V) + V(AV-V)}, (13)

where b is the body force per unit mass. Pre-multiplying equation (13) with V and using the vector
identity
V-V

(V-V)V=V<—2—>—V><(VXV), (14)
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it follows that the total differential

Dp dp
o = a+(V V)p (15)

can be written as

Dp_ap ov Vv )
BT [Vb Va— (VV)( >+V(Vx(VxV))]

+V-2VUV-V) =V x (uV x V) + VAV-V)} —mV-V. (16)

Hence, mass conservation [equation (12)] which already includes energy conservation, becomes
after inclusion of momentum conservation [equation (16)]:

(e fov- k()]
=—;71{p[v-b+V'(V x (Vx V)] + V-2V(uV-V) =V x (uV x V) + V(AVV)]
—(y——l)|:¢ +V-(kVT)=V-4,+Q — m<h—¥>:|}+rh(l+M2), 17
Here, the local Mach number is defined as M = |V|/a. Since a’ =yRT, note that

. v—l V-V _ y—1 y—1
——— |+ +M)|= I L Ve 2|
m[ e <h 5 > ( )] m< yRTCpT+ M +1+M> 18)

2
Also, since
C,= ;)TR, (19)
it follows that equation (18) can be rewritten as
y;l[—rh(h—%X>:|+m(1+M2)=mM2(%—l). (0)

Hence, mass conservation [equation (17)] can be written as

1op 1oV, V-V
e v a7

=—_Tl {p[Vb+V- (VX (VX V)]+V-2V(uV:V) -V x (uV x V) + V(AV-V)]}

)’a_zl[cp +V~(kVT)—V-q,+Q]+mM2<¥>. @)

Notice that equation (21) is an exact formula for mass conservation that also implicity satisfies the
exact momentum and energy conservation equations for a calorically perfect gas.

IRROTATIONALITY CONDITION

Gibbs relation expressed in its vector operator form as

1
TVs —Vh = - Vp 22

)

can be expanded by adding
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Vv 1 V-V

Introduction of equations (13) and (14) into equation (23) results in an equation similar to the
Crocco-Wazsonyi [6] equation:

to both sides, i.e.

oV
TVs—Vh0=—Vx(VxV)+—6—t——b

—;—1) {2V(uV-V) =V x (u(V x V)) + V(AV-V) — mV}. (24)

This equation relates thermodynamic quantities and flow kinematics. It is valid for unsteady flow
of a calorically perfect, compressible, heat conducting, viscous fluid under the influence of body
forces and allows for mass sources and sinks. Here, h, = h + (V-V/2) is the stagnation enthalpy
per unit mass. If body forces, mass generation and unsteadiness are neglected, if the flow is assumed
to be irrotational (V x V = 0), and if u, 4 and k are assumed constant, then equation (24) becomes

TVs = — % V(V-V)+ Vh,, 25)

where u” =2u + 4 is the longitudinal [3] viscosity coefficient. This means that the flow can be
potential (V = V¢), although nonisentropic and that the entire flow field can be described with a
single variable called the velocity potential function ¢. This general concept of nonisentropic
potential flows was clearly described by Klopfer and Nixon [7]. Actually, “the assumption of
irrotational flow, which is a key step in the present development, cannot be rigorously justified a
priori” [3]. Thus, the following derivation is “based on the concept of a fluid which has only
compression viscosity so that it can still slip over the airfoil surface as in inviscid flow” [3].

THE PDP FLOW EQUATION

After neglecting body forces and mass generation, momentum conservation [equation (13)]
becomes
v

o +(V-V)V = _117 Vp +% {2uV(V-V) — u(V x (V x V)) + AV(V-V)}. (26)

Using the vector identity [equation (14)] in equation (26) and assuming that the flow is irrotational
results in

op Vo V¢
—f V[ at T2
By multiplying both sides with a unit vector collinear with the gradient, equation (27) will become

a scalar equation. After taking partial derivatives of both sides with respect to time and dividing
both sides by a?, it follows that

-%[‘92‘%"’ (V""V"’ﬂ— Lo _ L2 vy (28)

J =Vip —u"V¢). @7

ot ot 2 T patdt pator
Finally,
1o 1_ 0V 1[ 0% d o (Vo Vo) 1 d o
Ly =7 — —_T —_— \% 29
patdt a’* ot az[ or? +Ve ot (V¢)+6t 2 +pa2 ot Wve) @

should be substituted in equation (21) when the flow is irrotational.

Hence, the general vector operator form of mass conservation [equation (21)] in the case of an
irrotational flow of a calorically perfect gas allowing for heat conduction, shear viscosity and
secondary viscosity (but neglecting body forces, radiation heat transfer and mass and heat sources)
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becomes

s )

ot? ot
= ——Vd; V(n" Vo) + kV2T ——E V2¢
VI)V¢) — (Vo -V)(V-Vo)] + A(V29)*}. (30)

CANONICAL FORM OF THE PDP EQUATION

The above equation can be expressed in a locally streamline aligned [8] cartesian coordinate
system (s, m, n). Here, s is the streamline direction and n and m form a plane perpendicular locally
to the streamline. The velocity components normal to the streamlines are zero (¢,, = ¢, = 0) by
definition. By introducing the constant coefficient of longitudinal [9] viscosity p” =2p + 4, it
follows that equation (30) transforms to

1 P 2 2 2
p {(cbm + G+ b) = ~5($u+ 26, 0) — <¢S F bzt ‘f’"a_an >< ¢l + ¢2m + ¢>}

= —% H"(¢sss + ¢mms + ¢nns) - %f (d’ssr + ¢mm1 + ¢nn!)

"

wm Ot 205 P + 205G + 200 Pn)

3nn—¢m¢mm— ¢ss¢nn ¢mm¢nn)+ k(Tss+ T + Tnn) (31)

All quantities will be normalized with their critical thermodynamic values. The absolute tem-
perature normalized with the critical temperature is

T = - I @i gi+ 9, (32)
where the overbars designate dimensional quantities. Then
Ty= — @ — D@L+ b+ o+ G uns + D2 + Puuss)s (33)
Tpm=— G = (D% + O Pomm + Don + P Brmm + P iom + B Prm) (34)
and
Ton=— @ — D@L+ $Pn+ G2t BB + Do+ Pn o). (39)

Since ¢,, = ¢, =0, ¢, = q;s/d* =M,, a’= ‘72/‘31’ p= p-/p-*’ B=fg, p"=R" Ay and k = E/Eco’
then the nondimensional mass conservation [equation (31)] can be written as

U1 = M0, + b 60— 3Ot 26,6}

1

=R_{ ¢[,,+(y_1) ](¢m+¢m+¢m)
e a

l( ——>(¢ + b
-1

+1 -
a
_? <_Ck__2u>(¢§,,,+¢ + L) — 2(¢s:,+¢mm,+¢m)} (36)

p

(ﬂ” - 2“)(¢ss ¢mm + ¢ss ¢nn + ¢mm ¢M)

2

a
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Since
G-n_1
yR c,’
it is convenient to define a longitudinal [3]} Prandtl number Pr’ as
1k,
Pr  C,a"

and the Reynolds number Re as
Re=p,a,L/j,.
Hence, the nondimensional formula for mass conservation in an irrotational flow of a heat

conducting, calorically perfect, viscous gas without body forces, radiation heat transfer and mass
sources or sinks is

(1= M0+ b b= 130+ 26,80}

n’ @, y—1
=L 1 Py
Re{ a2< + Pr”

#27 (1= ) @uban + Gt i)

>(¢m + G+ bo) +¥(1 - ;,%)(qs; + O+ B3,)

a

1

—21%1(—,,—3,,>(¢3m+ 024 1) — L (Gt S + %)}. 37)
a Pr" u a

Notice that p” in this equation is actually i”/a. We will refer to equation (37) as the PDP flow
equation. If the flow is steady and two-dimensional, equation (37) reduces to

IR RSV R P
p[(l—M2)¢u+¢m,]—§;{—-s<1+*P;r>(¢sss+¢m>+ z(‘ w)‘"’“* Pm)

a a

y—1 2 y—171 2 )
-~ - — = . (38
+ 2 aZ <l ”N )¢L\'¢Im 2 az ( Pr// #" sn ( )

Again, note that equations (37) and (38) satisfy energy, momentum and mass conservation and
that they were derived without the assumptions of small perturbations and the consequent
linearizations. When the longitudinal viscosity is negligible, the entire r.h.s. becomes zero and
equation (38) converts to a nondissipative FPE. This highly nonlinear expression can now be
compared with the classical V-T small perturbation equation [3]

.~ o~  —K —1\ .
(KvKoo - ¢x)¢xx + ¢yy = R—e <1 + ),Tr;?_ >¢xxx’ (39)

where
K=[(y+)ML]P K,=(1-M2)

and 7 is half the thickness ratio used in the small perturbation theory.
A more complete model is known as the pseudo-transonic [9, 10] V-T equation,

[1 - Mgo - (V + 1)1‘4‘20 $x]$xx + $yy = _64;xxx' (40)

Here, 6 > 0 is a small diffusion coefficient and é’; is the perturbation velocity potential: |d3'x|<< 1. It
is obvious that although the linear dissipation terms in both equations are practically the same,
the PDP equation is considerably more complex than any of the V-T equations, since the PDP
equation retains all the nonlinearities.
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ADIABATIC SHOCK CONDITIONS

The conservation of energy [equation (6)], with the assumption that ¢, = Q = =0, can be
written as
oh 1(0
(V~V)h=—E+;{a—l:+(V-V)p+¢+V-(kVT)}. (41)

The conservation of momentum [equation (13)] can be expressed as
v
Vp = —pE —p(V-VV+2V(uV-V) =V x (uV x V) + V(AV-V)} 42)

if the body forces are negligible. Substituting equation (42) into equation (41), using the vector
identity [equation (14)] and keeping only the steady terms, yields
pV - Vhy=V-{u'V(V-V) —uV x (Vx V)} + @ + kV’T + pV-(V x (V x V)). 43)

For one-dimensional flow (which is always irrotational), the nondimensional version of equation

(43) reduces to
dhy _y—1( 1\(¢} u
dx - 0 (1 Pr//>< ¢X + ¢xxx> R_C (44)

Equation (44) indicates that for steady, one-dimensional flows the stagnation enthalpy, 4,, remains
constant through a shock wave only when Pr” = 1 is satisfied. Since Pr’ = Pr u”/u and Pr = 3/4 for
a diatomic gas, it follows that this is true only when Stokes’ hypothesis u”/u =4/3 is used.
Nevertheless, Stokes’ hypothesis is correct for monoatomic gases only.

NUMERICAL EXAMPLES

With equations (44) and (25) the entropy variation through a normal shock can be found. This
equation was numerically integrated assuming Stokes’ hypothesis (Fig. 1). The final entropy jump
across the shock wave satisfies the Rankine-Hugoniot jump condition [11] for entropy. Never-
theless, the entropy exhibits a sharp spike in the middle of the shock (Fig. 1). From the entropy
generation equation, it is easy to explain this phenomena. The viscous dissipation @ is always
positive. The heat flux (kV2T) is positive only until the middle of the shock; downstream from the
middle of the shock it becomes negative, thus lowering the entropy.

0.060
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ENTROPY
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0.000

1 | 1 1 |
0.0000 0.0005 0.0010 0.0015 0.0020
X

Fig. 1. Entropy variation through a one-dimensional shock produced by the PDP equation with Pr = 3/4,
y=14, Aju=-2/3, Re=10° and: (¢,); = 1.15 (A—A); (¢,), =120 (+ +) (¢,), =125

(x ——x).




590 G. S. DULIKRAVICH and S. R. KENNON

T T T
0.9000}- —
~N
go.sooo— ~
0.7000} -
| ! 1
0.6000 .10 1.20 1,30
M*) 1

Fig. 2. One-dimensional shock jumps for the FPE (O——Q), the PDP equation with Alp=—=2/3
(A——A) and for Rankine-Hugoniot shocks ( + — + ).

For the purpose of testing the accuracy and evaluating the sensitivity of the PDP equation (37),
its one-dimensional steady version was used:

W Ne, w1,
1-MYp = -1+~ % £ 1—— )g2..
p(1— M), Re( + )azqsm+Re = ( 5 )9 43
Since
p(1-M) =5 @9} (46)
1.20

1.00
*
=
0.90
Aju= 3
Aju= 1
e, R/bea0.67 /i~ 0
Aju=-1.9
0.80— Afu==2.11 | .
0.000 0.002 0.004 0.006
X

Fig. 3. Shock profiles computed with different values of A/u. Notice the varying shock strength and
thickness.
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Fig. 4. Computed values of (M), behind a normal shock with various values of A/u and (M), = 1.2.
Stokes’ hypothesis (i/u = —2/3) produces Rankine-Hugoniot shock jumps.

and the local speed of sound, a, is defined in equation (32), it follows that equation (45) after
multiplication by a® can be rewritten as

u’ y —1 u” 1 ) y+1 5

—R—e<l+ Pr’ >¢x¢xxx+Re(y_1)<1—W>¢xx_p 2 (1_¢x)¢xv'—0 (47)
Equation (47) was numerically integrated using a fourth-order accurate Runge-Kutta scheme with
step size Ax =0.000001. The values for Pr and Re were Pr=3/4 and Re = 10°. Values of the
physical properties y, k, y and Pr are well-documented in the existing literature, but experimentally
obtained values for 4 and Pr” differ by orders of magnitude. For example, Stokes’ hypothesis states
that the bulk viscosity is zero [ug = (2/3)u + 4 = 0]. Hence, 4 = —(2/3)u is the most frequently used
value for the secondary viscosity. Nevertheless, from data compiled by Truesdell [12], pp = (2/3)u
for air—suggesting that 41 =0.

To investigate the effects of different values of A on the solution of equation (47), several
computer runs were performed. When equation (47) is solved using Stokes’ hypothesis
(/i = —2/3), then the results will match Rankine-Hugoniot shock jumps (Fig. 2). In order to
illustrate the influence of secondary viscosity, 4, on the magnitude of the shock jump, a number
of numerical tests were performed with various values of 2/j1 and a fixed value of upstream critical
Mach number, (¢,), = 1.2. The results of this comparison (Fig. 3) confirm the intuitive expectation
that smaller values of A cause steepening of the shock wave since u” = 2u + 4 becomes negligible.
The PDP equation is capable of producing shock waves of different strengths, where the variation
of the critical Mach number (¢ ), downstream of the normal shock caused by different values of
the secondary viscosity A is shown in Fig. 4. Notice that the Rankine-Hugoniot jump condition
is obtained when 1/ji = —2/3 and that the isentropic shock jump conditions [11] will be obtained
when 1/i =~ —2, i.e. when u”~0. Thus, the PDP equation accepts Rankine-Hugoniot and
isentropic shocks as a part of its general solution.

The PDP equation represents an essentially parabolic partial differential equation [3]. Thus, the
two- and three-dimensional versions of the PDP equation can be discretized by applying the same
difference formulas everywhere [5]. As demonstrated by Chin [5], there is no need for an explicitly
added artificial dissipation when integrating the multidimensional V-T equation. On the basis of
this, it is anticipated that no artificial viscosity will be needed when integrating the multi-
dimensional PDP equation. The PDP equation can be an invaluable tool for analyzing the artificial
dissipation [13] and generating new physically based models [13, 14] for the artificial dissipation
used for the integration of the FPE equation.
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CONCLUSIONS

A new analytic model was derived that combines mass, momentum and energy conservation in
a single PDP equation for nonsteady, irrotational flow of viscous, heat conducting, calorically
perfect gases without body forces. The governing equation is a third-order highly nonlinear partial
differential equation which accurately predicts strengths and structures of the shock waves. This
equation can be used instead of the FPE as a more appropriate model for transonic shocked flow
computations and especially for the more appropriate modelling and analysis of numerical
dissipation. In addition, it can be used in nonlinear acoustics where it is important to accurately
predict the structure and attenuation of sound waves.
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