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ABSTRACT

A conceptually new analytic criteria for detection of
fluid flow separation in general multidimensional, steady and
unsteady, compressible and incompressible flow situations has
been introduced, verified and generalized. The new
formulation offers new possibilities for the inverse design of
aerodynamic shapes when flow separatin should be prevented
over a range of operating conditions. Specifically, the
generalized analytic formulation can be easily used to check
the reliability of any specified surface pressure variation.
Furthermore, it can be used for the derivation of analytic
expressions for families of acceptable surface pressure
variations to be used in inverse design of aerodynamic
configurations.

INTRODUCTION

Methodologies for determining appropriate shapes of
aerodynamic objects can be separated in two distinct groups.
The first group involves methods for the flow field inverse
design where certain criterions are to be satisfied in the flow
field. An example is the shock-free flow field design using
fictitious gas formulation [1,2] where the aerodynamic shape
will guarantee an entirely shock-free flow field, but will not
enable us to prescribe surface velocity distribution.

The second group of methods belongs to surface inverse
design where certain criteria are to be satisfied on the
surface of the object irregardless of the possible consequences
in the flow field. An example is the method developed by
Volpe [3,4] which allows specification of quite arbitrary
velocity variation along the surface of the object. At
transonic speeds, although the prescribed surface velocity
variation is, say, shock-free, a "loose-foot" or “hanging” shock
may appear in the flow field above the concave part of the
surface underneath the supersonic bubble.

Most of the research in aerodynamic shape inverse design
and optimization has been devoted to the development of new
techniques for deducing a shape of the object, assuming that
the specified velocity distribution along the surface is correct.
The problem of determining the best velocity distribution has
not been resolved yet, though Ives [5] offers a number of
useful suggestions.

The main problem facing any new aerodynamic design is
flow separation, which can in reality drastically reduce the
high expectations based on a specified surface velocity
distribution [6].
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A number of amalytic criteria have been developed for
enabling a designer to specif Y a more reliable velocity
distribution., Probably the best review of the existing criteria
for two-dimensional, incompressible, steady, laminar separation
is contained in an excellent paper by Zhang {7). He also
offers a new analytic separation criterion for such flows.

Nevertheless, for three-dimensional flows, and for
compressible flows, there are no known universal criteria for
flow separation that can be easily utilized when prescribing
the desired surface velocity distribution. Development of such
new universal flow separation criteria for general three-
dimensional, compressible, unsteady flows is the objective of
this work.

MINIMUM KINETIC ENERGY RATE CRITERION

A conceptually entirely new approach to flow separation
was suggested by Sih [8] in his enlightening description of the
phenomenological link between fracture mechanics and flow
separation. He suggested that in the case of a thin viscous
boundary layer “the inviscid flow around a solid body coupled
with a criteria of separation may provide sufficient
information to forecast separation." Consequently, Sih 81
postulates that “separation occurs at the location near the
boundary where the rate of increase of potential energy
density is a local maximum," concluding that "it is easier to
search for minima in the rate of decrease of kinetic energy
density” than to find the maxima of the increase of the
potential energy. He then proceeds by demonstrating this
principle on two examples: a steady, incompressible,
irrotational flow around a circular cylinder and a flow around
an elliptic cylinder at different angles of attack. The
predicted locations of separation points using his criteria are
in a reasonable agreement with experimental data.

In order to verify this concept, several published
experimental data for measured surface pressure distributions
over different shapes have been analyzed by computing and
plotting the kinetic energy rate variation along the surface.
The results were quite convincing. Figures 1-3 demonstrate
that general flow separation criteria is valid over a range of
Reynolds numbers for a steady incompressible flow over
circular cylinder [9,10,1 1].  Figures 4-6 reconfirm the
reliability of the method by applying it to flows over an
elliptic non-lifting cylinder at different Reynolds numbers [11].
The concept also gives reliable prediction (Figs. 7-8) of
separation points for high Reynolds numbers and NACA 663-
018 airfoil shape [12]. It was interesting to see that Sih’s
concept works remarkably at transonic speeds as well.
Careful numerical results obtained by Olling and Dulikravich
(13] for a transonic, steady, shocked flow around a RAE 2822
airfoil [14] shows the experimental surface velocity (Figure 9)

distribution and shows the corresponding variation of



the kinetic energy rate (Figure 10). Sih’s concept
clearly detects post-shock separation and a tendency
toward leading edge separation as it was confirmed by
numerical experiments [13].

Finally, the new concept was tested against
three-dimensional experimental results for a very low
Reynolds number incompressible fiow over a rectangular
wing at different angles of attack [15,16). The
experimental results at different angles of attack are

summarized in Figures 11 and 12 where S and R
designate  separation and  reattachment points,
respectively. A more complete summary of

experimentally observed locations of S and R points is
presented in [15,16]). The corresponding
plots of quasi-twodimensional variation of the kinetic
energy rate are shown in Figures13-14 demonstrating
the wvalidity of Sih’s concept for detection of
separation points. The following general analytic
formulation is valid for multi-dimensional, steady and
unsteady, compressible and incompressible flow
separation detection based on a minimum variation of
the kinetic energy rate.

THEORETICAL FORMULATION

The sum of kinetic energy, T, and potential
energy, U, is a constant at any instant of time
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Local instantaneous value of the kinetic energy is
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where p is the local fluid density, and
velocity vector is defined as
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Here, (s,n,m) form a locally streamline aligned
Cartesian coordinate system. Then, total time rate of
change of the kinetic energy is
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This can be rewritten as
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In the case of an isentropic fluid flow, normalized
density is given as
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where an over-bar designates dimensional quantities
and critical Mach number is defined as
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Then, the time rate of change of kinetic energy is
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Note also that the local isentropic speed of sound is
defined as
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Since the local Mach number is by definition
Mx] (1)
it follows that

the time rate of change of the kinetic energy is
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Our objective is to find the minimas of the time rate
of change of the local kinetic energy, that is, to find
the locations of points where
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The streamwise gradient of the rate of change of
the local kinetic energy is
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Hence, the time rate of change of the time rate of

change of the local kinetic energy is
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Finally, the locations of separation points should be
determined from the condition that
- 2
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In the case of a steady flow of an incompressible fluid,
this condition reduces to

T = 2d%(q)? + ¢, = »[a(c’a),] = O. (23)

In the case of an unsteady incompressible flow, the
general flow separation condition reduces to
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In the case of a steady compressible flow, the general
flow separation condition becomes
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EXAMPLE
Let us consider a two-dimensional steady potential flow
of an incompressible inviscid fluid past a stationary
circular cylinder of radius r,. The radial component
of the local velocity vector is given as
2
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and the tangential component of velocity is given as
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on the surface of the cylinder. There, we also have

that r = r,. Then
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Since sin?20 = 1 - cos226, it follows that the
following equation must be satisfied at the separation
points determined from
-12 c05?20 + 8 cos 20 + 4 =0 . (34)
This means that the location of separation points is at
cos 20 = -4 50 =4 54.73° (35)
and that the stagnation points are located at
cos2f = | .0 = Q47 (36)

Experimentally observed location of separation points
at high Reynolds number flows (Re > 10%) is between
bep = 52° and 4, = 58

measured from the trailing edge of the circle.

Since potential flow theory is valid outside the
boundary layer and since the thickness of the boundary
layer decreases with the increase in Reynolds number, one
should expect even better agreement between this theory
and experiments for higher Reynolds numbers.
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Circular cylinder; surface variation of
the rate of change of kinetic energy;
Reynolds number = 8,400,000; incompress.
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