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ABSTRACT

Based on an artificial compressibility method, the explicit
Runge-Kutta time stepping finite difference algorithm was applied to
steady, incompressible, Navier-Stokes equations. A two-
dimensional analysis computer code in a generalized curvilinear
coordinate system was developed and its accuracy has been
compared to known numerical solutions. The algorithm has been
accelerated using our new Distributed Minimal Residual (DMR)
method, which allows each equation in the system to advance in
time with its own optimal speed. The effectiveness of the DMR
method was examined for a number of test cases. The accelerated

algorithm offers substantial savings of the computing time.

INTRODUCTION

Unlike the algorithms for computing compressible viscous
flows, computational methods for incompressible viscous flows
have been developed relatively slowly. The main difficulty which
arises during the incompressible flow computation comes from the

lack of a time derivative term in the continuity equation.

One of the methods for overcoming this problem is the
artificial compressibility concept originated by Chorin (1972). He
solved incompressible Navier-Stokes equations using the explicit

leap-frog/DuFort Frankel method. In this concept, an artificially
a(p/B)

time dependent derivative term = is added to the continuity

equation with a user specified control parameter . Since the
artificial time derivative added to the continuity equation diminishes

as the solution converges, the added term can be chosen so as to
achieve the maximum convergence rate. The added term forces the
system to be of a mixed parabolic-hyperbolic type, which allows the
use of the time marching techniques. Later, Kwak et al. (1986) and
Choi and Merkle (1985) and Merkle and Tsai (1986) used the
Approximate Factorization (AF) method in conjunction with the
artificial compressibility method.

In this paper, the explicit Runge-Kutta time stepping method
of Jameson (1981) is used as a basic algorithm and the DMR
(Distributed Minimal Residual) method developed by Lee et al.
(1989) and Dulikravich et al. (1988) is incorporated in the artificial
compressibility code in order to maximize the convergence rate. The
DMR method belongs to a general class of the extrapolation
techniques in which the solution is updated using information from a
number of consecutive time steps in such a way that the L, norm of
future residual is minimized. Unlike in Minimal Residual Method of
Hafez (1985) and the General Nonlinear Minimal Residual Method
of Huang and Dulikravich (1987), each component of the solution
vector is updated using a separate sequence of acceleration factors.
The idea of using different acceleration factors for each component
of a solution vector achieves similar effects as dynamic

preconditioning.

The objective of this paper is to present the DMR method as
applied to the artificial compressibility method, and to demonstrate
the advantages of the DMR method with a number of computational

examples.
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NAVIER-STOKES EQUATIONS
AND THE NUMERICAL ALGORITHM

The two dimensional Navier-Stokes equations expressed in
the general curvilinear nonorthogonal coordinates &,m can be

written as

%?——-@—-—a-f‘-+D2(JQ) DJQ)=-R', the residual (1)
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where p, u, v, U,and V are the pressure, Cartesian velocity
components along x and y direction, and contravariant velocity
components normal to constant § and n} lines, respectively. The

general solution vector and flux vectors are defined as
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where the subscripts designate partial derivatives and J is the
Jacobian J = det(a(§,n)/d(x,y)). The physically dissipative viscous

term in the general coordinates is given by
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where g;; is the contravariant geometric transformation matrix tensor
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and S=-RlEdiag(0, 1, 1), and Re is the Reynolds number. DJQ) is

an artificial dissipation term to be described later. Since the solution
vector Q does not have the first component, it is impossible to solve
the system simultaneously. This difficulty can be resolved by, say,

adding -—(%P—to the continuity equation (1), that is, Q=(p/B, u, w*

Subscript * designates transpose of a vector or a matrix. Because
the time derivatives vanish as the steady state is approached, the
added term does not alter the final steady solution. According to the

eigenvalue analysis for the system, the Jacobian matrices A = 3q

and B = % have real eigenvalues,
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The eigenvalues of the matrix K are given by
A =diaglk-c, k +¢, k) (8)
where the equivalent speed of sound, c, is given as

o= [k + BT+ k) ©)

Notice that one of the eigenvalues is negative. This means that the
incompressible flow is equivalently "subsonic” in the sense of

different signs of the eigenvalues.

SPATIAL DISCRETIZATION AND
THE RUNGE-KUTTA TIME STEPPING

The residual of the Navier-Stokes equations, Eq. (1), is
discretized by the second order central difference approximation.

For example, the first derivative is approximated as

OE _Eii-Eiy (10)
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The second derivative is discretized as
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The mixed derivative is discretized as
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where AL = An = 1 = constant.

After spatial derivative terms are discretized, the governing
set of partial differential equations becomes a set of ordinary
differential equations, which can be integrated by the Runge-Kutta
time-stepping algorithm. The Runge-Kutta algorithm can be written
as

QO = QI
AQk = - g ARKT k= 1,2,.,K (13)

Ql+1 = Qt + AQK




where oy are the coefficients for each of the K stages of the Runge-
Kutta scheme required to advance the solution from the time level t
to the time level t+1. For example, o, = 1/4, 1/3, 1/2 and 1.0 for
the four-stage Runge-Kutta scheme. To reduce the computational
effort, we calculate the viscous part of the residual only once every
global time level and keep it unchanged during the four steps of the
Runge-Kutta scheme. This does not deteriorate the stability of the
time stepping algorithm.

STABILITY AND THE ARTIFICIAL DISSIPATION

The allowable time increments of the explicit scheme are
severely limited by the stability conditions. We will follow the
suggestions of MacCormack and Baldwin (1975) and define the
time step by considering the hyperbolic part of the system and the
parabolic part of the system separately and by combining these time
steps. The system becomes hyperbolic when viscosity is neglected.
Then, the stability bound of the resulting system is determined by
the CFL (Courant-Friedrichs-Lewy) number. The maximum time
steps for each of the two coordinate directions are defined as
and the combined maximum time step for the hyperbolic part of the
system is defined by

Ath = Athé + Athf]

(15)
When the convective part of the acceleration is neglected, the

system becomes parabolic. The stability of the parabolic type

svstem is dictated by the non-dimensional von Neumann number, ©.

For each direction, the maximum time steps are defined as

g (o)

and the combined maximum time step for the parabolic part is given

by

AtpéAtm
= B higy “

The total maximum time step is estimated conservatively as

t=Ath + At (18)

A

It is known that the solution obtained from the central
difference approximation tends to decouple at even and odd
numbered grid point, resulting in numerical oscillations. These
oscillations can be removed by adding a small amount of artificial
dissipation to the residual. We use the fourth order artificial

dissipation suggested by Steger and Kutler (1977)
£
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where V4 denotes the fourth order elliptic operator and ¢ is the
control parameter. The artificial dissipation term was kept
unchanged during the the four steps of the Runge-Kutta scheme.

BOUNDARY CONDITIONS

At higher Reynolds numbers, the viscous effects are
dominant only in the vicinity of the solid boundary. Therefore, for
the purpose of enforcing boundary conditions, we assume that the
flow is inviscid at the inlet and the exit plane. After neglecting the
viscous terms, the system of equations becomes hyperbolic in time
near the inlet and exit. For the compatibility condition, therefore,
we have to consider the direction of the characteristics. As stated
earlier, the incompressible flow has two positive eigenvalues and
one negative eigenvalue. Thus one equation of motion should be
considered with two boundary conditions at the inlet, while at the
exit two equations with one boundary condition must be applied. At
the inlet we specify U and V/U , while the back pressure p is
specified at the exit. Also, the flow is assumed to be locally one-
dimensional at the inlet and exit boundaries in order to transform the
equation into the characteristic form. The similarity transform
matrix for the two dimensional case can be derived from the

Jacobian matrix A in the general coordinates, and is given by
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Premultiplying Eq. (13-b) by M;(in & direction) results in the

characteristic form of the equations. At the inlet, the equation
corresponding to the negative eigenvalue should be selected, while
at the exit the equations corresponding to positive eigenvalues are
chosen. This selection procedure can be thought of as a matrix
operation, and we designate the operator as L. If the boundary
condition is given by €, then

Qt+1 - Q[-;.aQ Q

or R0 @1)



and Eq. (21) is added to the transformed-selected equations, that is,

1 90 -1
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At the solid wall, the contravariant velocities U and V are set
to zero, and the surface pressure is extrapolated from that of the
adjacent grid point. Artificial dissipation and its normal derivative at
the boundaries are set to zero.

DISTRIBUTED MINIMAL RESIDUAL (DMR) METHOD

The Jocal residual at time level t+1 is given by
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Assume that the solution at time level t+1 is extrapolated from the
previous M consecutive time levels. Then, we can say that

M
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Here, w's are the acceleration factors to be calculated, A's are the
corrections computed with the original scheme after each of the
consecutive time steps, M denotes the total number of consecutive
time steps combined, and L denotes the total number of equations in
the system. For example, L = 3 for the incompressible, two-
dimensional flow problem accounting for one mass conservation

equation and two momentum equations.

Using Taylor series expansion in time and neglecting the
terms that are higher than first order in At, Eq. (23) becomes

approximately

- +2[_A +5§B -D2J~+DJ~]®m (26)

The global residual for the entire domain can be defined as

R'=Y R"R' @7
D

where Z denotes summation over the computational domain, and
D

. e s t+1
(.)* represents transpose of a vector. In order to minimize the R,

we can determine the ®'s from the following system of algebraic

equations
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and Sp, is the Kronecker delta. Notice that from Eq. (25),
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For simplicity, let
Cor = % aj a7 (34)
and bP=-2 R'a7 (35)
Then Eq. (35) can be written as
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representing the system of MxL linear algebraic equations for the L
sets of M optimum acceleration factors . For example, if we are to
combine M = 2 consecutive time steps to extrapolate the solution and

to solve the two-dimensional incompressible Navier-Stokes
equations (L = 3), we need 1o solve 6 equations for 6 values of .




Using a different sequence of acceleration factors for each
component of the solution vector is equivalent to using a different
time step for each equation, which allows acceleration of the
scheme. This does not mean that the system is decoupled since all
®'s are implicitly interrelated.

COMPUTATIONAL RESULTS AND DISCUSSION

In all computational examples, the value of B (artificial
compressibility parameter) was 8 = 1.0 in order to test the effects of
the DMR method alone.

The two-dimensional code was tested on a classical example
of a driven cavity where the upper wall is steadily moving. A mildly
clustered grid of 45%45 points was used with Re=400, CFL = 2.8
and 6 = 1.0. The convergence history (Fig. 1 and 2) indicates that

t
the log,¢(Res), where Res = S—Nand N is the number of grid points,

is reduced by four orders of magnitude after 2500 iterations with the
DMR method. For the basic algorithm, however, the logarithm of
Res was reduced by only three orders of magnitude after 2500
iterations . Figure 3 depicts the computed values of u component of
velocity along a vertical line passing through the center of the cavity,
and the computed values of v component of velocity along the
horizontal line passing through the center of the cavity, showing
excellent agreement with the published results of Athavale and
Merkle (1988). From the computed velocity vector field (Fig. 4)
and the isobar lines (Fig. 5), we can see the large vortex core,

The code was then applied to a flow through a non-staggered
cascade of NACAQO12 airfoils with the specified inlet flow angle of
0°. An H-type clustered grid consisting of 40x30 grid points (Fig.
6) was used with Re = 500, CFL = 2.8, ¢ = 1.4. A smooth
convergence history was obtained (Fig. 7 and Fig. 8) and the
computing time was reduced by 70% when using the DMR method.
The computed velocity vector field (Fig. 9) shows well developed
boundary layers and the wake. Figure 10 shows the computed field
of isobars.

Finally, flow through a cascade of NACAQ012 airfoils with
inlet flow angle of 10° was computed (Fig. 11) with the same
conditions as in the second test case. The convergence rates with
and without the DMR are compared in Fig. 12 and 13 in terms of the
number of iterations and CPU time indicating that the DMR method
reduces computing time by 35%. Figure 14 shows the wake zone

behind the trailing edge of the airfoil. In Fig. 15, the computed

isobar contours are plotted.

In all examples, we combined only two (M=2) consecutive

time steps when using the DMR method which we applied after
every thirty steps performed by the basic al gorithm

CONCLUSIONS

The Distributed Minimal Residual (DMR) method was applied to the
acceleration of the explicit Runge-Kutta method for the
incompressible Navier-Stokes equations.  The artificial
compressibility method was used to make the incompressible
Navier-Stokes equations of mixed parabolic-hyperbolic type. The
DMR method uses a separate sequence of optimal acceleration
factors for each of the equations in the system, which allows the
acceleration of the scheme. The DMR method offers between 35%
and 70% reduction in computing time when integrating
incompressible  Navier-Stokes equations on clustered and
nonorthogonal grids. The new acceleration method is stable and
does not seem to depend on the Reynolds number. It requires
approximately double computer storage as compared to the non-
accelerated explicit method. In comparison, the GMRES conjugate
gradient method of Wighton et al. (1985) needs between twenty and
eighty consecutive solutions to be stored. The DMR method can
also be applied to implicit algorithms, as our preliminary findings
confirm with the Beam-Warming (1976) type ADI algorithm for
incompressible Navier-Stokes equations,
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