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ABSTRACT

Artificial Dissipation (AD) and
Physically Based Dissipation (PBD) models
for explicitly added non-physical
dissipation in Euler equations of
gasdynamics have been compared for the
case of a shocked, steady, internal flow.
A dissipation sensor function determines
- the amount of the 1local dissipation in
- both formulations. Several new models

for the dissipation sensors were
introduced and tested. They are based
- on: second derivative of pressure,
' gradient of pressure, gradient of Mach
number, entropy, vorticity, and
divergence of velocity vector. Their
ability to generate sharp shocks and

their influence on iterative convergence
rate were examined indicating the
- importance of choosing a proper sensor.

INTRODUCTION

Many artificial dissipation models
[1-6] used with central difference
schemes depend on the use of an
artificial dissipation "sensor" to locate
regions requiring artificial dissipation.
Most dissipation models use an artificial
dissipation sensor based on either the
second derivative of pressure or the
second derivative of density.

While these two types of sensors
have been successful in applications, it
is not certain if they are the best
possible choices. It is the goal of this
paper to introduce and test various new
artificial dissipation sensors. In
particular, wve examine artificial
dissipation sensors based on: second
derivative of pressure, first derivative
of pressure, first derivative of Mach
number, first derivative of Mach number
squared, divergence of the velocity
vector, vorticity, and entropy.

The artificial dissipation sensors
will be applied to two conceptually
different artificial dissipation models.
The first dissipation model has been made
popular by Jameson et al [1], Chima [2],
and others [3,4]. The second dissipation

model is the Physically Based Dissipation
model proposed by Dulikravich et al
{5,6,7].

GOVERNING EQUATIONS
The governing equations considered
are the Euler equations of inviscid
gasdynamics. The Euler equations in two
dimensions and Cartesian coordinates can
be expressed in non-dimensional form as:

Q+E+F =0 (n
where
1 i ﬂl
Q=351 fv (2)
| P&,
- U -
pUu + y pJ
= 1
E=3 pUV - x:pJ (3)
| pUN, |
_py -
pVu - y pJ
_ 1 4
F=3 PVV + %.pJ )
. PVh, .

Here, ¢ is the density, u is the x-
component of velocity, v is the vy-
component of velocity, ol is the
thermodynanric pressure, e, is the total
mass-specific energy and h, is the
total mass-specific enthalpy.

The total mass-specific energy can be
written as:

- P 1
% = -n 2 () %)
and the total mass-specific enthalpy can

be expressed as:
h, = e, + p/p (6)

The curvilinear nonorthogonal coordinates
following the grid lines are

F=E(x,y) Y = n(x,y) )

so that the contravariant velocity vector
components are

U = (uy"—vxn)J ;1 V= (vxE -uyE)J where (8)

Xg = m/J



Here, the Jacobian of the geometric
transformation is
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ARTIFICIAL DISSIPATION MODELS

Two dissipation models will be used
to investigate the influence of different

artificial dissipation sensors. The
first dissipation model has been made
popular by Jameson et al [1] and will be

referred to as Jameson’s dissipation
model. The second dissipation model is
the recently developed Physically Based
Dissipation model [5,6,7].

In Jameson’s dissipation, the
equations of motion (1) are first
rewritten to include the dissipation
terms:

Q + E + F, = D(Q) an
where D is an explicitly added

dissipative operator.
In Jameson’s dissipation model, the
construction of the dissipative terms for

each of the four eguations is similar.
For example, the continuity equation
artificial dissipation is

Dp = Dy + Dpp (12)
where

Dep = diuyny — oy 13)
Dip = dijun ~ Gy (14)

The terms on the right hand side of the
equations in the system (1) all have the
similar form [1]. For example,
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where €% and €% are
flow adaptive coefficients:

(2) (16)

(2
€2y = K ‘max (Viayr V)
and
(4) (2)
EMI./Z,j = max (0., (Km - exﬂ/zJ)) arzn
Here, v represents an artificial

dissipation sensor.

Here, k% and «“¥ are

user-specified coefficients. The
suggested values are

@ -1 (@_ 1 18
K 7y and k=522 (18)
although considerably different values
need to be used in practice thus

requiring a considerable level of
experience on the part of a user.

The second dissipation model is the
recently developed Physically Based
Dissipation (PBD) model [5,6,7]. In this

model, the dissipation is based on actual
physical dissipatien. To solve the Euler

equations, here one actually solves the
Navier-Stokes edquations of viscous and
heat conducting flow subject to perfect

slip boundary conditions and spatially
varying coefficients of viscosity. Thus,
the PBD model represents a physically
consistent formulation since the Euler
equations of inviscid gasdynamics
represent a limiting case of the Navier-
Stokes equations as the physical
dissipation becomes negligible.

The Navier-~Stokes equations of
unsteady, viscous, laminar flow allowing
for heat conduction assuming Fourier’s
law can be expressed in non-dimensional
form and transformed coordinates as:

Q + E + F, = g(E/ + F!) (19)

where R, is the Reynolds number.
The generalized viscous flux vectors are:
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The components of the
dimensional viscous stress

non-
tensor



expressed in terms of ¥,n coordi: ates

are:
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fluxes are
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Here, u®" = 2 + A is the
longitudinal viscosity coefficient, u is
the shear viscosity, A 1is the secondary
viscosity, M, is the freestream Mach
number, P, is the Prandtl number and T
is the absolute temperature. In the PBD
formulation, the shear viscosity

"coefficient, u, is forced to vary
throughout the flowfield by means of an
appropriate artificial dissipation
sensor, Vv, similar to one used in
equation 16. For example, when using the
PBD formulation for Euler equations, one
should actually program complete Navier-
Stokes equations and use p=uv and
Stokes hypothesis (A/4 = -2/3). When
using the PBD concept with Navier-Stokes
equations, the modified coefficient of
viscosity could be: p = p(1+v).

ARTIFICIAL DISSIPATION SENSORS

Since a finite volume scheme is
used, flow variables are defined at cell
centers. Different values for the
artificial dissipation sensor are

obtained for the ¥ and 1 directions.
The resulting values for the dissipation
sensor are obtained at cell boundaries.
The first sensor to be discussed is
the one commonly used with the existing
dissipation models. It is based on the

of pressﬁfé-(Pz
examnple, in the ¥
sensor can be written as

second derivative
sensor). For
direction, this
{1,23:
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where C is the user specified constant.

The numerator of egquation (29) is the
second derivative of pressure, while the
denominator scales the terms with the
local values of the pressure. This
sensor has been relatively successful in

engineering applications although it
experiences obvious difficulties in the
vicinity of stagnation points. An

attempt to alleviate this problem was to
premultiply the sensor with the local
value of the Mach number [3].

Instead of the second derivative of
pressure, one could use an artificial
dissipation sensor based on the first
derivative of pressure (Pl sensor) which
is explicitly found in the Navier-Stokes
equations. The sensor is implemented as:

c P, P, (30)
v, = Cmtr—
o124 pMJ p plJ

A similar sensor can be introduced
that is based on the first derivative of
the Mach number (M1 sensor).

Vievzay © C|MMJ —Mu] (31)

The artificial dissipation sensor can be
based on the divergence of the velocity
vector (DIV sensor).

The value of the divergence of the
velocity vector can be viewed as the
deviation from incompressibility and will
have large values at the shock wave.
Written in transformed (E,n)
coordinates, this sensor is:

Vv = Clufy,, - unyg VX - VtxnlhszJlﬂ/z.j
32)
Since vorticity is generated at the
curved shock surface in an otherwise
1§rotational flow, the artificial
dissipation sensor can be based on the
curl of the velocity vector, i.e., the
vorticity (VOR sensor)
Vx V= v, = u, (33)
For irrotational flow, equation (33)
eguals zero. Written in transformed

coordinates, the vorticity sensor is:

CIV;Yn - VY T ougx +oux,| J
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Yiezy = ¥

The last sensor investigated is based on

the change of the entropy

p
S =8, + ¢ 1nl(go) ()] (35)

where S is the entropy and C, is the
specific heat at constant volume. Then
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Hence, the entropy based sensor (ENT
sensor) can be
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EQUIVALENT LOCAL REYNOLDS NUMBER

Then, the thickness, §8x, of the weak

shock wave can be obtained from the

relation [8)

PASK  4M, 4, ¥-1 9y-5 (38)
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where a is the speed of sound and the

subscript (1) designates location
immediately upstream of the shock wave
and the overbars designate dimensional
quantities.

It follows that
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If one knows that a particular numerical
algorithm needs a minimum of N grid
cells, that is NAx, to resolve a shock
wave, then ©&x in the above expression

can be replaced with NAx in order to

determine the ‘"equivalent" value of the
non-physical local Reynolds nunber,
(Rng. Thus, the egquivalent

nondimensional shear viscosity is
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For example, if ¥y = 7/5, § = 3{ Ax =
3/80, then the above egquation gives the

" the

following upper limits for
(Re)zo'

M, 1.1 1.2 1.3 1.4 1.5 1.6 1.7
(Re)zo 322.8 187.5 145.2 126.5 117.7 114,1 113.7
Using a heuristic analysis, one can
determine approximately the minimum
allowable Reynolds number. The
definition of the local time step

considering CFL and diffusion limitations
is given for the x direction by [9]

Ax (41)

(|u|+c + aﬁ/Ax)

At min

where o is a constant and § combines
effects of physical and artificial
viscosity [10]

H = o, 42)

= 0.
phy

Then, if the time step is known from the
inviscid analysis:

For the Euler equations g

Ax ax
B £ (3¢ — lul-c 1% (43)
Introducing the definition of the
equivalent Reynold’s number:
1 1 Ax Ax
(e © Gap) Tlar - lul-el (44)

RESULTS

The basic computer code used in this
investigation was developed following the
original work of Jameson [1] with an
option to use his Artificial Dissipation
(AD) or the Physically Based Dissipation
(PBD) . Nevertheless, the AD formulation
was run  without the fourth order
dissipative term. The results obtained
with PBD formulation used Re=100.
Geometry consisted of a straight channel
with a 10% thick half-airfoil attached to
the upper wall. Leading and trailing
edge points of the airfoil were smoothed.

Computational grid (Fig. 1) consisted of
64 x 16 grid cells. All runs were
preformed for 1500 iterations on Vax 8600
with uniform flow at ML= 0.675 as an
initial guess.

Fig. 2 depicts the oscillations

which develop away from the shock when AD
is used with P2 sensor, bgt without the
fourth order dissipation. For



comparison, PBD with the entropy sensor
(ENT) and 1low value of the constant
(C=0.013) gives a smoother solution.
From the following results it could be
concluded that AD formulation without the
fourth order dissipation is guite
feasible if the P2 sensor is replaced by
some other type of a sensor.

Fig. 3 and Fig. 4 compare Mach
number distributions on the lower and
upper walls obtained when wusing second
derivative of pressure (P2) as a sensor
in AD and in PBD formulation. The AD
formulation seems to capture peak Mach
number better although the conclusion is
reversed when using pressure gradient
(Pl) sensor (Fig. 5 and Fig. 6). When
using Mach number gradient (Ml) sensor,
both AD and PBD formulation underestimate
the peak value of the Mach number and

smear the shock (Fig. 7 and Fig. B8). The
entropy sensor (ENT) with a low value of
the constant seenms to offer an

exceptionally sharp shock and the post-
shock recovery (Fig. 9) when used with AD
formulation. The same sensor used with
the PBD formulation produced somewhat
smoother (Fig. 10) solutions. The
vorticity sensor (VOR) gives considerably
better results with PBD than with the AD
formulation (Fig. 11 and Fig. 12).
Similar conclusion is evident when using
divergence of the velocity vector (DIV)
sensor (Fig. 13 and Fig. 14).

Summaries of results obtzined with
different artificial dissipation sensors
applied to AD and to PBD formulations are
given in Fig. 15 and Fig. 16. In
general, it seems that the low value of
ENT sensor and the DIV sensor offer the
best results with both AD and PBD. The
lowest curve showing an entirely smeared
solution in Fig. 15 was obtained when
using large value for the constant
(C=0.1) with ENT sensor. The summary of
values for the constant C used in this
investigation is given below:

| P2 Pl Ml ENT VOR DIV
AD 0.7 0.7 1.0 0.013 0.02 G.02
PBD| 30.0 15.0 30.0 0.6 0.6 0.3

Notice that these values are by no
means optimal and that M1, ENT, VOR and
DIV sensors have not been normalized in
our formulations. Also, AD formulation
scales the dissipation term with the
local wvalue of the Jacobian, while PBD
formulation did not use this feature.

Convergence histories of the AD and
the PBD formulation with different
dissipation sensors (Fig. 17 and Fig. 18)
indicate that significantly different
convergence rates are attainable with
different sensors. ENT and M1 sensors
weem to offer the fastest convergence
rates, while VOR and P2 sensors offer the
slowest convergence. The peculiar spikes
in the convergence histories obtained
with VOR and DIV sensors are due to the
logic wused in the codes that the local
value of such a sensor should be the
maximum of the three neighboring cells

instead of the average of the neighboring
cells.

Isobars for the flowfield are
depicted for both AD and PBD formulation
when using P2 sensor (Fig. 19 and Fig.
20), Pl sensor (Fig. 21 and Fig. 22), Ml
sensor (Fig. 23 and Fig. 24), ENT sensor
with low value for C (Fig. 25 and Fig.
26), VOR sensor (Fig. 27 and Fig. 28),
and DIV sensor (Fig. 20 and Fig. 30).
Again, ENT sensor obviously gives the
sharpest shock.

CONCLUSIONS

Preliminary numerical results
indicate that the form of artificial
dissipation sensor can significantly
affect the numerical solution and the
iterative convergence rate. The Mach
number and entropy sensors have been
found to greatly enhance the convergence.
The velocity divergence and vorticity
sensors appear to offer better shock
resolution than the other sensors, with
the exception of low entropy sensor which
generates a sharp shock and post-shock
recovery region. All the sensors
investigated yield stable solutions.

ACKNOWLEDGEMENTS

The authors would 1like to express
their thanks to Ms. Amy Myers for her
expert typing and to Apple Computer, Inc.
for the computing equipment.

REFERENCES
1. Jameson, A., Schmidt, W., and
Turkel, E., "Numerical Solutions of

the Euler Equations by Finite Volume
Methods Using Runge-Kutta Time-
Stepping Schemes," AIAAR Paper 81-
1259, 14th Fluid and Plasma Dynamics
Conference, Palo Alto, Ca, June 23-

25, 1981.
2. Chima, R. V., "Analysis of Inviscid
and Viscous Flows in Cascades with
an Explicit Multiple-Grid

Algorithm," AIAA J., Vol. 23, No.
10, Oct. 1985, pp. 1556-1563.

3. Caughey, D. A. and Turkel, E.,
"Effects of Numerical Dissipation on

Finite-Volume Solutions of
Compressible Flow Problems," AIAA
Paper 88-0621, 26th Aerospace

Sciences Meeting, Reno, NV, January
11-14, 1988.

4. Chima, R. v., Turkel, E. and
Schaffer, S., “Comparison of Three
Explicit Multigrid Methods for the
Euler and Navier-Stokes Equations,"”
AIAA Paper 87-0602, 25th Aerospace
Sciences Meeting, Reno, NV, January
12-15, 1987,






Dulikravich, G. S., Dorney, D. J.
and Lee, S., "Iterative Acceleration
and Physically Based Dissipation for
the Euler Equations of Gasdynamics,"
presented at the ASME Winter Annual
Meeting, Nov. 28 - Dec. 2, 198s8.

Dulikravich, G. S., Dorney, D. J.
and Lee, S., '"Numerical Versus
Physical Dissipation in the Solution
of Compressible Navier-Stokes
Equations," AIAA paper 89-0550, 27th
Aerospace Sciences Meeting, Reno,
NV, Jan. 9-12, 1989.

Dorney, D. J., Dulikravich, G. S.
and Lee, K., "A Comparative Study of
Iterative Algorithms for the Euler
Equations of Gasdynamics," AIAA
paper 89-0114, 27th Aerospace
Sciences Meeting, Reno, NV, January
8-12, 1989.

Patterson, G. N., "Transition
Through Weak Shock Front," Univ. of
Toronto, UTIA Report No. 1, May
1948.

1177

LR

INEREA

13-
T

IWBRENAS]
INEBRRRY

T3 371731

1333471117

I ENENENERNEE)

| 1L OO P O EL(IJ\‘“

Fig.3

Fig.1l

Computational grid for a 10%
half-airfoil in a channel

X/CHORD

AD with P2 sensor: Mach number
distributions on channel walls.

9.

10.

11.

12.

Richtmyer, R. D. and Morton, K. W.,
Difference Methods for Initial Value
Problems, Wiley, New York, 1967.

Davis, R. L., Ni, R. H. and Ccarter,
J. E., "Cascade Viscous Flow
Analysis Using Navier-Stokes

Equations," AIAA Paper 86-0033.

Tong, S. S., "The Impact of
Smoothing Formulations on ‘the
Stability and Accuracy of Various
Time Marching Schemes," AIAA Paper
87-1106.

Merriam, M., "Smoothing and the

Second law," First World Congress on
Computational Mechanics, Austin, TX,
September 22-26,

1986.

D.4 lIlI]YX(I}llllllllllllllll.|l]
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
] X/CHORD
Fig.2 Upper wall Mach number values:

PBD with low entropy sensor aqd AD
without fourth order dissipation

Fig.4

X/CHORD

PBD with P2 sensor: Mach number
distributions on channel walls.



0.4 |III}IIIIIIIIIIIl‘KlIIl['l""I 0.4 ‘|1|=1|1YE|11|%|y||}r11ﬁ:|-|vg
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X/CHORD X/CRORD
Fig.5 AD with Pl sensor: Mach number Fig.6 PBD with Pl sensor: Mach number
distributions on channel walls. distributions on channel walls
1.2 t.2—
1.0
0.8+
0.6——
f [ |
0.4 |1||||1l||l|11||rx|llxylll’|;1,]] 0.4 |lll:lll‘i;llll%llil}llll;llll;
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X/CHORD X/CHORD

Fig.7 AD with M1 sensor: Mach number

distributions on channel walls. Fig.8 PBD with M1 sensor: Mach number

distributions on channel walls.

|
0.4 |11:[v|1v|1111111||]ﬁ711%lrll{ 0.4 “"}""|"'l]"'T]X1"l“"l
-1.0 -0.5 0.0 0.5 1.0 i.5 2.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X/CHORD X/CHORD
Fig.9 AD with ENT sensor: Mach number Fig.10 PBD with ENT sensor: Mach number
distributions on channel walls. distributions on channel walls.



0.4 v||l:|1;l{n:xr]lr‘r1%|w|xl||||]
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X/CHORD
Fig.1l AD with VOR sensor: Mach number
distributions on channel walls.

0

| y .

0.4 |IIIIIIII{lll!}llll]‘!‘!ll{llll1

~1.0 -0.5 0.0 0.5 1.0 1.5 2.
X/CHORD

Fig.13 AD with DIV sensor: Mach number

distributions on channel walls.

0.4 T T T T T ] r . |
0.0 0.2 0.4 0.6 0.8 1.0
X/CHBORD
Fig.15 AD with different sensors: Mach

number distributions on upper wall.

|
T S S—

0'4 T T lT‘l
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X/CHORD
Fig.12 PBD with VOR sensor: Mach number

distributions on channel walls.

0.4 R R I UL AL SR AN N M A o |
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X/CHORD
Fig.1l4 PBD with DIV sensor: Mach number

distributions on channel walls.

0.4 ] . : y ; : ] . |

0.0 0.2 0.4 0.6 0.8 1.0
X/CHORD

Fig.16 PBD with different sensors: Mach

number distributions on upper wall.



Howmo

0—
]
_l—_
—2]
-3-]
1 VOR 1
4 P2 2
-4—— DIV 3
1 rl 4
1 ENTI 5
Ml 6
1 ENT2 7
'G.‘||||||vl||lll1lll11'||111|||{
0 250 500 750 1000 1250 1500
NUKBER OF ITERATIONS
Fig.17 AD convergence histories with

Fig.19

different sensors.

-}

AD with P2 sensor: isobars

Fig.21 AD with Pl sensor: isobars

oSN wo

1
S

l}llll’lll

-2~ \\\V’\"\'\.\
[
31— VOR 1
P2 2 \\
DIV 3
Pl 4
M2 5

1 M1 6
ST OENTL 7
-8 - r 4 f——tf—r
0 250 500 750 1000 1250 1500
NUMBER OF ITERATIONS
Fig.1l8 PBD convergence histories with

different sensors.

Fig.20 PBD with P2 sensor: isobars

)

Fig.22 PBD with Pl sensor: isobars

I



Fig.23 D wi s i ; .
9 AD with M1l sensor: iso bars Fig.24 PBD with Ml sensor : isobars
{ L -t
Fig.25 AD with ENT sensor : isobars
Fig.26 PBD with ENT sensor: isobars
\\/\7 \V S '
Fig.28 PBD with VOR sensor : isobars

A\ J

Fig.29 AD with DIV sensor: isobars Fig.30 PBD with DIV sensor: isobars

10



