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The Generalized Nonlinear Minimal Residual (GNLMR) method is shown to consistently acceler-
ate and stabilize iterative algorithms for solving nonlinear problems by using the optimized explicit
multistepping. The examples presented in this paper illustrate the beneficial effects of the optimized
multistep algorithm on the computational efficiency and the convergence rate as applied to several
nonlinear problems in fluid dynamics. The significant reduction in computing time when using the
multiple optimized acceleration factors is only negligibly weighed down by the computation costs due
to the requirements for additional computer storage.

1. Introduction

The relaxation factor used in accelerating an iterative method to obtain the converged
solution plays the same role as the time step size in advancing the transient solution to the
steady-state solution for a time-dependent problem. The classical analyses for the stability of
numerical schemes for solving time-dependent problems neglect boundary conditions and
assume a uniform computational grid. Furthermore, these analyses are based on linear
equations with constant coefficients and the assumptions of small perturbations and ap-
plicability of Fourier analysis [1, 2]. However, Cheng [2] pointed out that the perturbation of
the error in the finite difference calculations may not be small and that the error in the finite
difference calculations may not satisfy the conditions for Fourier series expansion. In addition,
Mitchell and Griffiths [1] pointed out that the errors due to approximate or additional
boundary conditions are represented by modes which are not of Fourier type. Thus, the linear
stability analysis usually results in overly restrictive and even incorrect conclusions.

The numerical experiments performed by Kennon and Dulikravich [3] and Kennon [4]
using the NonLinear Minimal Residual (NLMR) method showed that the usual Courant—
Friedrichs—Lewy (CFL) number limitation for both linear and nonlinear problems can be
significantly exceeded. The NLMR method provided a simple analytic way to determine the
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optimal acceleration factors for both linear and nonlinear problems. However, the elementary
time steps used for obtaining the corrections still follow the CFL number limitation concluded
from the linear analysis.

The generalized nonlinear minimal residual (GNLMR) method developed by Huang,
Kennon and Dulikravich [5] provided a practical analytical tool to determine the exact
stability conditions for both linear and nonlinear problems in arbitrary domains. If accurate
time evolution is required when solving an unsteady problem, the limitation on the time step
size can be analytically determined by using the GNLMR method. If transient behavior is of
no interest, the GNLMR method can be applied to determine the optimal value of the time
step size (optimal acceleration factor) to minimize the number of time steps (number of
iterations) for obtaining the steady-state converged solution.

The main objective of this paper is to investigate the effects of the optimized multistep
algorithm on the computational efficiency and on the monotonicity of convergence rate of the
GNLMR method. The analytic investigation is confirmed on four nonlinear test cases: the
one-dimensional and two-dimensional viscous Burgers’ equations and the two-dimensional
incompressible and compressible Stream-Function-Coordinate (SFC) equations [6].

2. Theoretical aspects

2.1. Multistep minimal residual method for linear problems

Let us first consider a well-posed linear initial value problem:

delor=Le —F inQ,

?= ¢ ondfl, (1)
© =@ atT=17,.

Define
r=le' —f )

as the residual vector at time level t. Here, / denotes the scheme-dependent discrete analog of
L, fis the discrete analog of F and also includes boundary terms.

Assume that M steps are used to iterate at each time level ¢. Using the Einstein summation
convention where repeated subscripts are summed, the multistep algorithm for (1) is then
defined as follows:

(pt+1:(Pt+wm8m7 m=1727"'7M7 (3)
where

81=l¢t—f’

8m = lm_l(al) > m > 1 ’ (4)

are the corrections at step m. Coefficients w,, are the corresponding relaxation factors to be
determined by minimizing the L, norm of the residual at time level (¢ + 1). With the definition
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of residual vector (2) and the hélp of (3), the following relation can easily be verified:
rl=rt o I8, =r+w,l"r". (5)
The L, norm of the residual vector at time level (¢ + 1) is then
WP = 1F11P + 20,(r, 18,) + (6, 16,0, 0,, m,n=1,2,..., M. (6)

It should be pointed out that the boundary condition for the corrections 8, in (3) is
apparently zero. However, the boundary conditions for the residual vector r' and corrections
8, in (5) can be determined either by extrapolation from the interior points or simply by
setting them equal to zero. The residual norm will then converge to the norm of the truncation
error of the difference scheme if the first method is applied and to the machine accuracy if the
second method is applied.

The highest rate of convergence is possible when w,, are the solutions of the following

system of linear equations:

al/dew, =0 or (r,15,)+(5,,05)w, =0, (7
where the rate of convergence I’ is defined as

r=—log(I*" "I/~ - (8)
Multiplying (7) by w,,, it follows that

(16w, +(15,,08)0,w, =0. 9)

Subtracting (9) from (6) and using (7) results in
I = 11 = 7 18,00 = (08, 18,)0,0, = = | (w,5,)742 <0, (10)

Thus, the residual norms for the multistep minimum residual method show a monotone
convergence behavior which guarantees the stability of the iterative scheme and produces the
highest rate of its convergence.

2.2. Optimization of the Euler scheme for nonlinear problems

For clarity, we consider two-dimensional problems and equations in conservative form only.
The extension to multidimensional problems and nonconservative equations is then
straightforward.

The conservative form of the governing equations for most engineering problems can be
written as:

de/atr=L,N(¢, ¢, 9,)— F, (11)
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where the operators are
L ,=d/ox, L,=4/ay,

and N” is the nonlinear differential operator in coordinates x,. Using the Euler one-step,
time-consistent, explicit scheme, the finite difference form of (11) can be written as:

t+

o'l =0+ Arr', (12)
where
r=ILN(¢e' 0., @)~ f (13)

is defined as the residual at time level ¢. Therefore, the residual at time level (# + 1) can be
expressed as

Il =LN (e o) e~ f (14)
After expanding the nonlinear discretized operator N” in a Taylor series, it follows that
r = 1{N(e', @), @)) + (BN )r' + (8N 8¢, )(r'),
+ (aN”/a¢;)(r’)y]A7 +0AT)) - f. (15)
In summary,
ril=r'+a, A7), 1<p<P, (16)

where P is the degree of the nonlinearity of the operator N. Equation (16) indicates that the
residual at time level (¢ + 1) is a polynomial (henceforth called Residual Polynomial [3] or RP)
of the time step size, A7. Thus, the L, norm of the residual at time level (¢ + 1) can be
expressed as

[P = 1171 + 2, a,)(AT) + (a,, a, )(AT) (A7), 1<p, g<P. (17)

Equation (17) implies that the residual norm at time level (¢ + 1) is a positive polynomial
(henceforth called Minimizing Polynomial [3] or MP) of the time step size A7, which is to be
determined. Thus, the convergence of scheme (12) will be guaranteed provided that A7 is
chosen in such a way that I" > 0. The highest rate of convergence can be achieved only when
A7 is chosen as the optimizer of the minimizing polynomial (17) such that ||»**'|| is an
infimum. However, the determination of the optimizer needs special numerical techniques [7].
To avoid this difficulty, the linearized operator [3-5] of N” may be applied. If N” is truncated
to the first order in Ar (linearized operator), the approximate residual vector is

=+ aAT, (18)
where

a, =L[(8N"79¢")r' + (IN"19¢,)(r"), + (3N"Td9')(r"),] . (19)
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Then, the approximate MP is
I 7 = 1)1 + 2(ay, r)AT + (ay, @,)(A7)* . (20)
The optimal time step for the explicit Euler scheme can be easily found as

(AT)opt. = —(al’ rt)/”alll2 - (21)

2.3. The generalized nonlinear minimum residual (GNLMR) method

The GNLMR method actually is the application of the methods described in the previous
sections. The multistep algorithm for nonlinear problems is defined as

e =0t w,8,+0(w), m=12,..., M, (22)
where repeated indices are summed. The correction at the first step if defined as

8 =r'=LN(e" 0}, 0,)—f. (23)
The correction at step m >1 is defined as

8, =1[(dN"0¢")8,_, +(3N"13¢, )3, 1), + (IN"10¢)(5,,_,),] - (24)

The coefficients of the higher-order terms of w,, can be obtained by Taylor-series expansion. If
only linear terms of w,, are retained, the residual polynomial (RP) at time level (¢ + 1) can be
expressed by Taylor-series expansion as

rt+1 — lVNV((Pt+1, (p;+1’ (P;+1) _f
= IVNV[(Pt + (l)m6m3 (p,tv + wm(6m)x’ (p'y + wm(6m)y] _f

=r'+1{[(dN"73¢")8,, + (0N"13¢-)(5,,), + (dN"13¢')(8,,),]w,, + O(w,,)} .
(25)

Therefore, the minimizing polynomial (MP) at time level (¢ + 1) can be determined as
I =111 + g(w,) (26)

where g(w,,) is a polynomial in w,,. For a highly nonlinear differential equation, g will be a
complicated multivariable polynomial that depends on the total number of intermediate steps
M that were used and the degree of the nonlinearity of the differential operator N”. Thus, a
fast and accurate procedure of determining the optimizer of MP is required for the GNLMR
method to guarantee the highest rate of convergence. If the linearized operator of N* is used,
the method that was described in Section 2.1 can be applied to determine the approximate
optimizer of (26).

The GNLMR method requires (M + 1) times larger computer storage to save the correc-
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tions from M intermediate steps than does the single-step nonaccelerated scheme. Some
additional algebraic operations are also required to determine the coefficients of the MP which
are obtained by integrating the corrections over the entire domain. The storage requirement
of the GNLMR method is quite acceptable when compared with the excessive storage
required by the GMRES method [8, 9]. It should be pointed out that the GMRES method
also needs a large number of arithmetic operations not only for orthonormalizing search
directions but also for determining the optimal weighing parameters in updating the iterative
solutions.

3. Numerical examples

Four test cases were used to demonstrate the application, the computational efficiency, and
the monotone convergence behavior of the GNLMR method. Since it was found [5] that the
linearized residual polynomial still guarantees a relatively high convergence rate, it will be
used for all test cases. The first two cases representing the one-dimensional and two-
dimensional viscous Burgers’ equation were solved by the time-dependent technique as
described in Section 2.

The last two test cases, the two-dimensional incompressible and compressible stream-
function-coordinate (SFC) equations [6] were solved in their steady-state and nonconservative
form. Liebman’s or Gauss—Seidel’s method was applied to determine the correction at each
intermediate iterative step m. ‘

Details about the control parameters such as grid size, stopping criteria, and number of
acceleration factors used for each test case are summarized in Table 1. For all test cases,
comparisons are based on the relative improvement of computational efficiency that can be

Table 1
Summary of the control parameters for numerical test cases

Max. Boundary conditions

no. of for residual and Stopping Grid
Test case  used corrections criteria size
Case 1: 8 Extrapolation from r<107®.
1D Burgers’ interior data 41
equation Zero Ir'|l<107®
Case 2: 8 Extrapolation from r<i1o*
2D Burgers’ interior data 51x51
equation Zero ([Ft=<10"*
Case 3: 8 Zero |~ <107 47 x 11
2D incomp.
SFC equation
Case 4: 8 Zeto lir]|<107® 61 x 11
2D comp.

SFC equation
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obtained using different total number of intermediate steps M. The relative improvement of
computational efficiency 7,, is defined as

=T/ Ty, (27)

where T, denotes the computing time spent for the nonaccelerated method and T,, denotes
the computing time spent for the acceleration method based on the stopping criteria as
described in Table 1. The results are summarized in Fig. 9.

3.1. Burgers’ equations

According to the notations defined in Section 2, the one-dimensional, viscous Burgers’
equation can be written as

dp/dT=0/3x[N(e, ¢,)], (28)
where
N(p, 0,)=—3¢>+vp,, (29)

and v is the viscosity coefficient. In this example » = 0.07 is used. The initial and the boundary
conditions are chosen as follows:

o(1,7)=0, e(0,7)=1, e(x,0)=1-x. (30)

The two-dimensional, nonlinear, viscous Burgers’ equation solved by Ghia et al. [10] was
chosen in the presented test case. According to the notations defined in Section 2, it can be
expressed as

dul T =0/9x[N"(u, u,)] +9/9y[N*(u, u,))], (31)
where
N'(u,u)=u, — ry(iu’ — ul), N(u, u,)=u,— Ax(3u’ —ul). (32)

Here, A is a parameter and U is a constant. The values of U and A used in this test case are 0.5
and 2.0, respectively.

The FTCS scheme is applied to discretize (28) and (31). If the linearized form of operator
N is used with M steps at each time level ¢, the residual polynomial is truncated up to its first
order as

RP=r'"'"=r"+4, 0,, (33)
where

a, =d/dx[—¢'s, +v(8,).] (34)

for the one-dimensional case and

a,, = 3/0x[(IN"/0u)8,, + (IN"/ou,)(8,,),] + 0/0y[(aN"au)8,, + (IN*9u,)(8,,),]
(35)
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for the two-dimensional case. The corrections §, at each intermediate step m can be
determined by (23), (24). The minimizing polynomial MP for both cases is then

MP = [|[rFHI* = |F|I* + 2(, a,) @, + (a,,, a,) 0,0, (36)

Thus, the optimal acceleration parameters w, can be easily determined by solving the
following system of linear equations:

A0, =D, (37)
where

A,,=(a,,a,), (38)

bm = _(rt’ am) P (39)

and A, is a symmetric matrix of order M.

The boundary conditions of the residual and corrections in (33) were determined by
extrapolating them from the interior points (Case a) or by explicitly enforcing them to be zero
(Case b). The stopping criteria for all cases were such that the computations were terminated
when the asymptotic rate of convergence (Case a) or the norm of the residual (Case b)
approached the machine accuracy.

It must be mentioned that the norm of the truncation error represents the maximum
attainable accuracy of a numerical scheme and is obviously scheme-dependent. It can be seen
from Figs. 2(a) and 4(a) that under the same stopping criteria the residual norms for all cases
converge to the values corresponding to the respective norms of the truncation error.
Moreover, Figs. 1(a) and 2(a) illustrate that the accuracy of the nonaccelerated scheme can be
improved by applying the GNLMR method.

Since the linearized operators were used in these two test cases, the convergence history
shown in Figs. 1-4 exhibit a similar behavior as in the linear problems as solved in our earlier
works [5]. It is obvious that if the GNLMR method is applied, the number of iterations and
the computing time required to achieve the asymptotic rate of convergence are considerably
lowered as compared to the nonaccelerated schemes (Figs. 1(a), 2(a), 3(a) and 4(a)).
Moreover, the time required by the GNLMR method for marching the solution from the
asymptotic state to a fully converged solution is much shorter than with the nonaccelerated
method. The improvement of the computational efficiency that can be obtained using a
different number of intermediate steps M is summarized in Fig. 9.

Although the computational efficiency increases significantly with the increasing number of
intermediate steps M, the improvement becomes less pronounced and even shows a reverse
trend after approximately M =5 in the one-dimensional case. The reason for this unexpected
result is that when using a multistep algorithm, an M X M matrix has to be inverted (directly)
at each time level, t. The number of operations and computing time required for the direct
inversion of a matrix grows very fast with the increase of the matrix size, thus countering the
benefits of adding more intermediate steps in the multistep procedure especially for one-
dimensional problems.
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T I I T T

0.300+ =
y——— : EIGHT OMEGAS AND LINEARIZED RP USED
2o . SEVEN OMEGAS AND LINEARIZED RP USED
——— x: SIX OMEGAS AND LINEARIZED RP USED
oy FIVE OMEGAS AND LINEARIZED RP USED
— o FOUR OMEGAS AND LINEARIZED RP USED
0.000 w——— . THREE OMEGAS AND LINEARIZED RP USED =
4 . TWO OMEGAS AND LINEARIZED RP USED
a—— a: ONE OMEGA AND LINEARIZED RP USED
o—————@o: NO ACCELERATION
-0. 300} —1
-0. 600 .
—
=
v 4
[=]
z
n
73]
o
Nt — —
= -0.900
(44
o
-t
-1. 200} .
-1.500+ -
~1.800} -
&}
l | | 1 1
0 150 300 450 600 750

NUMBER OF ITERATIONS

Fig. 1(a). Residual norm versus the number of iterations, 1D Burgers’ equation.

3.2. Stream-function-coordinate (SFC) equations

The two-dimensional stream-function-coordinate (SFC) equation for an irrotational, invis-
cid, steady flow derived by Huang and Dulikravich [6] is given by:

(Vs = O =2V Yy Ye (1 + ¥y, =0, (40)

where o represents the compressibility and is equal to zero for incompressible flows. It is
defined as

a=(p*a*/pa)’ =[3(y + 1) = i(y —1)M**]"OTVOTD, (41)
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Fig. 1(b). Residual norm versus the number of iterations, 1D Burgers’ equation.

where p and a denote the local density and the local speed of sound, respectively, and vy is the
ratio of the specific heats. The superscript terms denote the characteristic quantities of the
flow. It can be shown [6] that o is an implicit function of y, and y,, that is

A+y)/ly, =[(y + D" 0D 2)/[(y - )o] . (42)

Let us define

CL=Yeo = Vy s C3= YVix»
Ca=DVay» Cs = Vyy (43)

Then (40) can be rewritten as
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LOG1O(RESNORM) VS. CPUTIME, 1-D BURGERS' EQUATION
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Fig. 2(a). Residual norm versus the computing time, 1D Burgers’ equation.

N(cy, €5, ¢35, ¢4, ¢5) =0, (44)
or
[c; — (e, ¢;)e; = 26,66, + (1+ ¢})es =0. (45)

Assume that a uniform computational grid is used (both Ax and Ay are constant) and
central differencing is applied to discretize all derivatives. The finite difference approximation
of the SFC equation can be expressed as

Vo, =[(yy = @)X + (1 + y) AW (Y — oW yivr,; + ¥ior ) (2AX7)
+(1+ .V;zr)(yz',jﬂ + yx',j—l)/(ZA‘//z) - ny.//yxw] . (46)



26 G.S. Dulikravich, C.-Y. Huang, Fast algorithms based on time stepping

LOG10(RESNORM) VS. CPUTIME, 1-D BURGERS' EQUATION
T T 1 T 1 T

y— ~: EIGHT OMEGAS AND LINEARIZED RP USED
a5 SEVEN OMEGAS AND LINEARIZED RP USED
1.500+ *——————x : SIX OMEGAS AND LINEARIZED RP USED _
———. o FIVE OMEGAS AND LINEARIZED RP USED
e _o: FOUR OMEGAS AND LINEARIZED RP USED
——— & : THREE OMEGAS AND LINEARIZED RP USED
-4 : TWO OMEGAS AND LINEARIZED RP USED

a—— . a4: ONE OMEGA AND LINEARIZED RP USED

0.000+ o e: NO ACCELERATION N

—-1.500

. 000

LOG 10 (RESNORM)
]
w

-4.500

~6. 000

-7.500}

1 1 | 1 | |
0.000 0.500 1.000 1.500 2.000 2.500

CPU TIME(SEC)

Fig. 2(b). Residual norm versus the computing time, 1D Burgers’ equation.

Equation (46) will be referred to as the iterative equation. Most iterative schemes for solving
(46) can be expressed as

Yij =yi;t+ w8 (47)

i,j?

where ¢ represents the iteration level, w is the relaxation factor, and 8; J is the correction at
iteration level ¢. It is defined as

8, =30 —vis- (48)
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LOG10(RESNORM) VS. N(ITER), 2-D BURGERS' EQUATION
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Fig. 3(a). Residual norm versus the number of iterations, 2D Burgers’ equation.

Here, y f"ll is the temporary value of y at iteration level (¢ + 1) obtained by applying (46) with
any fundamental iterative scheme. In the presented studies, Liebman’s method (w =1) was
used as the fundamental iterative scheme and will be henceforth referred to as the nonacceler-
ated method. Assume that M steps are used in the GNLMR method. The solution is then
updated by using

t+1

yi,j =y:,j+a)m5m, m=1,2,...,M, (49)
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Fig. 3(b). Residual norm versus the number of iterations, 2D Burgers’ equation.

where 6, are the corrections at each intermediate step m. They are obtained by successively
applying Liebman’s method. The optimal values of w,, based on a linearized RP can be
determined by solving (37) with

N
r'=N(c,, c,, &y, ¢4, C5) (50)

a, =[(dN/dc,)(8,), + (dN/3c,)(8,,), + (IN/3c;)(8,,).y
+(N/dc,)(8,,),, + (IN/3c5)(3,,) 4] - (51)
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Fig. 4(a). Residual norm versus the computing time, 2D Burgers’ equation.

For the incompressible case, a uniform flow around a cascade of doublets was solved [6].
For the compressible case, a subsonic flow with free-stream Mach number M, = 0.65 around a
NACA 0012 airfoil in a channel with height/chord ratio =3.6 was solved [6].

Since linearized operators were used in these two cases, and the boundary conditions for
the residual and corrections in (33) were set to zero, the residual norm will converge to
machine accuracy. Therefore, the stopping criteria for these two cases was chosen in such a



30 G.S. Dulikravich, C.-Y. Huang, Fast algorithms based on time stepping
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Fig. 4(b). Residual norm versus the computing time, 2D Burgers’ equation.

way that as the residual norm approaches machine accuracy, the computation is forced to
stop.

The improvement of the computational efficiency is summarized in Fig. 9. Both cases show
that the computational efficiency is increased significantly by increasing the number of
intermediate steps M.

The numerical results for these two cases are summarized in Figs. 5-8. Both cases exhibit a
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Fig. 5. Residual norm versus the number of iterations, incompressible SFC equation.

common feature that the monotonicity and the rate of convergence increase with the increase
of the total number of intermediate steps M. Most importantly, Figs. 6 and 8 show that with a
specified minimum computing time, the difference in the residual norms between the
nonaccelerated method and the GNLMR method varies between one to eight orders of
magnitude depending on the number of steps used in the GNLMR method. This fact strongly
proves the computational efficiency that can be obtained using the GNLMR method [8].
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Fig. 6. Residual norm versus the computing time, incompressible SFC equation.

4. Concluding remarks

Four numerical test cases for nonlinear problems in fluid dynamics were presented to
demonstrate the applicability, computational efficiency, and monotone convergence behavior
of the GNLMR method. It was found that even though the theory of the GNLMR method is
based on the evolution problems and equations in conservative form, the method can be
applied equally successfully to the solutions of steady-state problems governed by equations in
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Fig. 7. Residual norm versus the number of iterations, compressible SFC equation.

nonconservative form. The results for all test cases show that when applying the GNLMR
method to nonlinear problems, the number of iterations and the corresponding computer time
are considerably lowered by increasing the number of intermediate time steps.

Since the explicit multistep algorithm was employed in developing the GNLMR method,
the advantage of accelerating the convergence rate of the iterative process is partially offset by
some extra costs. These are caused by the requirements for additional storage in order to save
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Fig. 8. Residual norm versus the computing time, compressible SFC equation.

corrections obtained from each intermediate step and by the additional arithmetic operations
to determine the coefficients of the minimizing polynomial. In practice, a maximum gain in
computational efficiency can be obtained with a moderate number (usually not more than five)
of intermediate steps. The requirement for additional storage linearly increases with the
number of intermediate time steps used and represents only a fraction of the computer storage
required by the GMRES method [8].
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Fig. 9. Improvement of computational efficiency versus the number of acceleration factors.
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